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Multi-associative Neural Networks and Their
Applications to Learning and Retrieving
Complex Spatio-Temporal Sequences

Lipo Wang

Abstract—Based on the previous work of a number of authors, neural network (MANN). Hirai [26] proposed a network that
we discuss an important class of neural networks which we call associates a pattern with a collection of patterns. Hagiwara
multi-associative neural nework¢MANN's) and which associate 1551 and coworkers [37] extended the bidirectional associative
one pattern with multiple patterns. As a computationally effi- L .
cient example of such networks, we describe a specific MANN, Memory [32] to store associations among multiple patterns.
that is, a multi-associative, dynamically generated variant of These networks used covariance (inner-product) learning rules
the counterpropagation network (MCPN). As an application of similar to that in the Hopfield network [27] and therefore
MANN’s, we design ageneralsystem that can learn and retrieve Kgye limited memory capacity. Owensal. [38] attempted to

complexspatio-temporal sequences witlany MANN. This system d . . di he classificati bili
consists of comparator units, a parallel array of MANN’s, and reduce training time and Improve the classilication capability

delayed feedback lines from the output of the system to the Of the multilayer perceptron by incorporating multiple output
neural network layer. During learning, pairs of sequences of layers. In this paper, we discuss the MANN in general, as

spatial patterns are presented to the system and the systeme|l as a computationally efficient exemplar MANN. As a
learns to associate patterns at successive times In sequencedemonstration of the appllcablllty of MANN’S, we present a

During retrieving, a cue sequence, which may be obscured by . . . L
spatial noise and temporal gaps, causes the system to output thed€Sign of a system that is capable of learning and retrieving

stored spatio-temporal sequence. We prove analytically that this complex spatio-temporal sequences using any static MANN. A
system is capable of learning and generating any spatio-temporal specific implementation of this general system shows a number
sequences within the maximum complexity determined by the of esjrable advantages over existing spatio-temporal systems.

number of embedded MANN's, with the maximum length and There has been extensive r rch activity in learning and
number of sequences determined by the memory capacity of ere has been extensive research aclivity in fearning a

the embedded MANN’s. To demonstrate the applicability of this generating temporal phenomena with artificial neural net-
general system, we present an implementation using the MCPN. works. The main motivation for creating and studying these

The system shows desirable properties such as fast and accuratemodels is to build intelligent artificial systems that mimic
learning and retrieving, and ability to store a large number of . o en symass certain aspects of biological intelligence.
complex sequences consisting of nonorthogonal spatial patterns. Spatio-temporal phenomena are particularly interesting due to
Index Terms— Auto-associative, hetero-associative, multi- thejr abundance in both nature and practical applications. For
associative, neural network, noise, spatio-temporal sequence. instance, a particular spatio-temporal scene triggers a response
sequence in a robot. The survival of many animals also
|. INTRODUCTION depends on the ability to learn and produce spatio-temporal

HETEROassociative neural network (HANN) associateS8€dUences, e.g., a prey escapes from a predictor with a series
Aa spatial patternrP) with another pattern?® which of maneuvers. _ _
may or may not be the same as pattéi¥), whereas aauto- Grossberg [14]—[20] proved mathernatlcally. that his
associative neural network (AANN) associates a spatial pattéiy@lanche model is capable of learning spatio-temporal
with itself, i.e., P = P® in an AANN. For example, the Sequences after an infinite number of presentations of the
multilayer perceptron network [40], the counterpropagatidf@ining sequences; however, the model, presented in the
network [25], and the bidirectional associative memory [33prm of delayed partial-differential-difference equations, is
are HANN's, whereas the Hopfield network [27] is an AANNCOmputationally expensive and its practical capabilities to
One pattern may often be associated with many patter@éfectively generate spatio-temporal sequences, such as the
For example [7], an image of a banana may be associaf¥tes discussed in the present paper, are yet to be demonstrated.
with not only a banana, but also a yellow object, a fruit, an Fukushima’s [13] spatio-temporal system consists of a num-
oblong object, etc. Let us call a neural network that associat of binary neurons connected with delayed Hebb-type [24]
one spatial pattern with multiple patternsraulti-associative covariance (inner-product) synapses [1]. This system required
Manuscript received January 6, 1997; revised April 10, 1998. This wormany lterations for sequence retrieval and retrieved nonorthog-
was suppor?ed by the Australign Research Council Fzlnd Deakin University.(j)(nal patterns with difficulty. .Images_ generated by th!S system
The author was with the School of Computing and Mathematics, Deak@f€ often obscured by noise, which may be attributed to
University, Viptoria 3_168,_Austra|ia. He is now with the Sc'hool'of E'?thica'sgurious memories characteristic of covariance (inner-product)
and Electronic Engineering, Nanyang Technological University, Slngapolrearning rules [1], [27]. Time delays have been used in Hop-
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of spatial patterns [30], [41], [42] and to process speed$ting networks for spatio-temporal sequence generation are
signals [45]. Kosko [32] proposed the bidirectional associatiadl based on somepecific learning rules and network ar-
memory that consists of interconnected networks and is alolgitecture. In this paper, as an application of MANN's, we
to produce spatio-temporal sequences. Buhmann and Schufiespose ageneral framework for learning and generating
[5] used stochastic noise to induce transitions between spasiphtio-temporal sequences with any arbitrary MANN which
patterns in Hopfield networks and these transitions formaédhy be based on any arbitrary architecture and learning
spatio-temporal sequences. These systems also use Hebb-&gerithm. To demonstrate the applicability of the this general
learning rules and thus have rather low memory capacity aggstem, we present an implementation using a specific MANN,
spurious memories. that is, our multi-associative, dynamically generated variant
Guyon et al. [21] presented a spatio-temporal system thaf the counterpropagation network [25], and we show that
requireda priori analytical expressions of all stored sequencethis system significantly improves the efficiency of spatio-
Other mechanisms for temporal sequence generation are titi@gnporal sequence learning and generation in comparison with
dependent [10], [39], asymmetric [8], [36], and diluted highesther existing systems. The present work also increases the
order [50], [51], [56], [57], synaptic interactions. capability of dealing withrcomplexsequences when compared
Bradskiet al.[2]-[4] coupled two ART networks [7] to form to a system that we proposed using AANN’s and HANN's, as
sequence producing systems (also see [23]). The capabilig@idenced by the Theorem in Section Ill when compared to
of these networks in handlingpmplexsequences, where oneour previous work based on AANN’s and HANN's [53], [54],
spatial pattern in a sequence may be followed by differeas evidenced by the Theorem in Section Il and the example
spatial patterns, have not been mathematically proven given in Tables I-lIl..
clearly substantiated with examples such as the ones given iffhis paper is organized as follows. In Section Il, we discuss
the present paper. D. Wang and Yuwono [49] recently proposgeneral features of MANN and provide a computationally
a novel network to generate complex sequences [47], [48fficient exemplar MANN based on the counterpropagation
They proved that the model can learn to generate any comptetwork. As an application of MANN's, we describe in
sequences within a certain limit determined by the netwofkection Il the architectural design and the operating mech-
architecture. Like many other sequence processing systemésms of our general system for learning and generating
[59], their network handles sequences syimbols(scalars) spatio-temporal sequences, together with analytical discussions
rather than spatial patterns (vectors). To learn and retriege the maximum complexity of the sequences learned by the
spatio-temporal sequences, their network requires preprocesystem and the memory capacity of the system (the maximum
ing to transform sequences of spatial patterns to sequenceteofths and number of sequences stored). An implementation
symbols as network inputs and post-processing to transfoahthe general system, as well as the learning and the retrieval
sequences of symbols to sequences of spatial patternsoisome explicit examples, will be described in Section IV.
network outputs. This work has the following resemblandé/e end the paper with some closing remarks in Section V.
with a concurrent effort taken by Nigrin [35]. These networks
memorize sequences with the competitive learning algorithm
used in the ART networks and anticipate upcoming compU=
nents in a sequence with feedback connections. They usés defined in the previous section, a multi-associative
decreasing activation in neurons to represent order informatioeural network (MANN) associates one pattern with multiple
in a sequence. Nigrin's networltassifiessequences (also seepatterns. There are many situations where multi-associations
[7]), rather than generates sequences as the network presemag occur. For instance, a facial image may be associated with
in [49] does. In this paper, we concentrate our discussionsriot only the person’s name, but also a friend, a humorous
the storageand retrieval of spatictemporal sequences only.person, etc. A car may be associated with a red object, a
Extension of the present work to sequence classification aiodl! for transport, or even traffic hazard! Although one pattern
discrimination will be the subject of future studies. c may be associated with a set of patterns, which we call
Many authors, inspired by Elman [12] and Jordan [29%the association sebf patterné, we assume that the network
incorporated time-delayed feedbacks into backpropagation nettputs only one pattern in its association set at any given
works [40] to form recurrent networks (for a review see [44])jnstance of time and a signal external to the MANN determines
These networks were used in processing temporal speedfich pattern in the association set is the overall output of the
signals [33], [46]. DeVries and Principe [9] proposed an inteMANN.
esting temporal model combining the existing approaches suciWwe assume that there are two separate input channels in
as backpropagation, time-delays, and Grossberg’s work. BahMANN, i.e., the conditioned stimulus (CS) and the un-
backpropagation and recurrent networks have long trainisgnditioned stimulus (US) channels, in analogy with classical
times, which makes real-time learning very difficult. conditioning [31], that is, after repeated presentations of a US
Despite intensive research activities in learning and retriewogether with a CS, the CS alone can generate the response
ing spatio-temporal sequences with neural networks, variotsused by the US. During learning, paired CS and US input
difficulties, such as slow and inaccurate learning and rpatterns are presented to a MANN through the CS channel
trieving, strict orthogonality requirements, limited memorand the US channel, respectively, and the MANN learns the
capacity, and difficulties in dealing with complex sequenceassociation between the CS and the US patterns in each pair.
remain in the existing approaches. Furthermore, these @éfter learning, each CS pattexd*) may be associated with
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Fig. 1. The forward-only counterpropagation neural network (FOCPN) of
Hecht—Nielsen.
Fig. 2. The present multi-associative, dynamically generated variant of the
forward-only counterpropagation neural network (MCPN).
multiple US patterns, i.e., the association set

{ﬁ(k,l) g2 ... ﬁ(k,mk)} ) 1) synaptic weights are the most similar to the input pattern
’ T changes its incoming weight vector as follows (Fig. 1)
where the size of the association set can be any positive new —old =1
. o eV = (1 — «at)u; t)C. 2
integer. In a hetero-associative network, one hgs = 1, Wi ( ) di;™ + alt) 2)

whereas in an auto-associative network, one hastgth- 1 The incoming weights of other neurons in the competitive
andC® = U™ for all k. Note that the terms CS and US ardayer remain unchanged. All outgoing weights originating from
interpreted rather narrowly in the present paper, since matfiys winning neuron to the associative layer are modified
other biological features of classical conditioning are not us¢éaward the associated USﬁtraining pattern (the “correct” or

here [31]. the expected output patterfy) in a similar fashion
During retrieving after training, when the MANN is pre- mew _ (1 gy mold PN
sented with CS patter@®) which may be obscured with 7 =1 - O + U 3)

spatial noise, the MANN first output§f<k71>, if the noise All other weights connected to the associative layer do not
is within the tolerance level of the MANN. An externalchange at this time. Hence after training, the incoming weights
control signal then determines whether the MANN “fixatesdf each neuron in the competitive layer represent a cluster in
the overall output o/ ® 1 or outputs the next US pattern inthe CS training patterns and the outgoing weights originating
association set®, until fixation on one of the associated USrom this neuron to the associative layer represent the associ-
patterns occurs or the last US patterns in association8kt ated US training pattern. Note thdt is not the weight vector
has been reached. This external control signal results from tifethe ith associative neuron. Usually the learning rates
evaluation of the current output of the MANN, e.g., by anothemnd ' assume large values at the beginning of training and
processing system that accepts the output of the MANN ggdually decrease toward zero as time elapses. After training,
input. We will describe explicitly how the overall output of awhen a testing patterﬁ‘“‘) is presented to the FOCPN through
MANN is determined in our application of MANN's to spatio-the CS input channel only, the neuron in the competitive
temporal sequence generation in the subsequent two sectiteger with weights most similar to the testing pattern wins
We assume that the MANN outputs a “don’t know” answer ithe competition and broadcasts the associated US pétftéin
the noise in the input CS pattern is over the tolerance levéd. the associative (output) neurons. The original FOCPN is a
The tolerance level of the MANN is determined according tbetero-associative neural network.
practical requirements in each specific application. We make the following two modifications in our variant
We now present a computationally efficient exemplasf the FOCPN. First, the competitive layer and all weights
MANN by modifying the forward-only counterpropagationof the network are dynamically generated according to the
network (FOCPN) invented by Hecht-Nielsen [25]. We firstompetitive learning algorithm used in the ART network [6].
briefly describe the architecture and the learning algorithm ®his dynamically generated FOCPN not only achieves desired
the FOCPN. As shown in Fig. 1, the FOCPN consists of araining and retrieving objectives, but also is efficient to
input layer, a competitive layer, and an associative layer whighplement with software [43] and has practically unlimited
also serves as the output layer in the original FOCNP. Adtorage capacity. Second, a multi-associative layer is also
neurons in the network are standard McCulloch—Pitts binadynamically generated according to the rule described below,
neurons [34]. When a CS input pattetfhis presented to the to allow for multi-associations (Fig. 2).
input layer during training, the competitive layer performs Suppose the dimensions of the CS and the US patterns
winner-take-all competitive learning, and the neuron whosee N., and N,,,, respectively. Before training, the network
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has N.s input neurons and one group d¥,; associative weights connected to neurérare exactly theverall averages
neurons, but the network has no competitive neurons af the CS and the US training patterns used to modify the
weights. When the first pair of CS and US training patterngieights of this neuron [52], [59]

i.e., L and UM, is presented to the network, the first .

competitive neuron is generated, wiLh its incoming weights (1) = 1 Z 5(7/)

being the CS training pattern, i.ed; = C(*), and the outgoing T 5

weights connecting this neuron to all associative neurons being -
the US training pattern, i.ez; @ = UW. It will become 7,9 (1)) 1o Z DO (1.
clearer that each competitive neuron may be connected to Ti

more than one group of associative neurons to allow for . . . .
multi-associations#;, /) denotes the outgoing weight vector After training, each competitive neuron in the network is
connecting thekth competitive neuron with thgth group of connecFejd o at least one group of associative neurons. Some
associative neurons, and, as shown below, it is actuallytthe compgtlt_we neurons may be connected t9 multiple groups .Of
US pattern associated with the CS pattern represented by gfgociative neurons, if the CS patterns Wh'Ch these competitive
incoming weight vector of thétth competitive neuron. neurons represent have been associated with multiple US

For each subsequent pair of CS-US association, a copgiterns during training (Fig. 2). The associative neurons in

petition is carried out in the competitive layer and the neurége multi-associative layer of the network are connected to

/=1

whose incoming weights are the most similar to the CS trainifge OutPut Iaygr of th? qetwork. When a CS input pat_t.ern S
pattern is located. If the similarity between the CS trainin%esented during retrieving, a winner-take-all competition is
t

pattern and the weight vector of this winning neuron is below rr?ed out in the competitive_ Iayer: I the_similarity bet\_/ve_en
vigilance threshold,, . [6], which signifies that the US training € '”pU_'t_ CS pattern.and the incoming weights of the winning
mpetitive neuron is above the vigilance threshélg the

pattern belongs to a category that has not been learned, a r?gé/v o d by th . iahts of thi
competitive neuron is generated in the same way in WhiHl association set represented by the outgoing weights of this

the first competitive neuron was generated, namely, with I\fygnning competitive neuron is activated. An external control

incoming and outgoing weight vectors being the CS and tﬁégt_nal ptermlts_ otnly onef ?_roup 0; ?hss?():ganv?t heurons to ?ed
US training vectors, respectively. active at any instance of time and the pattern represente

If the similarity between the CS training pattern and thBy the active group of associat.ivg neurons becomes.the overall
incoming weight vector of this winning neuron is above th@UtPut of the netvvork.llf the §|m|Iar|ty betvx{een the input 'C.:S
vigilance thresholdb,.,, which signifies that the CS training P2ttér and the incoming weights of the winning competitive

pattern belongs to a learned category, the incoming weidlfUon i below the vigilance thresholil,, the network

vector of the winning neuronu) is modified according outputs_ a do_nt know answer. . .
to (1). The outgoing weight vector of this neuron is then In this section, we have discussed in general an important

compared with the training US pattern, if the winning neuroﬁlass of neural networks, i.e., the multi-associative neural

is connected to only one set of associative neurons, that isf"iaft\’vorkS (MANN's), and we have built a multi-associative,

the CS pattern represented by the winning neuron has béjé(Hamically generated variant of the counterpropagation net-

associated with only one US pattern. If the winning neuron Ygork (MCPN) as an example of MANN's. In the subsequent

connected to multiple groups of associative neurons, name
if the CS pattern represented by the winning neuron has b
associated with multiple US patterns, then only the outgoir?
weight vector that is most similar to the training US patter
is considered. If the similarity between this outgoing weight
vector and the training US pattern is over another vigilance lll. A GENERAL SPATIO-TEMPORAL SYSTEM

thresholdd,,,, which signifies that the training vector belongs WITH MULTIASSOCIATIVE NEURAL NETWORKS

to a learned category, then this outgoing weight vector is Spatio-temporal sequences in the present paper denote time-
updated according to (2). If the similarity between the U8ependent sequences in which each frame or element at
training pattern and the most similar outgoing weight vecteiny given time is aspatial pattern Throughout this pa-

of the winning neuron is below the vigilance threshéld, per, we treat time as a discrete entity. Fig. 3 shows three
a new group ofN,,, associative neurons are created and th&amples of such sequences, which we have created to demon-
weight vector connecting these new associative neurons to 8ieite the functionality of the system to be proposed: a)
winning competitive neuron is set to be the US training patterfAbCDEFGHIAVCDE ---}, b) {12345612345--.}, and

ctions, as an application of MANN'’s, we will propose a
neral system for learning and retrieving spatio-temporal
qguences with any MANN, and we will implement this
neral system with the MCPN.

thereby establishing a new multi-association (Fig. 2). ¢) {/JKLJMNJOPJKLJM ---}. Note that in Fig. 3 pat-
In (2) and (3), we choose a special type of learning ratégn 7, which is the same as pattern 1, appears in both
[52] and [59] sequences a) and b), patterrin sequence a) is somewhat
alt) = 1/7;, o (t) = 1/7! @) similar to pattern 6 in sequence b), and pattdrrappears

more than once within sequence c). Hence these sequences are
where ¢; — 1) and ¢ — 1) are the numbers of times thatcomplexsequences in which one spatial pattern may be fol-
the incoming and outgoing weights of neurénhas been lowed by multiple patterns. The cyclic nature of the sequences
modified, respectively, so that the incoming and outgoirig not required in order to use our model. We are interested
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Fig. 3. Three examples of spatio-temporal sequences. Note the complexities in the sequences: (a) ppfieans in both sequence, (b) sequence, and
(c) patternJ appears more than once in sequence.

TABLE |
Output THE CS AND US INPUTS TO EAcH MANN, As WELL As THE
A OVERALL CS AND US INPUTS TO THE SYSTEM, AS A SYSTEM

Feedback - CS Input oF THReEe EMBEDDED MANN'’ s LEARNS THE SEQUENCE REFEREE

(COMPARATOR UNITS)

’———;T ------ ¥ SYSTEM MANN 1 MANN 2 | MANN 3
t CS US | CS US |CS US| CcS Us

MANN 1 MANN 2 MANN 3 1 R R R R R
T T 2 E E R E E E
3 F F E F R F F

5 R R E R F R E R

6 E E R E E E F E

L r 7 E E E E R E E E

| US Input

Fig. 4. An application of multi-associative neural networks (MANN's): the

eneral design of the present system for learning and generation of complex
Epaﬁo_tempog,a, sequeﬂces, Y 9 9 Iqayer There areN output neurons andV input neurons

in each MANN. The time delay leading to thHéh MANN

delays the signal by time steps with respect to the current
in a system for spatio-temporal sequence generation thatjjse where! = 1,2, . Output neuroni in each
able to memorize these sequences after some presentatlorm,QNN is connected to comparator unit which is then
these sequences or some variations of these sequences. Afighected to input neurchin each MANN through delayed
learning, the system should be able to recall an entire sequefgiback, wherei — 1,2, ---, N. The system has two
after being presented with only a small portion of this sequenggparate input channels: the CS and the US channels. This
which may also be obscured by spatial noise and/or tempoggktem represents a generalization of those described in [53]
gaps. and [54] from AANN’'s and HANN's to MANN'’s. As we

As we will prove below, the general system shown ighall show below, this generalization increases the ability to

Fig. 4 is able to achieve the above objective. The systamandlecomplexsequences. For example, the systems in [53]
consists of three major components: a parallel arrayVef and [54] are not able to handle the sequence shown in Table |,
MANN'’s, N comparator units, and time delays that feedhereas the present system is able to learn and retrieve it
the overall output of the system back to the neural netwoskiccessfully.
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There are two stages of operation for the present spatmresented to the system through the CS input channel only,
temporal system: the learning stage, at which the system leaong spatial pattern at each time step. The comparator units are
spatio-temporal sequences, and the retrieving stage, at whigjain disabled during the presentation of the cue sequence,
the system retrieves sequences after being presented with chesause there exist overall CS inputs to the system. The US
Learning and retrieving may be mixed; however, we assurimput channel of the system is not used during retrieving.
that only one operation occurs at a give instance of time. WeAfter the last pattern in the cue sequence has been presented,
will first present some formal discussions on the learning atlde comparator units are made functional and their task is to
retrieving mechanisms of the system, which will then be madied and to output thecommonpattern existed in all of the
clearer with some special exemplar sequences and a speeifitvated US association sets of the MANN'’s at each subse-
implementation of the general design. quent time step. Suppose the length of the cue sequence, i.e.,

At the learning stage, pairs of sequences of spatial pattethe number of spatial patterns in the cue sequence excluding
are presented to the CS and the US input channels of #rey temporal gaps, is, and at timet = ¢+ 1, [. MANN'’s
system simultaneously, one spatial pattern at each time steave CS input patterns, wheke= min(c, N) and we recall
The two sequences in each training pair may be the samé, is the number of embedded MANN's. Suppose MANIN
or one may be a variation of the other. If there is an externaceives a CS input pattern, which has been associated to a
input to the CS input channel of the system, the system simpigt of n; US patterns{i/(") [7® ... 7} = O during
outputs these external signals, regardless the outputs frvaining, wherel = 1,2, ---, [.. If the cue sequence is a
the comparator units. Since there are always CS inputs fart of a training sequence, with each spatial pattern having
the system during learning, it is equivalent to disabling the tolerable noise level, and the cue sequence is sufficient to
comparator units at the learning stage, that is, the comparataambiguously determine the next spatial pattéfrin the
units are used only during retrieval. sequence, then the following must hold: i) patté?nmust

The CS sequence in each training pair is fed into tHee in every US association sef, with I = 1,2, .-, I;

CS input channel and is then directed into each embeddmtd ii) there must not exist any other spatial pattern common
MANN through appropriate delayed feedback (Fig. 4). The every US association set. This result is not difficult to
US sequence in the pair, the expected output of the systpnove, since i) is a direct consequence of the assumptions
corresponding to the CS sequence, is fed into the US inghat the cue sequence is a part of a training sequence and
channel and is then directed into each embedded MANRNat each spatial pattern in the cue sequence has a tolerable

without any delays. noise level. In addition, the violation of ii) would contradict
Consider a spatio-temporal sequence of lengthi.e., the assumption that the cue sequence is sufficiently long to
(D, g2, - 5D ... 5)). Suppose the length of theunambiguously determine patteth We therefore obtain the

subsequence necessary to unambiguously determine sp#éblidwing theorem concerning theomplexityof the spatio-
patternp®® in the sequence ig;, which is called the degree of temporal sequences that can be learned and generated by the
patternp(® [49]. The maximum degree for the entire sequencpresent general system:

i.e., d = max{dy, ds, ---, d,,}, is called the degree of this Theorem: A system shown in Fig. 4 withV; embedded
sequence. For example, in the sequedt8F EREE, the MANN's is able to learn and generate any spatio-temporal
subsequenc& RE is required to unambiguously determinesequence of degre¢ < Ny.

the lastZ, hence the degree of the laktis 3 [49]. One can Proof: The proof is similar to the arguments in the
verify that the degree of this sequence is also 3. previous paragraph. After presenting a sequence to the CS
When spatio-temporal sequendg 5, ..., 7 ..., and the US channels simultaneously during training, MANN

7)) is presented simultaneously to the CS input and tlidearns to associate each spatial pattern in the sequence with
US input channels of the system during learning, the overéifie pattern(sj steps later in the sequence. During retrieving,
system CS input and the overall system US input are the saih@ cue sequence with lengtd or longer is presented to
as the US inputs for each MANN at all times. Learning dodbe system,d being the degree of the sequence, the next
not occur for the first MANN, i.e., MANN 1, untit = 2, spatial pattern in the sequence following the last pattern in
since there is no CS input for MANN 1 at= 1 due to the the cue sequence must be present in all association sets in the
time-delay in the CS pathway of MANN 1 (Fig. 4). Similarly, MANN’s, as long asd < Ny,. Furthermore, this pattern must
MANN [ does not learn untit =7+ 1. The CS input pattern be the only common pattern present in all association sets
for MANN 1 at ¢t = 2 is 71, whereas the US input patternin the MANN'’s, since the cue sequence is sufficiently long
to MANN 1 is 5©®. Hence MANN 1 learns to associate CS0 unambiguously determine the next pattern in the sequence.
patterng) with US pattern®® att = 2. At t = 3, MANN  One can infer that the entire sequence can be retrieved by this
1 learns to associate CS pattesf?) with US patternp®  cue sequence. O
and MANN 2 learns to associate CS patterfl) with US Note that the mathematical analysis of our system is much
patternp®, and so on. Once this sequence is presentedléss complicated compared to that of Wang and Yuwono [49].
the system, other sequences can be presented to the sydtenus consider the example used by Wang and Yuwono [49],
in exactly the same way. the sequenceREF'EREF; however, we assume that each
At the retrieving stage after learning, a cue sequence, whilelter in the sequence is a spatial pattern (vector), rather than
is a small piece of a stored sequence and which may or maysymbol (scalar) as assumed by [49]. Since the degree of
not be obscured by spatial noise and/or temporal gaps,the sequence ig = 3 as discussed above, we will use 3
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TABLE I
THE CS AND US MuLTi-AssocIATIONS LEARNED BY EAcH MANN,
As A SysTEM OF THREE EMBEDDED MANN' s LEARNS THE
SEQUENCE REFEREE THE NuMBERS IN “()” SHOw THE TIME
SteEPS AT WHICH THE MULTIASSOCIATIONS ARE LEARNED

MANN 1 MANN 2 MANN 3
Ccs us CS us CS Us
R  E@2,6) R F(3).E() R E®
E FO.,RG.EM| E  E®4,.6) E RG)L.ED
F E@® F R F E@®)
TABLE I

THE CS INPUT TO AND THE OuTPUT OF EACH MANN, As WELL As THECS
INPUT TO THE OUTPUT OF THE OVERALL SYSTEM, AS A SYSTEM OF
THREE EMBEDDED MANN'’ s RETRIEVES THE LAST PATTERN E IN
SEQUENCE REFEREEAFTER IT Is PRESENTED WITH A CUE SEQUENCE ERE
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activated US association sets of the MANN’s, the MANN's in
the system may output “don’t know” answers. A confidence
thresholdé,., which may vary from task to task depending on
the acceptable level of conflict or ambiguity, may be applied to
the comparator units to allow for an overall “don’t know” an-
swer for the present system, so as to reduce the error rate. For
example, wherf. = 2/3, if the most common pattern, which

is the pattern appearing in the greatest number of activated US
association sets, exists in the activated US association sets of
less than 2/3 of the signal carrying MANN'’s, or more than
one-third of the signal-carrying MANN’s in the system output
“don’t know” answers, then the comparator units also output
an overall “don’t know” answer and the system stops feeding
back. Similar to the “unclassified” result in a classification
system, the “don’t know” answer in the present system reduces
the probability to output meaningless or erroneous sequences,
as further shown in a specific implementation presented in the

next section, thereby reducing the error rate, i.e., the percent-
age of sequences retrieved that are incorrect (“unclassified”

t ] ggSgE':A t C'\gA'\(j)N : ¢ Cg' A(I\)thZt c'\sllAgNtst or “don’t know” answers from an artificial system can be
utpu .

1 E Ep Py LR Lty examined further, e.g., by human experts, and therefore are

2 R R E {ERE]} not cc_)n5|der_ed_as error_s).

3 E E R E E E While retrieving a noisy sequence, the network has two

¢ E E {ERE}) R {EE} | E {RE) levels of noise tolerance. First, spatial noise in individual

patterns in a sequence is tolerated by the embedded MANN’s
and the quantitative amount of spatial noise tolerated depends
factors related to the specific MANN used in the implemen-
embedded MANN's to learn and generate this sequence, itatjon. For example, if the MCPN described in the previous
N = 3, according to the above theorem. During trainingsection is chosen, as discussed in detail below, the amount of
the sequence is presented to the system through the CS spatial noise tolerated in each image depends on the vigilance
the US input channels simultaneously, one spatial patterntiateshold.,. Secondly, temporal noise is tolerated at the
each time step. The CS and the US inputs to each MANBequence level by the comparator units and the quantitative
as well as the CS and the US inputs to the overall systeamount of temporal noise tolerated is determined by the
are given in Table | for each time step. The multi-associatioesnfidence threshold. for the comparator units. Thus the
learned by each MANN are presented in Table II, with thgpatial and temporal noise tolerance can be adjusted according
numbers in the parenthesis representing the times at whtoheach specific practical requirement by varying the MANN
the multi-associations are learned. After training and duringarameters (e.g., the vigilance threshold) and the comparator
retrieving, a cue sequend8RE is presented to the systemconfidence threshold, respectively.
through the CS input channel only and the US input channelswWhilst the maximum complexity of the stored spatio-
are not used. Table Ill shows the CS input to and the outpeeimporal sequences is determined by the number of embedded
of each MANN, as well as the CS input to and the outpdMANN'’s, as described in the above theorem, there are no
of the overall system, at each time step of retrieving. Fronastrictions on the maximum length or the maximum number
t = 1to ¢t = 3, the overall system outputs are the same @$ the spatio-temporal sequences that can be learned and
the overall system CS inputs, i.e., the comparator units aetrieved by the system, provided that all multi-associations
disabled when there are overall system CS inputst At4, necessary for storing the sequences can be memorized by
the CS input to MANN 1 is the overall system output athe embedded MANN's. Thus the memory capacity of the
t = 3 due to the time-delay, which is pattefi. According system depends on that of the MANN'’s used in each specific
to Table Il, patternE’ has been multi-associated with a set aimplementation of the general framework. For example, if the
three patterng F, R, E'} during training. Similarly, the US MCPN is used, the theoretic memory capacity of the system
association sets for MANN2 and MANN3 arfgl, E} and is infinite, since the storage size of this MANN is dynamically
{R, F}, respectively. The comparator units find and outputreated on an as-needed basis.
the common pattern present in the activated US association
sets of all three MANN's. Thus the overall system output at V. |MPLEMENTATION OF THE GENERAL SYSTEM
t = 4 is pattern®, which shows how the system successfully WITH A MULTIASSOCIATIVE, DYNAMICALLY
retrieves the last patted in the sequenc® EF EREE when GENERATED COUNTERPROPAGATIONNETWORK
presented with a cue sequenE& E after training. To demonstrate the applicability of thgeneralsystem for

If an unknown or ambiguous sequence is presented to teatio-temporal sequence generation proposed in the previous
system, or a common pattern does not exist in all of thsection, we now present the results of an implementation of
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TABLE V
Testing Input System Output THE CS AND US INpuTs TO EACH MANN, As WELL As THE
OvVERALL CS AND US INPUTS TO THE SYSTEM, AS A SYSTEM OF

€) IJ_'ﬁ'_,'l ,,bal: 5 ! :|+ EéF_, THREE EMBEDDED MANN' s LEARNS THE SEQUENCE D) IN FiG. 1
(b) i ~ “Don't Know.” SYSTEM | MANN1 | MANN2 | MANN3
CS Us CS US CsS US | CS USs
@ B-EFH |
—
:r\.-:l L—. - “Don't Know.”
©) .I'_.-' I-'H_
I:__ - . R
®
TABLE VI
['-J"1.>I.".I‘] > J -)I:I->P—> J > THE CS AND US INPuTs TO EACH MANN, As WELL As THE
(9) "| OVERALL CS AND US INPUTS TO THE SYSTEM, AS A SYSTEM OF

THREE EMBEDDED MANN'’ s LEARNS THE SEQUENCEC) IN FiG. 1
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Fig. 5. Spatio-temporal sequence retrieval after training: (a) a retrieval of
sequence a); (b) a response to an ambiguous cue; (c) an unambiguous retrieval
of sequence b); (d) a response to a nonorthogonal cue pattern; (e) a response

to an unknown cue sequence; (f) a response to a cue sequence containing SYSTEM MANN 1 MANN 2 MANN 3
temporal gaps; and (g) a retrieval of sequence c). t CS US CS Us CS US CS US
1 J J J J J
A I
THE CS AND US INPuTs TO EACH MANN, As WELL As THE )
OVERALL CS AND US INPUTS TO THE SYSTEM, AS A SYSTEM OF 4 o LJ K J I
THREE EMBEDDED MANN' s LEARNS THE SEQUENCEA) IN FiG. 1 5 M M I M L M K M
6 N N M N J N L N
7 J J N J M J J I
8 O O J 0 N O M O
SYSTEM MANN 1 MANN 2 MANN 3 9 P P o P ] P N P
t CS US| CS US | CS US | cs uUs 10 I P 3 o I F
! A A A A A 11 K K I K J K 0 K
2 b b A b b b 12 L L K L K L P L
3 c C b C A C C
4 D D C D b D A D
5 E E D E C E b E
6 F F E F D F C F
7 G G F G E G D G
3 H H G H F H E H TABLE VI
9 I I H 1 G I F I TESTING THE SYSTEM FoR CAsE a) IN Fic. 3: THE CS INPUT
10 A A I A H A G A TO AND THE OUTPUT OF EACH MANN, As WELL As THE
11 b b A b I b H b CS INPUT TO AND THE OUTPUT OF THE OVERALL SYSTEM
12 c C b C A C [ C
SYSTEM MANN 1 MANN 2 MANN 3
t |cs Output [CS Output |CS Output| CS Output
1 A A
2 b A b
the general system with a specific MANN, that is, the MCPN 3 C b C A C
described in Section 1. 4 b ¢ D b |A D

We choose both dimensions of the CS and the US spatial
patterns, as well as the numbers of input neurons and initial
associative neurons in the MCPN, to be X 11, i.e,
N., = N,s = 121. Three such MCPN'’s are used in this
implementation 7, = 3). We train the system to store theto Fukushima’s results [13], our system is capable of fast and
sequences consisting of manually created spatial imagesao€urate storing and generating complex sequences consisting
alpha-numeral characters shown in Fig. 3, and then test thfenonorthogonal spatial patterns. Our system can also output
system in situations shown in Fig. 5. We present each trainifdpn’t know" answers, thereby reducing error rate.
sequenceonly onceto the system. The detailed inputs and Sequences a) and b) were first used by Fukushima [13] in
outputs at each time step of training or retrieval for casésining and testing his spatio-temporal system. We present
shown in Fig. 5(a)—(c) are given in Tables IV-IX. Comparetiere a comparison between our results and Fukushima’'s
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TABLE VIII network. As an application of the MANN’s, we have designed
TESTING THE SvSTEM FOR CASE b) IN Fic. 3 a general system that can learn and generate spatio-temporal
sequences with any MANN. After learning, the system is
able to retrieve an entire stored spatio-temporal sequence

SYSTEM MANN 1 MANN 2 | MANN 3 . . ' .
t ‘CS Output |CS  Output |CS Output|CS  Output after being presented with a small piece, which may or
e T may not be obscured by spatial noise and may or may not
2 PN {2.A} contain temporal gaps. Or equivalently, after learning and
3 Dontknow | {2,A} Don'tknow| T {3,b} when a sequence of events is presented to the system, the
systempredicts the sequence of events in the future. We
have mathematically proven that a general systemNgf
embedded MANN'’s is capable of learning and retrieving any
TABLE IX spatio-temporal sequence of a complexity no greater than
TESTING THE SvSTEM FOR Case ¢) IN FiG. 3 Nr. To demonstrate the applicability of the general system
for spatio-temporal sequence generation, we have presented
SYSTEM MANN 1 MANN 2 | MANN 3 an implementafcion using the_ MCPN. This system s_hows_ a
t CS Output{ CS  Output|CS Output|CS Output number of desirable properties, such as short learning time
1 3 3 (only one epoch is required per sequence), fast and accurate
2 6 6 3 6 retrievals, and ability to store a large number of complex
3 T T 6 1 15 1 sequences consisting of nonorthogonal spatial patterns. These
‘5‘ % ; {Z%A} ? sz} g % computational advantages signify a marked improvement over
p 1 5 2 1 2 1 {4C) existing _approaches to spgtlo-temporgl sequence generation
7 s 4 s |3 s 2 s and are important for practical applications such as real time
. - robotic control and speech production. Topics of future work

include explorations of new types of MANN's other than the
MCPN, new applications of MANN'’s in addition to spatio-
) ) ) ) temporal sequence generation, implementations of the present
results. In Fig. 5(a), all retrieved images in sequence gdneral design for spatio-temporal sequence generation with
are noise-free, whereas some retrieved images, Leand pew MANN's, and practical applications of all implementa-
F, are imperfect for Fukushima’s system. Since pattern dons of the present spatio-temporal system.
which is the same as patteth) appears in both sequences
a) and b), the input given in Fig. 5(b) is insufficient to
unambiguously retrieve a sequence and additional information REFERENCES
is required [Fig. 5(c)]. The ability of outputting a “don’t
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