A Fuzzy Neural Network for Data Mining: Dealing with the Problem
of Small Disjuncts

Yakov Frayman', Kai Ming Ting! and Lipo Wang?
!Deakin University, School of Computing and Mathematics,
662 Blackburn Road, Clayton, Victoria 3168, Australia

2Nanyang Technological University, School of Electrical and Electronic Engineering,
Block S2 Nanyang Avenue, Singapore 639798

E-mail: {yfraym, kmting}@deakin.edu.au, elpwang@ntu.edu.sg

Abstract

In today’s information age, data mining, i.e., extract-
ing useful patterns or relationships from vast amount
of data, has become increasingly important. Decision
trees are currently the most popular tools for data min-
ing. Despite many advantages in this approach, some
aspects require improvements. A notable problem is
known as the problem of small disjuncts, where the in-
duced rules that cover a small amount of training cases
often have high error rates. The purpose of the present
paper is to show that a dynamically constructed recur-
rent fuzzy neural network can deal effectively with this
problem.

1. Introduction

Data mining is one of the most promising fields for ap-
plication of intelligent information processing technolo-
gies. It aims to extract useful patterns and nontrivial
relationships from large collections of data records [17].
Hence, the users can be provided with a powerful tool
for exploiting vast amount of stored data.

The most popular approaches to data mining at present
are decision trees generated through symbolic inductive
algorithms [4, 9]. Decision trees such as C4.5 [9] use the
maximum generality bias to achieve a high predictive
accuracy on disjuncts that cover a large proportion of
training instances (large disjuncts). However, the use
of a maximum generality bias often results in high error
rates on disjuncts that cover a small number of training
instances (small disjuncts). The low accuracy in the
later cases stem from the use by decision trees such
as C4.5 some form of probability estimates (most com-
monly the relative frequency) to estimate the quality
of inductive rules. The unreliable probability estimates
from small number of training instances resulted in the
problem of small disjuncts, where specific rules often
produce high error rates [7, 13, 15, 16].

0-7803-5529-6/99/$10.00 ©1999 IEEE

There exist some remedies for C4.5 to overcome the
problem of small disjuncts. This includes modifying
original Bayes-Laplace formula [10], and using a com-
posite learner consisting of C4.5 and an instance-based
learning method [1] for small disjuncts [13]. Another
possibility is to assign different misclassification costs
for different classes that in effect will change the original
frequency of data. However, this is not a straightfor-
ward task, as for example, the instance-based learning
method suffers from the similar problem, termed the
problem of atypicallity [14]. Thus, the problems of small
disjuncts and atypicallity can be seen as manifestations
of an intrinsic problem in learning systems. In this
paper, we will approach the problem of small disjuncts
using a fuzzy neural network that does not use a prob-
ability estimate in its rule induction. Thus, it should
not depend on a relative frequency of a particular class
in the overall data set.

2. Fuzzy Neural Network

The structure of the fuzzy neural network (FNN) is
shown in Figure 1. The network consists of four layers,
i.e., the input, the input membership function, the rule,
and the output layers. The input nodes represent input
variables consisting of the current inputs and the pre-
vious outputs. This recurrent structure provides the
possibility to include temporal information, i.e., the
network learns dynamic input-output mapping instead
of the static mapping in feedforward neural networks.

Each input node is connected to all membership func-
tion nodes for this input. The input membership func-
tions act as fuzzy weights between the input layer and
the rule layer. Piecewise-linear triangular membership
functions that correspond to second-order B-splines [5]
are used. This type of membership functions is sim-
ple to implement and is computationally efficient. The
leftmost and rightmost membership functions are shoul-

2490

dered to cover for the whole operating range of input.
Rule node i represents fuzzy rule (¢ = 1,2,...,7):
IF z; is Ai, AND .. z, is Aiﬂ
AND yi(k—1) is A}, AND .. yn(k—1) is A}

THEN y1=‘wi y oty ym=w:n - (1)

Here z; (7 = 1,2,.,n), and : (I = 1,2, ._.,m), are
the inputs and the outputs, respectively. wj} is a real
number. A (¢ = 1,22, Zn, Y1, Y2, - Ym) is the mem-
bership function of the antecedent part of rule ¢ for node
g in the input layer, and k is the time. Each rule node is

Y‘f Y’T ym

Output Layer

Rule Layer

Input Membership
Function Layer

Input Layer

Fig. 1: The structure of the fuzzy neural network

connected to all input membership function nodes and
output nodes for this rule. Links between the rule layer
and the output layer, and the input membership func-
tions are adaptive during learning. The membership
value p; of the premise of the ith rule, is calculated as
fuzzy AND using the product operator.

pi = Apy (21) - Agp(2) - o An(n) - A} (1)

Apa(y2) « e s Ay () @)

Here p; indicates the degree to that the compound an-
tecedent of the rule is satisfied.

The use of a product operator makes fuzzy inference
to be fully differentiable at any point [8, 12]. On the
other hand, the use of the truncation (MIN) operator
would introduce derivative discontinuities both along
the lines parallel to the input axes and along the main
and minor diagonals [5]. The relational surface in this
case would also have large areas where the system is
not sensitive to any changes in input, and the output
of fuzzy system is constant in these regions. Therefore,

fuzzy inference that use truncation operators is not in-
herently robust rather the information lost during their
operation produces undesirable fuzzy relational surface

[5].

In addition, the use of the product operator for fuzzy
AND produces a smooth output surface in contrast
with the commonly used fuzzy MIN operator. The
product operator forms multivariate membership func-
tions. Such membership functions retain more infor-
mation than when does the MIN operator is used.
The latter scheme retains only one piece of information
whereas the product operator combines n-pieces [5].

In the output layer, each node receives inputs from all
rule nodes connected to this output node. The output
y; of the fuzzy inference is obtained using the weighted
average (or center of gravity defuzzification)

X piw
y= _—Ei pal 3)

The use of a weighted average (following the simplified
fuzzy inference) produces a smoother output than the
mean of maxima (MOM) defuzzification method and
greatly reduces both the computational cost and the
storage requirement of the algorithm [5].

The FNN structure generation and learning algorithms
are as follows. Initially, (n + m) nodes for the input
layer and m nodes for the output layer are created.
Here n and m are the number of the input variables
(attributes) and the output variables (classes), respec-
tively. Next, two equally spaced input membership
functions are added along the operating range of each
input variable. In such a way these membership func-
tions satisfy e-completeness, which means that for a
given value of z of one of the inputs in the operating
range, we can always find a linguistic label A such that
the membership value u4(z) > €. If the e-completeness
is not satisfied there may be no rule applicable for a
new data input. The initial rule layer is created using
equation (1).

The network is trained using the following general
learning rule
; i de
yi(k+1) = (k) —n5 - @
Yi
The learning rules for wj and A} are:

i i 8
wi(k+1) = wi(k) 05 (5)
1

2491

for adaptation of the weights between the rule layer and
the output layer, and

i — A (k) _ 08
Ak +1) = A (k) e (6)

for adaptation of membership functions (fuzzy weights).
Here 7 is the learning rate.

The objective is to minimize an error function

a= %(yz -ya)® . (7

Here y; is the current output, and yg is the target
output.

The learning rate 7 is variable: a relatively large learn-
ing rate to enhance the learning speed is used initially,
i.e., 7 = 0.01. Whenever the error £(t) starts increasing,
the learning rate is reduced according to the following
iterative formula

Thnew = T¢ Told - (8)

Here r. is a coefficient in the range (0,1). Such de-
creasing learning rate algorithm can improve the speed
of convergence, resulting in substantial reduction in
training time, as well as in improvements in learning
performance (accuracy).

The following recursive procedure is employed next.
If the degree of overlapping of membership functions
is greater than a specified threshold (e.g., 0.9), those
membership functions are combined. The following
fuzzy similarity measure [6] is used:

M(A U4’
Here N and U denote the intersection and union of two

fuzzy sets A; and Aj, respectively. M(-) is the size of
a fuzzy set, and 0 < E(4;,42) <1.

E(A;,A3) =

If an input variable ends up with only one member-
ship function, which means that this input is irrele-
vant, delete the input. Irrelevant inputs thus can be
eliminated and the size of the rule base can be reduced.
Combining the membership functions is also done to
eliminate the poor membership functions, and to re-
place them with the new ones that are likely to perform
better.

If the classification accuracy is above or if the num-
ber of rule nodes is below the respective pre-specified
threshold, the algorithm stops. Otherwise, add an addi-
tional membership function for all inputs at the point

of the maximum output error. By firstly eliminating
the errors whose deviation from the target values is
the greatest, the output error can be reduced more
efficiently and the convergence of the network can be
substantially improved.

As the objective of data mining is to produce a small set
of simple and accurate rules, there is a need to achieve a
maximum compactness of the rule base while maintain-
ing a high accuracy. The need of the compact rule base
is twofold: it should allow for scaling of data mining
algorithms to large dimensional problems, as well as
providing the user with easily interpretable rules.

Consequently, a pruning phase of the algorithm was
also implemented. The generated rules are evaluated
for accuracy and generality. A weighting parameter
between accuracy and generality, the rule applicability
coefficient (weighting of the rules) (WR) is used. It
is defined as the product of the number of the rule
activation RA by the accuracy of the rule A. All rules
whose rule applicability coefficient WR falls below a
pre-defined threshold are deleted. When a rule node
is deleted associated input membership functions and
links are deleted as well. By varying the W R threshold
the user is able to specify the degree of rule base com-
pactness. In such a way, the size of the rule base can be
kept minimal. Thus, effectively both construction and
pruning phases are employed in the overall algorithm.

3. Experimental Results

The FNN method was tested on a car evaluation
database from the Machine Learning Repository at Uni-
versity of California, Irvine [2]. The car evaluation
database was derived from a simple hierarchical deci-
sion model [3, 18]. The reason for using this database
is to exemplify the problem of small disjuncts when the
data distribution is skewed.

The car evaluation database contains examples with
the structural information removed, i.e., directly relates
a car to six input attributes: buying, maint, doors,
persons, lug-boot, and safety. The database has 1728
instances that completely cover the attribute space, 6
attributes and 4 classes. The attribute values are: buy-
ing = {v-high, high, med, low}, maint = {v-high, high,
med, low}, doors = {2, 3, 4, 5-more}, persons = {2,
4, more}, lug-boot = {small, med, big}, and safety =
{low, med, high}. The class distribution is as follows:
class unacc = 1210 (70.0%), acc = 384 (22.2%), good
= 69 (4.0%), vgood = 65 (3.8%). The data set was
randomly split in two equal sets: training and testing,
with the same distribution of classes in each set.

2492

For comparison with the FNN approach, we used
C4.5Rules [11] to make the results comparable with
the rule-based FNN. C4.5Rules Release 8 with default
parameters was used. The performance of the FNN and
C4.5Rules on a car evaluation database is given in Table
1. The FNN gives higher accuracy that the C4.5Rules

Class || Accur. (%) Rules Cond.
C4 | FN |C4|FN || C4 | FN
unacc [[98.0 984] 9 | 10 || 20 | 24
acc 720 | 79.7 || 25 | 14 || 97 | 58
good || 441|829 6 | 8 | 24 | 28
vgood || 54.5 | 75.0 || 6 7 25 | 31
Overall || 88.4 | 92.7 || 46 | 39 || 166 | 141

Table: 1: Accuracy on test data set, the number of rules, the
number of conditions for C4.5Rules Release 8 (C4), and the FNN
(FN) for the car evaluation database

for the whole database as well as per each class, with
a less complex rule base for class ‘acc’. While both
the FNN and C4.5Rules give quite similar accuracy for
classes ‘unacc’ and ‘acc’, the FNN gives much higher
accuracy on classes ‘good’ and ‘vgood’. To note, the
frequency for class ‘good’ in the database is 4.0%, and
for class ‘vgood’ 3.8%.

4. Discussion and Conclusions

As can be seen from the results in Table 1, the FNN
inductive learning (i.e., the error rate) is affected much
less by the problem of small disjuncts, in contrast to
C4.5Rules. This is because the FNN treats all classes
with equal importance, whereas C4.5Rules gives pref-
erence to classes with a higher occurrence in the data
set. On the other hand, C4.5Rules treats classes with
lower support as less important (considering them as
noise or exceptions). In reality, however, classes with
low occurrence in the data set may not be the noise,
but instead contain essential knowledge that one tries
to extract from the database. For example, for the car
evaluation database used in our experiments, the aim
is not only to find which car is not suitable, but also to
find which car is the most suitable. The FNN can offer
much better advise to the user on finding cars in ‘good’
and ‘vgood’ classes, in comparison to C4.5Rules. Thus,
the FNN approach to small disjuncts can be very useful
in real-world situations, as the data of interest can often
be only a small fraction of the available data.

References

[1] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-
based learning algorithms,” Machine Learning, vol. 6,

pp. 37-66, 1991.

[2] C.Blake, E. Keogh, and C. J. Merz, UCI Repository of
machine learning databases [http://www.ics.uci.edu/
~mlearn/MLRepository.html], University of Califor-
nia, Department of Information and Computer Sci-
ence: Irvine, CA, 1998.

[3] M. Bohanec, V. Rajkovic, “Expert system for decision
making,” Sistemica, vol. 1, no. 1, pp. 145-157, 1990.

[4] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone, Classification and regression trees, Wansworth
International: Belmont, CA, 1984.

[5] M. Brown and C. Harris, Neurofuzzy adaptive mod-
elling and control, Prentice-Hall, 1994.

[6] D. Dubois and H. Prade, “A unifying view of com-
parison indices in a fuzzy set theoretic framework,” in
R. R. Yager, (Ed.), Fuzzy sets and possibility theory:
recent developments, Pergamon, NY, 1982.

{7] R. C. Holte, L. E. Acker, and B. W. Porter, “Concept
learning and the problem of small disjuncts,” Proc.
11th Int. Joint Conf. on Artificial Intelligence, pp. 813-
818, 1989.

[8] H. Nomura, I. Hayashi, and N. Wakami, “A learning
method of fuzzy inference rules by descent method,”
Proc. First IEEE Int. Conf. on Fuzzy Systems, pp. 203-
210, 1992.

[9] J. R. Quinlan, “Induction of decision trees,” Machine
Learning, vol. 1, pp. 81-106, 1986.

[10] J. R. Quinlan, “Improved estimates for the accuracy of
small disjuncts”, Machine Learning, vol. 6, no. 1, pp.
93-98, 1991.

[11] J. R. Quinlan, C4.5: Programs for machine learning,
Morgan Kaufmann: San Mateo, CA, 1993.

[12] L Rojas, J. Ortega, F. J. Pelayo, and A. Prieto, “Sta-
tistical analysis of the main parameters in the fuzzy
inference process,” Fuzzy Sets and Systems, vol. 102,
pp. 157-173, 1999.

[13] K. M. Ting, “The problem of small disjuncts: its rem-
edy in decision trees,” Proc. 10th Canadian Conf. on
Artificial Intelligence, pp. 91-97, 1994.

[14] K. M. Ting, “The problem of atypicality in instance-
based learning,” Proc. 3rd Pacific Rim Int. Conf. on
Artificial Intelligence, vol. 1, pp. 360-366, 1994.

[15] G. M. Weiss, “Learning with rare cases and small dis-
juncts,” Proc. 12th Int. Conf. on Machine Learning,
Pp. 558-565, 1995.

[16] G. M. Weiss and H. Hirsh, “The problem with noise
and small disjuncts,” Proc. 15th Int. Conf. on Machine
Learning, pp. 574-578, 1998.

[17] S. Weiss and N. Indurkhya, Predictive date mining:
a practical guide, Morgan Kaufmann: San Francisco,
CA, 1998.

[18] B. Zupan, M. Bohanec, I. Bratko, and J. Demsar “Ma-
chine learning by function decomposition,” Proc. 14th
Int. Conf. on Machine Learning, pp. 421-429, 1997.

2493

