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Abstract

Research in neural control mostly concentrates on in-

direct control schemes while insu�cient attention has

been paid to direct model reference adaptive control

(MRAC) scheme. In addition, at present the empha-

sis of neural control is on parameter tuning instead of

structural tuning, i.e., to �nd the minimal controller

capable of achieving an optimal performance. The sta-

bility of the neural control schemes (i.e. the requirement

of persistency of excitation and bounded learning rates)

also requires more attention. Furthermore, localized ar-

chitectures are needed in order to deal with the moving

target problem (i.e. the di�culty for global neural net-

works to perform several separate computational tasks

in closed-loop control). The purpose of the present pa-

per is to show that direct MRAC using dynamically con-

structed neural controllers, such as the fuzzy neural and

the cascade correlation, satisfy above requirements and

o�ers a method for automatic discovery of an e�cient

controller.

1. Control Problem Statement

A general multi-input multi-output (MIMO) nonlinear
dynamical process can be represented by the following
state-space representation

~x(t+ 1) = ~f [~x(t); ~u(t); ~d(t)] ; (1)

~y(t) = ~g[~x(t); n(t)] : (2)

Here ~u � fu1; u2; ::; umug, ~y � fy1; y2; ::; ymyg and
~d � fd1; d2; ::; dpg are the control signal, process
output and disturbance input vectors, respectively,
~x � fx1; x2; ::; xng are the process states, and ~n �

fn1; n2; ::; nmg is the measurement noise, and t is the
time.

The vector maps ~f and ~g (i.e. the process model) are
assumed to be unknown. The aim is to dynamically

construct satisfactory controller using only the mea-
surements of the process states and outputs, and the
desired performance speci�cation in form of a reference
model. The desired output response ~yd is obtained
from the output of the reference model using the state
variables ~x as inputs to this model. The objective here
is to satisfy the persistency of excitation condition for
the exponential stability of an adaptive algorithm. The
excitation in such case is due to actual process signals
(states) a�ected by the disturbance signals ~d and noise
~n (see also [14] for discussion on injection of persistently
excited signals in closed-loop control). The objective
function to minimize is the squared di�erence between
the outputs of the process ~y and the reference model
~yd. On the other hand, the use of a squared di�erence
between the desired output setpoint ~ysp and the process
output ~y as the objective function can result in bursting
phenomena (parameters drift), since setpoints are not
persistently exciting [1].

A reference model in the form of a �lter with a desired
transfer function of the process is used to ensure a
variance in the desired dynamic characteristics of the
control system. Such reference models can be used
in order to achieve the required performance of the
process by the change in the process transfer function
(optimization-based design using Modulus Optimum
method [8]). A linear stable reference model (Butter-
worth's �lter [2]) is used. The coe�cients of Butter-
worth's �lter are selected to correspond to Modulus Op-
timum criteria for the desired performance in terms of
standard control objectives such as overshoot, settling
time, and steady-state error. The controller is designed
to transfer the original process transfer function to a
desired one.

A block diagram of the overall neural control system
is presented in Fig. 1. To use neural networks for
control, the e�ectiveness of the structural tuning as
opposed to the parameter tuning needs to be discussed.
The structural tuning of the fuzzy neural controller
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Fig. 1: Block diagram of the overall control system.

(FNC) concerns the partition of variables universe of
discourse (the number of membership functions) and
the number of rule nodes. The parameter tuning of the
FNC concerns adjustments of membership functions
(fuzzy weights) and the output weights. Similarly, for
the cascade correlation neural controller (CCNC) the
structural tuning concerns the size of the hidden layer,
whereas the parameter tuning concerns the weight ad-
justments. Most of the existing e�orts in neural control
concentrate on parameter tuning selecting the structure
on a trial-and-error basis. At the same time, insu�cient
e�orts have been made concerning structural tuning,
i.e., to �nd the minimal controller structure capable of
achieving an optimal performance. However, there are
no simple ways to determine in advance the minimal
size of the partition of the universe of discourse or the
minimal size of the hidden layer necessary to achieve the
desired performance. This type of structure selection
may require in-depth knowledge about the underlying
nonlinear process that is rarely available.

Dynamic construction of the controller is also necessary
in order to guard the network against too much 
exi-
bility and to reduce the risk of over-�tting. The large
networks are able to generalize as well as the small ones
for problems where the data is uniformly distributed.
However, for the cases where the data samples are con-
centrated within a small area of the mapping space,
large networks may fall to generalize at all, especially
for continuous data [10]. In closed-loop control data
samples are often concentrated in the small region of the
domain for extended periods due to constrains imposed
by process dynamics and the performance speci�cation
[7], consequently small networks are needed.

Such data �xation can also have negative e�ects in case
of a global learning. If a parameter with a global e�ect
on the input/output mapping is repeatedly adjusted
to correct the mapping in one input region, this may

result in deterioration of the mapping in other regions,
and e�ectively erase the e�ects of previous learning [7].
A manifestation of this problem is the moving target

problem [6], where the need for the global sigmoidal
network to perform two (or more) separate computa-
tional tasks can result in unsatisfactory performance
and long training time. Consequently, spatially local-
ized architectures where the learning in one part of
the domain has marginal e�ects on the knowledge in
other parts are needed [7]. Several networks, including
cerebellar model articulation controller (CMAC), radial
basis function networks (RBF), and the FNC have such
spatially localized characteristic. The FNC produces
outputs for inputs that partially match rules created
during initialization and training. This partial match-
ing ensures that similar inputs produce similar outputs
whereas dissimilar inputs produce independent outputs.
Thus, the network generalizes locally [3].

2. Fuzzy Neural Controller

The fuzzy neural controller (FNC) has an input layer, a
rule layer, and an output layer. Input nodes represent
input variables consisting of the current network inputs
(process states) and the previous outputs of the process.
Such outer recurrent feedback loop provides the possi-
bility to include temporal information [15]. Input nodes
are connected to rule nodes for these inputs through
membership functions (fuzzy weights). Piecewise-linear
triangular membership functions that correspond to
second-order B-splines [3] are used.

Rule node i represents fuzzy rule (i = 1; 2; :::; r):

IF x1(t) is Ai

x1
AND ::: xn(t) is Ai

xn

AND y1(t� 1) is Ai

y11
AND ::: ym1(t� 1) is Ai

ym

:::

AND y1(t� z) is Ai

y1z
AND ::: ymz(t� z) is Ai

ymz

:::

AND y1(t� c) is Ai

y1c
AND ::: ymc(t� c) is Ai

ymc

THEN u1(t) = wi

1
; ::: ; um(t) = wi

m
: (3)

Here wi

l
is the weight connecting rule node i and output

node l. Ai

q
(q = x1; ::; xn; y11; ::; ymc) is the membership

function of the antecedent part of rule node i for input
node q, and z (z = 1; 2; :::; c) is the time delay.

Rule nodes are connected to input and output nodes for
these rules. The membership value �i of the premise
of the ith rule that indicates the degree to which the
compound antecedent of the rule is satis�ed, is calcu-
lated as fuzzy AND using the product operator. The



use of the product operator makes fuzzy inference to
be fully di�erentiable at any point [3]. In the output
layer, nodes receive inputs from rule nodes connected
to these output nodes. Output ul of the FNC is ob-
tained using the weighted average (or center of gravity
defuzzi�cation). The use of the weighted average allows
us to avoid problems with over-aggressive control [13].
In addition, it produces a smoother output than the
mean of maxima (MOM) defuzzi�cation method and
greatly reduces both the computational cost and the
storage requirement of the algorithm [3].

The FNC structure generation and parameter tuning
algorithms are as follows. We need to specify the al-
lowable error threshold and/or the maximum number
of rules (rule nodes) for learning to stop. Initially
two equally spaced input membership functions are
added along the operating range of each input variable.
In such a way these membership functions satisfy �-
completeness. The initial rule layer is created using
Eq. (3). The network is trained using the following
learning rules:

wi

l
(t+ 1) = wi

l
(t)� �

@"l

@wi

l

: (4)

for adaptation of the weights between the rule layer and
the output layer, and

Ai

q
(t+ 1) = Ai

q
(t)� �

@"l
@Ai

q

: (5)

for adaptation of membership functions (fuzzy weights)
between the input layer and the rule layer. Here � is a
learning rate.

A variable learning rate is used that starts with a rela-
tively large learning rate to enhance the learning speed.
Whenever the error starts increasing, the learning rate
is reduced. The gradually decreasing learning rate is
aimed on preventing instability problem [15] resulting
from over-aggressive control. In addition, for incremen-
tal learning the learning rate is bounded by stability
requirements of the stochastic approximation theory.
Accordingly, the learning rate must be small and di-
minishing in order to maintain stability of the learning
algorithm [9].

If the degree of overlapping of membership functions
is greater than a pre-speci�ed threshold, we combine
these membership functions using the fuzzy similarity

measure [5]. We can thus reduce the size of the rule base
that is necessary in order to protect the network from
the `curse of dimensionality'. Combining of the mem-
bership functions is also done to eliminate the under-
performing membership functions, and to replace them

with the new ones that are likely to perform better. If
the performance of the controller is below the require-
ments, an additional membership function is added for
all inputs at the point of the maximum error of the
process output. By �rstly eliminating the errors whose
deviation from the target values is the greatest, the
output errors can be reduced more e�ciently and the
convergence of the network can be improved. Next, the
rule base is updated and the process is repeated until
either we obtained a satisfactory performance, or the
maximum pre-speci�ed size of the network is exceeded.

3. Cascade Correlation Neural Controller

The Cascade Correlation learning algorithm [6] (or
CCNC in our case) combines the cascade architecture,
where hidden nodes are added to the network one at a
time and do not change afterwards, and the structure
learning algorithm that creates and installs new hidden
nodes. The algorithm starts with a minimal network
consisting only of an input layer and an output layer.
All connections to the output layer are trained until
the overall error of the network no longer decreases. If
the network performance satis�es a prescribed accuracy
target, the algorithm stops. In such case, as there is no
hidden layer, the problem at hand is linear.

Remark. CCNC can thus be used to test if the problem
at hand is really a nonlinear one. As pointed out by
Mars et al. [11], there is no bene�t in applying neural
network to a linear or linearizable process, as this will
result in degradation of network performance: the so-
lution should not be more complex that the problem at
hand. Same argument was raised earlier by Saridis [12]
for control with self-organized and learning systems.

If the network performance is not satisfactory (and
therefore the problem is really a nonlinear one), gener-
ate candidate nodes. Candidate nodes receive trainable
connections from input nodes and from existing hidden
nodes. The correlation between the activation of can-
didate nodes and the residual error of the network is
maximized by training links to candidate nodes. The
training stops when the correlation no longer improves.
The candidate node with the maximum correlation is
selected and changed into a hidden node by connecting
it to output nodes. The algorithm is repeated until the
overall error of the network falls below a pre-speci�ed
threshold.

4. Simulation Results

The performance of the dynamically constructed FNC
and CCNC was evaluated by numerical simulations on



the polymerization process used to produce polymers
from monomers in a continuous stirred tank polymer-
ization reactor (CSTR) (Fig. 2). A free-radical poly-

Monomer + Solvent Initiator

T j

C

F T C FI Iin

m T D 0

F C I D1

inC min
T in

F cw

owT

Fig. 2: Continuous stirred tank polymerization reactor. Here F ,

FI , and Fcw are the volumetric 
ow rates of inlet and outlet

streams, the inlet initiator stream, and the cooling water, respec-

tively. Cm
in
, Cm, CI

in
, and CI , are the molar concentrations of

monomer and initiator in inlet and outlet streams, respectively.

Tin, TwO , T , and Tj are temperatures of the inlet streams, inlet

coolant stream, the reactor, and the cooling jacket, respectively.

D1 and DO are mass and molar concentrations of dead polymer

chains, respectively.

merization of methyl methacrylate (MMA) (monomer)
with azo-bis-isobutyronitrile (AIBN) as initiator and
toluene as solvent is used. The dynamic behavior of the
process is described by the mass and energy balances
as a set of six ordinary di�erential equations. Con-
sult [4] for the ordinary di�erential equations involved,
kinetic data, physical parameters, and steady-state val-
ues used, and the assumptions made. For the CSTR,
the dimensionless state variables are de�ned as follows:
x1 = Cm; x2 = CI ; x3 = T; x4 = D0; x5 = DI ; x6 = Tj
(Fig. 2). The control of a CSTR requires the number-
average molecular weight (NAMW) y1 = DI=D0 and
the reactor temperature y2 = T to be regulated. This
is achieved by manipulating the volumetric 
ow rate of
initiator in the inlet stream u1 = FI and the volumetric

ow rate of the cooling water u2 = Fcw. The process
disturbances are the molar concentration of monomer
in the inlet stream d1 = Cmin

and the temperature of
the inlet stream d2 = Tin.

As a reference model Butterworth's characteristic equa-
tion [2] for the 5th order system was used:

s5 + 3:24!ns
4 + 5:24!2

n
s3 + 5:24!3

n
s2 + 3:24!4

n
s+ !5

n
:

(6)
Here !n is a natural frequency of the system. This form
of characteristic equation gives us a damping ratio � =

0:71, and the settling time can be determined through
approximate relationship ts = 4/�!n. The coe�cients
of the Eq. 6 correspond to optimization-based design
using Modulus Optimum (Section 1).

The input-output data generated with the above refer-
ence model was used to train both the FNC and the
CCNC. The 1000 input-output data tuples were gener-
ated by numerical integration of the set of six ordinary
di�erential equations describing the process using the
�fth order Runge-Kutta integrator. First 500 samples
are used for training, and the whole data for the �nal
testing of the developed controllers. A square wave
disturbance was applied to the molar concentration of
inlet monomer and to the inlet temperature. A zero-
mean white noise was applied to output measurements.
The disturbances and noise were applied concurrently
to represent a real situation where the disturbances and
noise in the CSTR are present at the same time. For
comparison, two PI controllers were used to control the
same process (one for the reactor temperature control,
another for the number average molecular weights con-
trol).

Simulation results are presented in Fig. 3-6. Fig. 3
shows the time responses of uncontrolled CSTR. The PI
controllers, while rejecting the process disturbances and
noise to some extend, show rather poor performance
(Fig. 3). In contrast, the performances of both the
CCNC (Fig. 4) and the FNC (Fig. 5) are signi�cantly
better.
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Fig. 3: The uncontrolled reactor.
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Fig. 4: The performance of the PI controller.
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Fig. 5: The performance of the CCNC controller.
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Fig. 6: The performance of the FNC controller.

5. Discussion and Conclusions

The results of the FNC may look to be just slightly
better than that of the CCNC. However, the control of
a CSTR is typical of many complex processes where a
small improvement in performance can result in sub-
stantial economic bene�ts. Although the performance
of the CCNC controller is generally satisfactory, the
FNC is a preferable choice, especially if we take into
account other advantages of the FNC over the CCNC.
This includes the ability to incorporate existing knowl-
edge and the ability to express control decisions in the
form of IF-THEN rules that are easy to understand
from the human (operators) point of view.

The FNC and the CCNC also di�ers in the ways they
deal with the moving target problem (MTP) [6] (Section
1). In case of a CSTR, two separate system variables,
i.e., the number-average molecular weight (NAMW)
and the reactor temperature, need to be controlled. To
handle the MTP, each hidden node in the CCNC is
frozen after installation into the controller. This feature
prevents the CCNC from unlearning (forgetting) the
old information in order to follow well several di�erent
targets, as in our case of CSTR control. However,
this is not always bene�cial in real-world situations,
especially with time-varying processes, since it limits
the controller ability to adapt to changes. Freezing
hidden nodes in the CCNC can be viewed as equivalent
to a FNC with a �xed grid partition, in contrast to a
variable grid partition employed by the FNC.

Both the FNC and the CCNC produce signi�cantly bet-
ter control compared to PI controllers, which indicates

a distinct advantage of nonlinear control over linear
control for nonlinear industrial processes.
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