
Received: 1 April 2017 Revised: 3 December 2017 Accepted: 30 December 2017

DOI: 10.1002/spe.2564

E X T E N D E D C O N F E R E N C E PA P E R

Mobolic: An automated approach to exercising mobile
application GUIs using symbiosis of online testing
technique and customated input generation

Yauhen Leanidavich Arnatovich1 Lipo Wang1 Ngoc Minh Ngo2 Charlie Soh1

1School of Electrical and Electronic
Engineering, Nanyang Technological
University, Singapore
2Global Outreach and Extended
Education, Arizona State University,
Ho Chi Minh City, Vietnam

Correspondence
Lipo Wang, Department of Information
Engineering, School of Electrical and
Electronic Engineering, Nanyang
Technological University, 50 Nanyang
Avenue, Singapore 639798.
Email: elpwang@ntu.edu.sg

Summary

The increasingly prevalent use of mobile devices has raised the popularity of
mobile applications. Therefore, automated testing of mobile applications has
become an extremely important task. However, it is still a challenge to auto-
matically generate tests with high coverage for mobile applications due to their
specific nontrivial structure and the highly interactive nature of graphical user
interfaces (GUIs). In this paper, we propose a novel automated GUI testing tech-
nique for mobile applications, namely, Mobolic. In this approach, tests with high
coverage are automatically generated and executed by combining the online
testing technique and customated input generation. Employing the online test-
ing technique, Mobolic systematically explores the app GUI without falling in a
loop. It generates relevant events “on the fly” that are followed by an immedi-
ate execution. In addition, involving the customated input generation, Mobolic
automatically generates relevant user inputs such as user-predefined, concrete,
or random ones. We implemented Mobolic and evaluated its performance on
10 real-world open-source Android applications. Our experimental results show
the effectiveness and efficiency of Mobolic in terms of achieved code coverage
and overall exercising time.

KEYWORDS

event-driven FSM, model-based testing, model checking, symbolic execution, systematic GUI
exploration, textual input generation

1 INTRODUCTION

In the last few years, there has been a distinct shift to mobile devices in numerous application areas such as email, social
networking, entertainment, and e-commerce. This trend has prompted an explosive growth in the number and variety of
mobile applications (often called “apps”) being developed. As such, there is an increasing demand for automated testing
techniques for mobile apps.

A central challenge in automated testing is the generation of tests with high coverage due to the highly interactive nature
of the app graphical user interfaces (GUIs).1,2 In addition, existing GUI testing techniques3-6 for the automated testing of
PC-based applications are no longer feasible to perform GUI testing of mobile apps due to their specific nontrivial GUI
structure.2,7 Consequently, in recent years, many automated GUI testing systems for mobile apps have been developed.7-13

Softw Pract Exper. 2018;1–36. wileyonlinelibrary.com/journal/spe Copyright © 2018 John Wiley & Sons, Ltd. 1

https://doi.org/10.1002/spe.2564
http://orcid.org/0000-0001-8266-9151

2 ARNATOVICH ET AL.

However, in practice, they are still incapable of achieving high code coverage13,14 because they fail to simultaneously
address both of the following major problems.

• Mobile apps have a specific nontrivial GUI structure. As such, a large number of execution paths should be explored
via the nontrivial app GUIs. Therefore, it has become impractical to automatically achieve high code coverage within
a reasonable time.

• Mobile app GUIs are innately highly interactive because they commonly rely on sensible user inputs that are provided
by humans. However, in practice, generating nontrivial user inputs in an automated manner is not an easy task.

To address the limitations of the existing GUI testing approaches, in this paper, we propose a novel automated GUI test-
ing technique, namely, Mobolic. It aims to automatically generate tests with high coverage via the automated exercising
of the mobile app GUIs with customated user inputs. Mobolic does this by integrating the online testing technique15-17

and customated input generation into a single solution. It uses (1) the model checking technique and finite-state machine
abstraction for the systematic exploration of the app GUI via the automated guiding of the exercising process and (2)
customated input generation that involves user interface (UI) heuristics such as the textual values of the editable wid-
get attributes to automatically generate relevant user-predefined or random inputs and involves symbolic execution to
generate concrete user inputs.

Mobolic performs a functional automated GUI testing via an implementation of a black-box testing approach. It builds
concrete app GUI models and uses them as input and generates relevant user inputs for automatic app exercising. As
such, Mobolic innately belongs to the class of testing tools that perform automated GUI exploration via active learning.
Therefore, since Mobolic performs automated app exercising via GUI exploration with active learning, it does not use
the abstract app GUI models. Also, since Mobolic is a testing technique, it does not implement the capabilities of or
intend to perform a software modeling18,19 or software development20,21 framework. As such, Mobolic does not facilitate
the developers to examine various app GUI design alternatives, or evaluate many diverse configuration possibilities, or
automatically generate source code, and others. Instead, Mobolic aims to automate the GUI testing process by minimizing
or eliminating manual efforts.

Mobolic automatically guides the testing procedure by dynamically building a finite-state model of the app GUI without
loops.22 This is done by extending Google's UI Automator testing framework.* The UI Automator testing framework is
designed for writing black-box–style functional automated UI tests, where the test code does not rely on the internal
implementation details of the target app. Other than the UI Automator, there are other automated UI testing frameworks
such as MonkeyRunner,† Troyd,‡ Robotium,§ Appium,¶ and Android GUITAR.# Unlike these, the UI Automator provides
a unique feature to dynamically dump a view hierarchy of the foreground app screen displaying on the Android device
into XML files. From XML dumps, Mobolic builds a finite-state model of the app GUI without loops and, thus, guides the
testing procedure.

Mobolic explores the app GUI using our novel f-GFG model (see Sections 2.2 and 2.3). It automatically builds the model
and systematically traverses it by implementing an informed search algorithm A∗, which is the best-known form of the
best-first search (BFS) algorithm.23 The A∗ search algorithm combines BFS for efficiency with the uniform cost search for
optimality and completeness. The key idea behind the A∗ search algorithm is to find the shortest path leading to the target
app UI (see Section 2.5.3). For more details, refer to Section 6.1, where we discuss related systematic GUI exploration
strategies that are based on different search algorithms.

Mobolic exercises app by automatically and systematically interacting with the app UI widgets. However, due to the
highly interactive nature of the app GUI, it commonly requires specific user inputs that are practically impossible to gener-
ate randomly. Therefore, to generate such specific user inputs, Mobolic implements our novel customated input generation
mechanism (see Section 2.3). It allows Mobolic to generate realistic user inputs that are predefined by the user for certain
input types as described in Section 2.5.5. In addition, the customated input generation mechanism allows Mobolic to gen-
erate concrete user inputs. For that reason, Mobolic uses the symbolic execution technique. However, there are situations
when the user-specific or concrete user inputs cannot be generated, and thus, to fully automate the exercising process,

*http://developer.android.com/tools/help/uiautomator/index.html
†http://developer.android.com/tools/help/monkeyrunner_concepts.html
‡https://github.com/plum-umd/troyd
§http://code.google.com/p/robotium
¶http://appium.io
http://sourceforge.net/projects/guitar

http://developer.android.com/tools/help/uiautomator/index.html
http://developer.android.com/tools/help/monkeyrunner&uscore;concepts.html
https://github.com/plum‐umd/troyd
http://code.google.com/p/robotium
http://appium.io
http://sourceforge.net/projects/guitar

ARNATOVICH ET AL. 3

Mobolic supports random-input generation. As a result, Mobolic explores the app GUI without human interaction. For
more details, refer to Section 6.2, where we discuss concrete-input generation via symbolic execution.

In this paper, we made the following contributions.

• We propose a novel automated GUI testing technique, namely, Mobolic, which combines the online testing technique
and customated input generation to generate tests with high coverage.

• We implement Mobolic for Android apps, taking into account their specific nontrivial structure and the highly
interactive nature of GUIs.

• We evaluate the performance of Mobolic on 10 real-world open-source Android apps and compare it with prevalent
approaches such as manual exercising (Human), Sapienz, ACTEve, and MobiGUITAR.

In Section 2, we state the major problems and describe the proposed approach by giving definitions, an overview, and
detailed explanations of Mobolic components. In Section 3, we describe the design and implementation of Mobolic by
sharing our practical experience obtained during Mobolic development. In Section 4, we give a demo of the Mobolic work-
flow by using a concrete example of the app GUI. In Section 5, we evaluate the performance of Mobolic by comparing it
with prevalent approaches such as Human, Sapienz, ACTEve, and MobiGUITAR. In Section 6, we discuss the Mobolic
approach. We discuss its novel and improved features by describing the principal differences between Mobolic and tra-
ditional model-based testing and between Mobolic and automated input generation via symbolic execution. In Section 7,
we offer an overview of related work by describing state-of-the-art automated GUI testing approaches such as Monkey,
Dynodroid, MobiGUITAR, A3E, SwiftHand, Sapienz, and ACTEve. In Section 8, we conclude our work and set future
research directions.

2 PROPOSED APPROACH: MOBOLIC

In this section, we describe the related problems and give the definitions, an overview, and details of Mobolic. In
Section 2.1, we state 2 main problems that Mobolic addresses. In Section 2.2, for Mobolic explanations, we give several
conceptual definitions. In Section 2.3, we describe the novel aspects of Mobolic. In Section 2.4, we introduce Mobolic by
briefly describing its components and walking through the overall exercising procedure. In Section 2.5, we describe in
detail each component of Mobolic by explaining their working mechanisms.

2.1 Problem statement
There are 2 fundamental problems, in the literature, of automated GUI testing for Android apps, which have been well
highlighted by researchers in the field.7,9-12,24-27 The first problem, Problem#1, is related to the GUI exploration strategy
through model-based testing, and the second problem, Problem#2, is related to concrete-input generation through the
symbolic execution technique.

Problem#1. A majority of the mobile apps have a nontrivial GUI structure, ie, their UI models are not finite state and/or
contain loops. Therefore, it is a challenge to perform automated GUI testing on these apps. For example, the existing
tools for GUI testing of mobile apps build the GUI model and use it “as is” for systematic exploration. However, in fact,
the GUI models of mobile apps may innately have an infinite number of UIs or may have infinite loops. As such, the
GUI testing procedure may infinitely exercise app unless the termination condition is explicitly specified by the user.15

Hence, to address this problem, the existing tools set the termination condition for the testing procedure such as limited
execution time, or manually predefined number of events to be injected, or the depth of exploration in the UI model.14,15

Therefore, with such specified termination conditions, the existing tools may not discover certain app UIs, especially if
they are located at deep levels in the UI model.

Problem#2. Mobile app GUIs are commonly highly interactive so that the apps require sensible input from the users.
As such, to automatically exercise the app, it is crucial that nontrivial user inputs must be automatically generated to
feed into the app. To the best of our knowledge, this remains a challenging task. For example, many existing tools14 for
the GUI testing of mobile apps either generate inputs randomly and/or provide them manually during testing. However,
random inputs are trivial, whereas manual efforts are time consuming. Therefore, to automatically generate relevant user
inputs, existing tools8,28,29 have applied symbolic execution. These tools tend to symbolically execute all program paths
existing in the app. However, symbolic execution suffers from limitations such as path explosion, path divergence, and
constraint complexity.30 Therefore, to execute all program paths symbolically is impractical for all but trivial apps. Thus,
the search of relevant inputs needs to be either depth-bounded or time-capped.31,32

4 ARNATOVICH ET AL.

2.2 Definitions
For the explanations of Mobolic, in this section, we give 5 definitions that are used throughout this paper.

Definition 1. User interface (UI) is a view hierarchy of the objects on the app screen, which defines its layout. The
objects may be input controls (editable) or other widgets (noneditable).

This definition states that each UI usually has one or more UI widgets, each could be editable (eg, “EditText”) or
noneditable (eg, “Button”). A noneditable UI widget allows a transition to the same or another UI. Within the con-
text of this paper, we consider that 2 UIs are equivalent if the number of UI widgets and their values of the attribute
“class” in the corresponding view hierarchies match. The UI widget attributes “text” (only for editable widgets),
“NAF,” “bounds,” “focusable,” “enabled,” “checkable,” “scrollable,” “long-clickable,” “selected,” “focused,” “clickable,”
and “checked” are excluded from the comparison since these attributes do not imply the equivalence of 2 UIs.

Definition 2. GUI flow graph (GFG) is defined as a triple g = (U,W,T), where U is the set of nonequivalent UIs, W
is the set of widgets on a UI, and T is the set of transitions, where each transition ti is a directed edge from a widget
wij to UI uq, denoted by ti =wij→uq, where ti ∈T, wij ∈W, uq ∈U and wij is on uq, where “i” is the index of the UI in
GFG, and “j” is the index of the widget on the UI, where i> 0, j> 0, 0< q≤ i + 1.

An example of GFG is shown in Figure 1. In Figure 1, ui represents a UI, eij represents an editable widget, and wij
represents a noneditable widget, where “i” is the sequential index of the UI, and “j” is the sequential index of the
widget on the UI. On each UI, wij allows a transition to the same or another UI, as indicated by the arrows.

In Figure 1, GFG is finite state; however, it has 2 loops. For example, the sequence of transitions t1 =w12→u2,
t2 =w21→u3, and t3 =w31→u1 forms one loop u1→u2→u3→u1, and another sequence of transitions t1 =w12→u2,
t2 =w21→u3, and t3 =w32→u3 forms another loop u1→u2→u3→u3. Therefore, we need to build a GFG that is always finite
state and does not have any loops.

Definition 3. Finite-state GFG (f-GFG) is a GFG that is finite state and does not have any sequence of transitions
ti, ti+1,… , tn, which forms a loop from ui, ui+1,… , um, where tn =wnj→um, tn ∈T, um ∈U, and i> 0, j> 0, n> 0, m> 0,
i≤n, i≤m, m≤n.

Definition 4. User input–dependent statement (UID statement) is a statement that is control and/or data
dependent33,34 on one or more input values provided by the user through the app GUI.
The example of code in Figure 2 gives an illustration of UID statements. From Figure 2, we can see that UID statements

are in lines 2 and 7, whereas the non–UID statement is in line 14.

Definition 5. Reduced control dependence graph (r-CDG) is a subgraph of a conventional CDG, which consists
of branches, where at least one decision node corresponds to the UID conditional statement.

In Figure 3, we give an example of r-CDG, which is obtained from the app code shown in Figure 2. In Figure 3, nodes ,

, , , and correspond to code lines 2, 3-4, 7, 8-9, and 11-12, respectively, as shown in Figure 2. In Figure 3, deci-

sion nodes and (ie, “if” statements) are shaded, and T and F abbreviations denote “True” and “False” branches,
respectively.

u1

e11

w12

u2

w21

u3

w32

w31

FIGURE 1 Example of graphical user interface flow graph for app

ARNATOVICH ET AL. 5

FIGURE 2 Example of app code with user input-dependent statements

FIGURE 3 Example of reduced control dependence graph for app code

2.3 Novel aspects of Mobolic
In this section, we show the novel aspects of Mobolic, which are implemented via various improvements and/or new fea-
tures that existing tools either do not implement in the same fashion and/or simply do not have. For clarity, we summarize
the novel aspects of Mobolic as follows.

1. In Mobolic, we introduce a new feature such as the f-GFG model of the app GUI. The f-GFG model is a finite-state
GUI model that does not have loops at any point in time. The f-GFG model enables Mobolic to have the following
improvements.

(a) It enables Mobolic to notably reduce exercising time. Instead of using a standard implementation of depth-first
or breadth-first search or random GUI exploration algorithms, Mobolic implements an ad hoc GUI exploration
strategy that is based on the existing A∗ technique (see Section 3.1). It allows Mobolic, during the exercising process,
to quickly find the shortest path to the lastly discovered app UI from which the exercising process continues. As
such, the overall exercising time is reduced, which makes Mobolic more efficient in comparison with the other
automated approaches discussed in the paper.

(b) It enables Mobolic to notably increase efficacy of the automated GUI exploration. Without falling into an infinite
loop, Mobolic discovers as many UIs existing in the app GUI model as possible. As such, Mobolic demonstrates
significantly higher code coverage results in comparison with the other automated approaches discussed in
the paper.

6 ARNATOVICH ET AL.

2. In Mobolic, we introduce a new feature such as the customated input generation mechanism. Customated input
generation enables Mobolic to have the following improvements.

(a) It enables Mobolic to generate concrete user inputs while mitigating the well-known problems of the conventional
symbolic execution. The idea is to symbolically execute only UID statements since the nature of the mobile app
GUIs is highly interactive and a majority of the textual inputs are, in general, expected from the user. Hence, it
allows Mobolic to avoid extra overhead of symbolically executing all existing in the app conditional statements,
and thus, Mobolic finishes the exercising process within a reasonable amount of time.

(b) It enables Mobolic to generate UI-context-aware user inputs. Mobolic uses a manually crafted dictionary of basic
text terms, which are, in turn, built on the textual terms extracted from multiple reputable apps. The idea of the
UI-context-aware inputs is to automatically, during the exercising process, obtain relevant input values that lie in
a set of possible values with a specific input pattern, eg, email address or server IP address. Therefore, it allows
Mobolic to automatically resolve such situations where the user inputs with a specific pattern are required, and
thus, Mobolic avoids human interaction in the testing process.

2.4 Overview of Mobolic
In this section, we introduce the components of Mobolic, give an overview of the Mobolic workflow, and show an overall
testing procedure of Mobolic. The detailed explanations on Mobolic components are given in Section 2.5.

Mobolic consists of 5 main components.

• Static Analyzer (stAnalyzer). This component builds and analyzes the control dependence graph (CDG) and the
data dependence graph (DDG) for the original Android app. Using the CDG and the DDG, it builds the r-CDG for the
mobile app. As an output, it returns the built r-CDG (see Section 2.5.1).

• Application Instrumenter (appInster). Guided by the r-CDG, this component instruments UID conditional state-
ments in the app so that the corresponding UID symbolic constraints can be collected during app execution. As an
output, it returns an instrumented app (see Section 2.5.2).

• Systematic Automated Test Driver (SAT). This component automatically and systematically explores the app GUI
by interacting with UI widgets that are displayed on the mobile device screen. As an output, it returns a flag, which
indicates whether the exercising procedure falls into a loop (see Section 2.5.3).

• Input Scheduler (iScheduler). This component forms UID symbolic path constraints (PCs) leading to yet unexplored
execution paths so that new app UIs can be discovered and exercised. As an output, it returns a symbolic PC, which is
formed for a particular editable widget (see Section 2.5.4).

Reduced
Control Dependence

Graph

Instrumented
Android app

3

Collected
user-input-dependent
symbolic constraints

Generated
user inputs

for editable widgets

Dalvik bytecode smali Dalvik bytecode

5
2

Application
Instrumenter

Static
Analyzer

Original
Android app

1

Smart Customated
Engine

+
Formed

user-input-dependent
symbolic path constraints

Input
Scheduler

4

Systematic
Automated Test

Driver

Selected
symbolic constraints for

editable widgets

FIGURE 4 Overview of the Mobolic workflow

ARNATOVICH ET AL. 7

• Smart Customated Engine (smartCE). This component generates relevant specific user inputs by finding
user-predefined inputs, or solving UID symbolic PCs, or generating random inputs. As a result, app UIs that are
constrained by such specific user inputs can be explored. As an output, it returns relevant user inputs for the editable
widgets (see Section 2.5.5).
Here, we overview the Mobolic workflow, which is shown in Figure 4. Mobolic first runs Static Analyzer (stAnalyzer)

to perform a static analysis of the original Android app and build the DDG, CDG, and r-CDG. Guided by the r-CDG,
Application Instrumenter (appInster) instruments UID conditional statements. As a result, appInster rebuilds the Android
app with instrumented UID conditional statements. Systematic Automated Test Driver (SAT) exercises the instrumented
app by automatically and systematically exploring the app GUI. Also, during the exercising process, through the app
instrumentation, SAT collects UID symbolic constraints over the instrumented UID conditional statements along the exe-
cution path. From the collected UID symbolic constraints, Input Scheduler (iScheduler) forms relevant UID symbolic PCs
for the selected editable widget, to explore yet uncovered execution paths. Smart Customated Engine (smartCE) generates
relevant user inputs by solving the UID symbolic PCs with concrete values, generating user-predefined or random ones.

Next, we show the overall workflow of Mobolic in Algorithm 1. Generally, Mobolic can be logically divided into 3 stages:
(1) preparation (lines 2-6), (2) input generation (lines 9-20), and (3) exercising of the app under test (lines 21-34).

Stage#1. Mobolic performs static analysis and instrumentation of the app, initializes variables, and runs the app. In line
2, stAnalyzer performs static analysis of the app and builds CDG and DDG with the aid of the Amandroid35 tool. As an
output, stAnalyzer returns (r-CDG). Guided by the r-CDG, in line 3, appInster creates an instrumented app (instApp) by
replacing the original UID conditional statements in the app with instrumented ones. In lines 4 and 5, Mobolic initializes
the set of fully exercised UIs (feui) and the f-GFG as empty. The f-GFG is used to guide the exercising procedure and to
ensure that Mobolic does not fall in an infinite loop, and feui is used for memorizing fully exercised UIs. The feui and f-GFG
are used together for the termination condition. Mobolic terminates the exercising procedure once all the discovered UIs
are fully exercised. Next, Mobolic runs the instrumented app instApp (line 6).

It is important to note that Mobolic determines that an app UI is fully exercised only if (1) all its relevant noneditable
widgets (if any) are fully exercised and (2) all the decision nodes for each editable widget (if any) on the app UI are fully
covered. In turn, Mobolic determines that a noneditable widget is fully exercised only if all its relevant UI events are exe-
cuted. In addition, Mobolic determines that a decision node for the editable widget is fully covered only if its corresponding
UID statement with all its child subconditional statements are executed.

Stage#2. Mobolic performs input generation. After analyzing, instrumenting, and running the instrumented app
instApp in Stage#1, Mobolic first obtains the current UI (ui) displaying on the Android device (line 8). Next, in line 10,
iScheduler forms a relevant symbolic PC for the selected editable widget (ew) by either appending the newly collected
UID symbolic constraints to the existing symbolic PC or negating the last decision node of the existing symbolic PC. In
line 11, Mobolic obtains a user input by executing smartCE, a customated input generation mechanism. First, smartCE
searches for a user-predefined input matching textual terms of the attributes “text,” “resource-id,” and “content-desc” for
the selected editable widget ew. If not found (eg, input type is not recognized or does not exist), it searches for a default
value that is assigned by the app itself. If the default value does not exist, it tries to solve the formed symbolic PC. If the
formed symbolic PC (pc) cannot be solved (eg, infeasible path) or pc is not formed yet (eg, when ew is exercised for the
first time), smartCE generates a random user input.

Mobolic injects the generated user input in into the selected editable widget ew (eg, sets text for “EditText” widget)
(line 12). In line 13, Mobolic checks if the symbolic PC pc has been formed. If so, Mobolic extracts the last decision node
(ldn) from the formed symbolic PC pc (line 14). If ldn is fully covered (line 15), Mobolic removes it from pc (line 16).
Next, for the selected ew, Mobolic updates the symbolic UID constraints by replacing the previously stored ones with the
constraints from the newly formed symbolic PC pc (line 19).

Stage#3. Mobolic exercises the app until all the discovered UIs in f-GFG are fully exercised. After input injection in
Stage#2, Mobolic first obtains a flag (infloop), which indicates a loop occurrence in the exercising procedure, by executing
SAT (line 21). For that purpose, SAT retrieves a noneditable unexercised relevant widget from the current UI ui. Afterward,
depending on the type of the widget, it generates a relevant UI event to exercise the widget rendering a subsequent UI.
Also, during exercising, SAT stores symbolic UID constraints for each editable widget, which are encountered on the
execution path. Next, SAT builds f-GFG by adding the rendered subsequent UI with its widgets into f-GFG only if the
rendered subsequent UI does not exist in f-GFG at this point in time. Note that exercising a noneditable widget could
render a new subsequent UI. If so, SAT memorizes such a link to store the transition from the exercised widget to its
rendered subsequent UI. As such, SAT ensures that f-GFG does not have any loop, and Mobolic will not exercise the app
infinitely.

8 ARNATOVICH ET AL.

Mobolic obtains the lastly discovered UI (lui) from f-GFG (line 22). The lastly discovered UI is the UI that is lastly added
into f-GFG. Next, Mobolic checks if lui is fully exercised (line 23). If so, Mobolic adds lui into the set of fully exercised
UIs (feui) (line 24), removes it from f-GFG, and changes the lastly discovered UI in f-GFG (line 25). In addition, if lui is

ARNATOVICH ET AL. 9

a current UI (line 26), Mobolic generates a system key event “Back” (line 27), because lui has been fully exercised and
removed from f-GFG. This event may return to any previously discovered app UI existing in f-GFG. Note that, depending
on the app logic, system key event “Back” may exit the app. Such case is handled by Mobolic by restarting the app and
continuing the exercising procedure.

If SAT indicates that a loop has occurred in the exercising procedure, ie, infloop is TRUE (line 30), Mobolic obtains the
current UI ui (line 31), finds a path (lp) from ui to the lastly discovered UI in f-GFG (line 32), and replays lp to reach the
lastly discovered UI (line 33). As a result, at the next iteration, the lastly discovered UI will be appear as the current UI
ui displaying on the device screen (line 8), and the exercising procedure continues. The FindPathToLastlyDiscoveredUI
function (line 32) performs A∗ search by using the stored links in f-GFG to find the shortest path leading to the lastly
discovered UI in f-GFG. The ReplayPathToLastlyDiscoveredUI function (line 33) interacts with all noneditable widgets
and generates user inputs for all editable widgets along the path lp to reach the lastly discovered UI in f-GFG. Therefore,
if there is any loop occurrence in the exercising procedure, Mobolic can easily track back the lastly discovered UI and
continue exercising yet unexercised widgets. Mobolic automatically terminates the exercising process once all discovered
app UIs are fully exercised (ie, the set of fully exercised UIs feui contains all UIs from f-GFG) (lines 35-37).

2.5 Components of Mobolic
In this section, we describe, in detail, the functionality of the Mobolic components and walk through their corresponding
algorithms.

2.5.1 Static Analyzer (stAnalyzer)
To identify UID statements, stAnalyzer performs a user input dependence analysis on the CDG and DDG33,34 of the app.
In particular, stAnalyzer builds the graphs with the aid of a data flow analysis framework for Android apps, namely,
Amandroid.35 Note that, however, Amandroid does not innately solve the problem of relating Java code with the editable
widgets on the UI. To identify the UID statements, we implement our solution that leverages intermediate representations
Jawa‖ and smali** from Amandroid and Apktool,†† respectively.

The CDG is used to track intra- and inter-procedural conditional statements. From the CDG, stAnalyzer builds r-CDG to
eliminate all the conditional statements that are irrelevant toward the reachability of the target UID conditional statement.
The DDG is used to track the changes made to the UID statements that are data dependent on the user inputs. Therefore,
all the changes can be reflected into the UID conditional statements and solved for symbolic user variables so that the
corresponding concrete user inputs can be found.

In Algorithm 2, we show the main steps of how stAnalyzer performs static analysis of the app. First, stAnalyzer initializes
the r-CDG as empty (line 2) and builds CDG and DDG (lines 3-4). Next, guided by DDG, for each branch (b) in CDG (line
5) and for each decision node (d) in b (line 6), stAnalyzer checks if d has any data dependency on the user input (line 7).
If so, stAnalyzer adds the selected branch b into r-CDG (line 8). The stAnalyzer terminates once all branches in CDG are
analyzed, and it returns r-CDG (line 13).

2.5.2 Application Instrumenter (appInster)
Guided by r-CDG, appInster performs the instrumentation of UID conditional statements. Therefore, the instrumented
UID conditional statements can be collected. Note that in UID conditional statements, user input–independent symbolic
values will be replaced with the actual ones that are assigned by the app itself during runtime. The instrumented UID
conditional statements may include “if-else,” “switch-case,” “for,” and “while-loop.”

There are several instrumentation techniques.36 The appInster implements the most common one, ie, bytecode instru-
mentation. Technically, appInster uses smali intermediate language that represents Dalvik bytecode in readable form.
The appInster instruments UID conditional statements by inserting additional probes (code) into smali that is obtained
with the aid of Apktool, a tool for reverse engineering of Android apps. After instrumentation, appInster assembles the
Android app from the instrumented smali code so that the app can be normally installed and executed.

‖http://pag.arguslab.org/jawa-language
**https://github.com/JesusFreke/smali
††http://ibotpeaches.github.io/Apktool/

http://pag.arguslab.org/jawa‐language
https://github.com/JesusFreke/smali
http://ibotpeaches.github.io/Apktool/

10 ARNATOVICH ET AL.

In Algorithm 3, we show the main steps of how appInster instruments the app. Guided by the r-CDG, for each branch (b)
in r-CDG (line 2) and for each decision node (d) in b (line 3), appInster instruments d to obtain an instrumented decision
node (id) (line 4). Afterward, it replaces d with id in original (app) and generates an instrumented app (instApp) (line 5).
The appInster terminates once all branches in r-CDG are processed and returns the instrumented app instApp (line 8).

2.5.3 Systematic Automated Test Driver (SAT)
SAT is primarily designed for performing black-box–style functional automated UI testing, where the test code does not
rely on the internal implementation details of the target app. SAT implies an event-driven automated UI test driver. It
automatically and systematically explores the app GUI by interacting with noneditable UI widgets that are displayed on
the Android device screen. In particular, SAT exercises all relevant UI widgets one by one, in accordance with a sequence
in which widgets are innately located in the UI hierarchy view, from up to down and from left to right. To qualify for
the systematic GUI exploration, SAT must ensure that the exercising process is not interrupted. In fact, systematic GUI
exploration is commonly interrupted by loops existing in the GUI flow. Thus, to address this issue and to ensure that SAT
performs systematic GUI exploration, Mobolic implements the A∗ search algorithm. For example, if a loop occurs during

ARNATOVICH ET AL. 11

TABLE 1 Types of events supported by Mobolic Systematic Automated Test
Driver

Event Origin: Type Actions Hardware Keys

UI: Touch Click; LongClick –
UI: Motion Swipe; Scroll; Pinch –
UI: Trackball Roll; Press –
UI: Keypress Input Injection –
System: “Major” navigation – “Home”; “Back”; “Menu”

exercising, in order to return to the app UI on which the exercising process has been interrupted, Mobolic performs A∗

search in f-GFG to find the shortest path from the current app UI, displaying on the Android device screen, to the lastly
discovered app UI. In particular, once the loop has occurred, SAT indicates an interruption in the exercising process, ie,
it returns TRUE to the exercising procedure, by which it signals Mobolic to perform A∗ search. As a result, guided by the
A∗ search, Mobolic returns the exercising procedure to the lastly discovered app UI so that SAT is be able to continue with
the GUI exploration from that lastly discovered app UI.

During exercising, SAT automatically (1) builds the f-GFG, which is used to continuously guide the exercising procedure
without falling in a loop, and (2) collects UID symbolic constraints along the execution path through the app instrumen-
tation. Note that SAT collects UID symbolic constraints over UID conditional statements once their corresponding UID
conditional statements are encountered (ie, their code is executed). For the comprehensive exercising of app GUI, Mobolic
supports common UI user actions that are listed in Table 1.

In Algorithm 4, we show the main steps of how SAT guides an exercising procedure by building f-GFG and collecting
UID symbolic constraints. SAT first sets the flag of loop occurrence (infloop) to be TRUE (line 2) and adds the current
UI (ui) with its widgets into f-GFG (line 4) if ui is not yet in f-GFG (line 3). In line 6, SAT obtains a relevant unexercised

12 ARNATOVICH ET AL.

noneditable widget (nw). Next, SAT exercises the relevant widget by generating a relevant UI event for the widget nw
(line 7). Note that to generate the relevant UI event, SAT analyzes the attributes of the widget nw. Firing the UI event
upon nw executes certain code in the app. As such, for each editable widget ew on the current UI ui, SAT stores all UID
symbolic constraints encountered on the execution path (lines 8-10). By firing a UI event upon the widget, the current
UI could be changed. As such, the current UI ui must be updated (line 11). If the current UI ui is not in f-GFG (line 12)
(ie, ui is a newly discovered UI), SAT adds ui with its widgets into f-GFG (line 13) and adds a link (nw,ui) into f-GFG
(line 14) to memorize the transition from nw to ui. In addition, SAT sets the flag infloop to FALSE (line 15). In line 17, SAT
returns the infloop flag to Mobolic. If the returned flag infloop is FALSE, it signals Mobolic that there is no loop occurrence
in the exercising procedure, and thus, SAT can continue with the newly discovered UI. Otherwise, if the returned flag
infloop is TRUE, it signals Mobolic that there is a loop occurrence in the exercising procedure, and thus, SAT requires
Mobolic to find the lastly discovered UI to continue the exercising procedure.

2.5.4 Input Scheduler (iScheduler)
This component forms UID symbolic PCs based on the UID symbolic constraints collected by SAT. The iScheduler ensures
that the relevant UID symbolic PCs are formed for every editable widget to cover as many execution paths as possible.
Mobolic is an iterative process, and for every iteration, the newly generated user inputs may lead to unexplored program
paths with different app functionalities. As such, to explore as many execution paths as possible, iScheduler derives a UID
symbolic PC in each iteration. In particular, iScheduler forms a UID symbolic PC by tweaking collected UID symbolic
constraints as follows.

1. For an “if” statement, its corresponding UID symbolic constraint is constructed. The constructed UID symbolic con-
straint is then appended to the earlier formed UID symbolic PC of the nearest ancestor UID conditional statement to
form the symbolic PC of the “if” statement. Note that if the ancestor UID conditional statement does not exist for a
particular “if” statement, the UID symbolic PC will only consist of the UID symbolic constraint corresponding to its
own “if” statement.

2. For an “else” statement, its UID symbolic constraint is constructed from the corresponding “if” statement by applying
the logical negation operator “NOT.” The constructed UID symbolic constraint is then appended to the earlier formed
UID symbolic PC of the nearest ancestor UID conditional statement to form the symbolic PC of the “else” statement.

In practice, for all but trivial apps, the user inputs may be required on any UI of the app; therefore, the user inputs
commonly depend on each other. Considering such dependencies, iScheduler uses the following rules to eliminate missing
any yet undiscovered app UIs.

1. For each editable UI widget, at a time, iScheduler forms only 1 relevant symbolic PC since each editable UI widget may
have several distinct symbolic PCs depending on the app logic.

2. For each editable UI widget, at a time, iScheduler forms the symbolic PC whose solution (ie, generated user input) may
contribute to discovering yet unexplored app UIs.

In Algorithm 5, we show the main steps of how iScheduler forms a relevant symbolic PC for a selected editable widget.
First, iScheduler sets symbolic PC (pc) to empty (line 2) and obtains all UID symbolic constraints (sc) stored by SAT for the
selected editable widget (ew) (line 3). Next, iScheduler checks if the obtained UID symbolic constraints sc are not empty
(line 4). If so, from sc, iScheduler forms a symbolic PC pc (line 5). If sc does not have any new symbolic UID constraints
(ie, the constraints that are not included into the returned pc at the previous iterations) (line 6), iScheduler negates the
last decision node in the formed symbolic PC pc (line 7). As a result, iScheduler forms and returns a relevant symbolic PC
whose solution (ie, generated user input) may lead to discovering yet unexplored app UIs (line 10).

2.5.5 Smart Customated Engine (smartCE)
The smartCE is a customated engine that is used to automatically generate specific user inputs. The smartCE imple-
ments our novel customated input generation mechanism that handles user-predefined (via exploiting a particular
textual attributes of the editable UI widgets), concrete (via solving symbolic PCs that are collected through the app
instrumentation), and random (numerical or textual) inputs.

ARNATOVICH ET AL. 13

For the user-predefined input generation, we build Dictionary of Basic Text Terms, namely, DBT2, which is a part of our
customated input generation mechanism. DBT2 consists of the most commonly appeared input types such as “email,”
“password,” “login,” “server,” “port,” “URL,” and “phone.” To build DBT2, we manually inspected selected apps from
Google Play, which require complex inputs, eg, Skype, Google Chrome, WhatsApp, Facebook, Email, and others. Using the
XML dumps produced by the UI Automator testing framework, we selected all editable accessible UI widgets and extracted
text terms of their specific UI attributes such as “text,” “resource-id,” and “content-desc.” Since we selected apps from the
trusted developers, we believe that text terms of the selected attributes adequately describe the actual meaning of the
required input types. Thus, we exploit the text terms of the UI attributes to build our own dictionary. We emphasize that
DBT2 consists of the input types and their corresponding default valid input values. For example, for an editable UI widget
that requires the email input type, DBT2 defines a default valid input value “email@example.com.” However, optionally,
for the input types in DBT2, the realistic textual input values can be provided by the user in the “config.properties” file so
that they will be automatically injected during app exercising instead of the default ones.

For concrete-input generation, the smartCE takes the UID symbolic PC formed by iScheduler and solves it to obtain
a concrete user input. Note that since symbolic execution is naturally time consuming, the found user input values are
stored for every editable widget and could be further reused in the following exercising to shorten the exercising time by
not solving the same UID symbolic PCs multiple times. Solving the UID symbolic PC, smartCE finds concrete user inputs
that satisfy a particular symbolic PC corresponding to the execution path in the app code. Therefore, concrete user inputs
allow Mobolic to discover app UIs that are constrained by such user inputs. If the formed symbolic PC cannot be solved
(eg, infeasible path) or it is not formed yet (eg, when the editable widget is exercised at the first time), smartCE will
generate a random user input. The random user input ensures that the exercising procedure proceeds without any
interruption.

The smartCE engine is implemented in Java and uses the Symbolic Math Toolbox in MATLAB.37 The Symbolic Math
Toolbox provides a large set of functions for solving and manipulating symbolic math expressions. The symbolic math
expressions can be solved either analytically or using variable-precision arithmetic. The smartCE communicates with the
MATLAB symbolic engine by using third-party Java library, namely, matlabcontrol.‡‡

In Algorithm 6, we show the main steps of how smartCE generates a user input for the editable widget. First, smartCE
sets the generated input (in) to empty (line 2). Next, smartCE extracts relevant input types from UI widget attributes
such as “text,” “resource-id,” and “content-desc.” It identifies the relevant input type for the editable UI widget ew
(line 3) by scanning through the DBT2, which consists of the commonly used input types and their corresponding default
or user-predefined input values. Based on the found input type iType, smartCE obtains the corresponding input value
from DBT2 (line 5). If the input type is not found in DBT2, smartCE applies an input generation procedure (lines 7-15).
If the formed pc is not empty (line 7), smartCE tries to generate a concrete user input in by solving the given pc (line 8).

‡‡https://www.cs.virginia.edu/∼whitehouse/matlab/JavaMatlab.html

https://www.cs.virginia.edu/∼whitehouse/matlab/JavaMatlab.html

14 ARNATOVICH ET AL.

If no solution is found for the pc (line 9), smartCE tries to obtain a default value (eg, an actual value or hint) that is, by
default, set by the app itself (line 10). If the default value does not exist (line 11), smartCE generates a random user input in
(line 12). In the end, smartCE returns the generated user input in (line 17).

3 DESIGN AND IMPLEMENTATION OF MOBOLIC: PRACTICAL
EXPERIENCE

In this section, we provide details of Mobolic practical experience that is learned during design and development phases.
For that purpose, we establish several important questions to answer. The questions concern (1) the automated GUI
traversing via the f-GFG model using the A∗ technique and (2) the automated generation of the relevant inputs via
customated input generation using concrete, random, and user-predefined values.

3.1 How do we implement GUI traversal technique using A∗ in practice?
In practice, Mobolic implements automated GUI traversing of the mobile apps using the existing A∗ technique. In fact,
due to the complex nature of the mobile app GUI structure, it is not practical that modern app GUIs consist of only a single
UI. Our observations show that a loop usually occurs during the exercising procedure for all but trivial app GUIs. Hence,
if the loop has occurred, we need Mobolic to do traversing in f-GFG in order to return to the lastly discovered app UI that
Mobolic has left during exercising. In particular, to find a path from an app UI to the lastly discovered one in the f-GFG
model, Mobolic uses the UI widget execution trace. During the exercising procedure, Mobolic records the execution trace
following the innate GUI execution path. Along the GUI execution path, Mobolic marks all the exercised UI widgets with
flag “1” and memorizes the transitions from the exercised UI widgets to their subsequent app UIs. If during exercising,
the current app UI on the device screen is changed to any previous one that is already added in f-GFG, Mobolic performs
the UI search starting from that previous app UI. In particular, for every app UI, Mobolic recursively searches for the UI

ARNATOVICH ET AL. 15

widgets satisfying 2 conditions, where (1) the UI widgets are marked with flag “1” (ie, exercised) and (2) the UI widgets
have memorized transitions leading to their subsequent app UIs. If such conditions are both satisfied, Mobolic performs
a relevant action, eg, “Click,” upon the corresponding UI widget to switch to its subsequent app UI according to the
transition. Mobolic repeats the UI search until the lastly discovered app UI is reached and becomes the current app UI
displaying on the device screen. Next, Mobolic continues the GUI exploration from the current app UI by exercising its
retaining widgets.

3.2 How do we relate editable UI widgets with Java code in practice?
To use the generated concrete user inputs, Mobolic needs to relate the editable UI widgets to the level of code where
they are used. Having such relations, Mobolic knows in which particular editable UI widget the concrete user input
should be injected. To resolve the problem of relating the code with the UI, Mobolic leverages the intermediate repre-
sentations Jawa§§ and smali, which are generated by Amandroid and Apktool, respectively. For example, we have a dice
game Yahtzee. On its first UI, we need to indicate a number of rounds to play. Using the UI hierarchy viewer,¶¶ a tool
from Android SDK for GUI inspection, we can see that the editable UI widget relating to the number of rounds has a
resource-id attribute with the value com.tum.yahtzee:id/editText_rounds, where com.tum.yahtzee is the app package name,
and editText_rounds is the id of the UI widget. In fact, every Android app contains ids for all its UI widgets. Therefore, when
Mobolic disassembles the app into smali using Apktool, it retrieves ids in human-readable form in the file R$id.smali. From
the resource-id attribute, Mobolic uses the package name com.tum.yahtzee to construct the path “… /com/tum/yahtzee/,”
where the file R$id.smali is located on disk. Next, Mobolic scans through R$id.smali and searches for editText_rounds.
In particular, Mobolic performs search with a text that matches the string “editText_rounds:I= .” Once it has found the
matching string, Mobolic retrieves an integer value that is represented in the hexadecimal system on the right of the symbol
“=” and corresponds to editText_rounds, eg, 0x7f050010. Next, Mobolic uses Amandroid to disassemble the app and obtain
Jawa. Note that in Jawa, UI widgets ids are represented in the decimal system; hence, Mobolic converts 0x7f050010 into
the decimal value, ie, 2131034128. To find the name of the Java object that corresponds to the widget on the app UI,
Mobolic scans through all the .jawa files and searches for the Jawa object with id 2131034128. Once the Jawa object is
found, Mobolic searches for the nearest AssignmentStatement, and by using the data dependencies, it identifies that the
Jawa object with id 2131034128 has the corresponding name roundsText in the Java source. As a result, by using the ids
from smali and Jawa, Mobolic identifies that the Java object with the name roundsText relates to the editable UI widget
editText_rounds.

3.3 How do we generate customated user inputs in practice?
The customated input generation mechanism encompasses 3 types of the generated user inputs: Random/Default,
Concrete, and UI-context-aware. For each input generation method, we set a priority. Thus, UI-context-aware is the first
method to perform, Concrete is the second method to perform, and Random/Default is the last method to perform. Note
that once any of the methods return the generated input, Mobolic stops the input generation process and uses the returned
input in the exercising process. Defining such sequence, Mobolic finds the most relevant textual inputs to the current app
UI. In the following sections, we describe each of the methods and explain how they are implemented in practice.

3.3.1 UI-context-aware user input generation
Mobolic uses the UI-context-aware input generation method to obtain input values that lie in a set of possible values with
a specific input pattern required, eg, email address or IP/URL of the server. All of such inputs may have different actual
values; however, valid ones can only be the inputs with a correct pattern. For example, for the email address, it can be
“email@host.com,” and for the server address, it can be “88.14.36.11” or “xxx00053.outlook.com.” These values have a
predefined pattern that can only be recognized if a valid pattern of the email address or a valid pattern of the server address
is used. Thus, if the email address is required by the app, the user should not provide any random characters without a
specific pattern of the email, eg, “aaa.email.com” will not be recognized as a valid email so that the app is unlikely to
proceed with such input even if the app does not do any input validation. Therefore, such invalid user inputs may block

§§http://pag.arguslab.org/jawa-language
¶¶https://developer.android.com/studio/profile/hierarchy-viewer.html∖#start

http://pag.arguslab.org/jawa‐language
https://developer.android.com/studio/profile/hierarchy‐viewer.html\#start

16 ARNATOVICH ET AL.

the testing procedure, and thus, human interaction is required. Therefore, the UI-context-aware inputs are designed to
resolve such cases and automate the testing process. In practice, we found that the most commonly used basic terms
are “password,” “login,” “email,” “e-mail,” “server,” “port,” “url,” “phone,” “account,” “id,” “name,” “number,” “tel,” and
“mobile.” For these text terms, we create a dictionary with the pair “key-value,” where the terms serve as a “key” and
the default values with a correct pattern serve as a “value.” Note that our dictionary does not allow “key-value” pairs to
be duplicated, ie, for the same “key,” only one “value” is allowed at a time (ie, per testing app). For example, if the pair
“email=mobolic@gmail.com,” where “email” is the “key” and “mobolic@gmail.com” is the “value,” has already been
added to the dictionary, no other email address can be added, ie, only one record with “email” is allowed. As such, the
dictionary will not contain multiple email addresses for one testing app. The same rule applies to other keys existing in
the dictionary. In practice, our dictionary consists of the input types and their corresponding default valid input values.
For example, for an editable UI widget that requires the email input type, the dictionary defines a default valid input
value “email@example.com.” However, optionally, to simulate a real-case scenario, the user may create an actual email,
eg, “mobolic@gmail.com,” and provide this email address to Mobolic by setting the field “email” in the “config.properties”
file so that Mobolic will automatically replace the default email address by the user-provided one.

To summarize, we stress that Mobolic uses the UI-context-aware input generation method to automatically find which
input type is required for a particular editable widget and to generate either predefined or user-provided inputs corre-
sponding to the found input type. As such, the user does not need to be involved in the testing process. Instead, the user
may provide actual values for the most common input types such as “email,” “password,” “login,” “server,” “port,” “url,”
and “phone” in the “config.properties” file only once, before the exercising process starts. Thus, during exercising, Mobolic
finds the required input type and injects its corresponding value into the relevant editable widget.

It is important to note that Mobolic allows the re-exercising of the same widgets multiple times on the previously
encountered app UIs. For example, an app has widgets the traversing of which generates dependent app UIs, where every
subsequent app UI depends on its previous one. Also, assume that at a certain point in the GUI, the dependent app
UIs form a loop among themselves. Therefore, due to the loop existence in the GUI, to exercise all the widgets on the
dependent app UIs, Mobolic has to revisit the app UIs several times. In turn, to re-visit the dependent app UIs, Mobolic
has to traverse the same widgets multiple times. As such, Mobolic will generate the relevant user inputs and UI events on
the respective app UIs as many times as needed, until all their widgets are exercised.

3.3.2 Concrete user input generation
We implement the Concrete input generation method to enable Mobolic to generate inputs that should be an exact value
or within an exact range. For example, if the app requires an “age” input and the input is validated in the code, eg,
(age> 0) && (age< 16). For such scenario, the Concrete input generation method will generate the input value to satisfy
the “age” condition. To extract (age> 0) && (age< 16), Mobolic performs the app code instrumentation by running its
appInster component. The app code instrumentation is used to collect UID conditional statements. Mobolic uses these con-
ditional statements to form the UID symbolic PCs. In turn, the UID symbolic PCs are to be solved by Mobolic's component
smartCE, which is built on top of the MATLAB symbolic engine. Hence, in particular, when smartCE solves the UID sym-
bolic PC (age> 0) && (age< 16), it returns a numeric value within the expected range (0,16), which will be defined by the
underlying symbolic engine from MATLAB.

To summarize, we stress that Mobolic generates concrete user inputs using the dynamic symbolic execution technique.
It collects symbolic constraints via app code instrumentation and forms possible symbolic PCs. Mobolic symbolically
executes only UID conditional statements, whereas other statements are executed concretely. That is, at runtime, the
other variables in the UID conditional statements take concrete runtime values, whereas symbolic values are to be found
via solving their corresponding symbolic PCs.

Our implementation of the Concrete input generation method is different from that of the conventional one. It differs in
that we execute symbolically only UID conditional statements, whereas the conventional method attempts to symbolically
execute all possible conditional statements in the code. Using the Concrete input generation method, Mobolic aims to
cover all UID conditional statements it has encountered on the execution path. For that purpose, Mobolic forms symbolic
PCs for every discovered editable widget on the app UI and solves it using the MATLAB symbolic engine. In practice,
along with the recorded symbolic PCs, Mobolic stores the generated concrete inputs so that they can be reused for the
next exercising cycle. It is important to note that Mobolic continues generating the same user inputs for the corresponding
editable widgets on the required app UIs until all their subsequent app UIs, depending on these inputs, are fully exercised.

ARNATOVICH ET AL. 17

Mobolic interacts with MATLAB using “matlabcontrol” library. First, Mobolic prepares a MATLAB script. It consists of
algebraic equations and/or inequalities depending on the symbolic expressions in the formed PC. Next, Mobolic writes the
prepared script into the “solution.m” file. Note that the formed symbolic path includes symbolic constraints concatenated
with logical “&&” operator so that in MATLAB, the symbolic PCs can be represented as a system of algebraic equations
and/or inequalities. As such, it guarantees that the system of algebraic equations and/or inequalities must be satisfied in
order to have a satisfactory solution for the whole symbolic PC. Next, Mobolic uses “matlabcontrol” to send the script to
the MATLAB symbolic engine for execution. Once the system is solved for every symbolic variable, MATLAB returns the
solution by writing it into the “solution.res” file. It records the found values for every symbolic variable in the symbolic
PC. Note that the solution can be returned in integer form (eg, −1, 0, 5, and others) or fractional form (eg, 3

7
,

2
5
, and

others). The fractional-form values will be injected into the editable widget in decimal values with floating point, eg, 3
7

as
0.42857142857 or 2

5
as 0.4.

Mobolic uses MATLAB to solve the symbolic path constraints, the solutions of which lie in the numerical domain.
However, there are cases when a textual solution is needed. For that purpose, we implemented a string resolver (in
Java) to support 3 main text operations: “equals,” “compare,” and “contains.” Thus, in order to find the textual input,
we parse the expression into 2 parts and obtain the constant string value from either side. For example, “name”.equals(s)
or s.equals(“name”) are equivalent statements, where “name” is a string constant and “s” is a symbolic variable that
belongs to the UID conditional statement. In order to find a value of “s,” we extract the constant value from another
side of “s,” ie, from the leftmost or the rightmost position of the statement. For example, the code can be written as
s.toString().toLowerCase().equals(“name”) or “name”.equals(s.toString().toLowerCase()).

Our string resolver finds textual inputs assuming that “equals,” “compare,” and “contains” answer the following ques-
tions: for “equals”: is it equal to/same as? – “Yes”; for “compare”: is it more/less compare to? – “Yes”; for “contains”: does it
contain? – “Yes.” Therefore, if an actual condition in Java is written with the meaning, eg, “NOT contain” or “NOT equal”
(!“name”.contains(s) or !“name”.equals(s)), to satisfy the conditions, our string resolver will negate the found solution for
“Yes” by providing the reversed string if the “Yes” solution is not empty or a random nonempty string if the “Yes” solution
is an empty string. As such, the string resolver ensures that “if” and “else” logical branches, requiring textual solutions,
are covered.

3.3.3 Random and default user input generation
We allow Random/Default inputs to ensure that Mobolic does not require human interaction in the testing process. In
case inputs are not found by Concrete or UI-context-aware methods, Mobolic will take default or random values (numeric
or string). Mobolic first checks if the editable UI widget contains a default value (eg, an actual value or hint in the editable
widget), which is provided by the app itself. If so, Mobolic memorizes this value for future input generation. If the editable
widget is empty (no default value or hint), for the random input, Mobolic sets a predefined textual value “defaultValue”
or generates a random integer value in a range of [1,100]. Depending on the app, if a numeric value is rejected (eg, only
string values are allowed in the editable widget), Mobolic injects the predefined textual value.

4 DEMO OF MOBOLIC

In this section, we show a workflow of Mobolic on the app whose GFG is shown in Figure 1. In this demo, we show
how Mobolic explores the app GUI using the f-GFG model and how Mobolic generates user inputs via the customated
mechanism. Note that, in this demo, we focus on the symbolic part of a customated input generation mechanism due to
the complexity of demonstrating a mixture of all possibly generated inputs. For more details about UI-context-aware and
Random/Default user input generation, refer to our conference paper.22

In our demo, we assume that the app consists of 3 UIs. On u1, the app has an editable widget e11. The injected input for
e11 is passed as an input parameter to the function “foo” whose code and r-CDG are shown in Figures 2 and 3, respectively.
Note that, in Figure 2, code#4 in line 15 does not depend on the user input. As such, it may be executed or not depending
on the system time, which is obtained at that moment when the function “foo” is invoked and the conditional statement
in line 14 is executed. The function “foo” is always invoked when a relevant UI event is fired upon the noneditable widget
w12. Without loss of generality, we assume that the app code does not have any other UID conditional statements except
those in the function “foo.”

18 ARNATOVICH ET AL.

Step#1. First, Mobolic executes stAnalyzer, which builds r-CDG as shown in Figure 3. From Figure 3, we can see that

the function “foo” has 3 execution paths 1⇒ 2, 1⇒ 4⇒ 5, and 1⇒ 4⇒ 6 as well as 2 decision nodes and , which
are constrained by the user input from the editable widget e11. Next, guided by r-CDG, Mobolic executes appInster to
instrument the app. Mobolic sets a set of fully exercised UIs feui and f-GFG to be empty.

Step#2. Next, Mobolic runs the instrumented app and obtains the first UI u1. Next, Mobolic executes iScheduler and
smartCE to generate a relevant user input. Since the editable widget e11 is exercised for the very first time, smartCE
generates a random user input, eg, 11. Mobolic injects the input into e11.

Step#3. Afterward, Mobolic executes SAT to exercise noneditable widgets, build f-GFG, and collect UID symbolic con-
straints through app instrumentation. SAT adds u1 with its widgets into f-GFG and finds the first unexercised relevant
noneditable widget on u1, ie, w12. SAT exercises w12 by generating a relevant UI event for w12, eg, “Click” event. Upon
exercising w12, Mobolic invokes the function “foo” so that code #1 is executed since the UID conditional statement (x> 5)

corresponding to the decision node is satisfied by the random input, ie, 11, which has been generated in Step#2. Also,
after clicking on w12, u2 is discovered. SAT stores the corresponding symbolic constraint [(x> 5)] that is encountered on
the execution path 1⇒ 2 and the generated input 11. Also, it adds the link w12 →u2 and u2 with its widgets into f-GFG
and returns infloop FALSE to indicate to Mobolic that there is no loop occurrence in the exercising procedure. As such,
the current UI is now u2, and the procedure continues.

Step#4. Mobolic repeats Step#3 for u2 and u3. After exercising w31 on u3, the current UI is u1. Since u1 is already in
f-GFG, the link w31 →u1 will form a loop in f-GFG. Therefore, to eliminate the loop, SAT will not add the link w31 →u1
into f-GFG. Instead, SAT returns infloop TRUE to indicate to Mobolic that there is a loop occurrence in the exercising
procedure. Afterward, Mobolic performs A∗ search in f-GFG to find the shortest path from the current UI u1 to the lastly
discovered UI u3. The found path includes w12 →u2;w21 →u3. Since u3 is constrained by the user input from the editable
widget e11, iScheduler retrieves the previously generated user input from e11, ie, 11. Mobolic injects the input, replays
the found path, and reaches the lastly discovered UI u3. Therefore, u3 becomes the current UI, ie, UI that is currently
displaying on the Android device screen.

Step#5. On the current u3, Mobolic finds the next unexercised noneditable widget, ie, w32. SAT generates a relevant UI
event for w32 , eg, “Click” event. However, exercising w32 leads to the same UI, ie, u3, and thus, this transition forms a
loop in the exercising procedure. Since u3 is already in f-GFG, the link w32 →u3 will not be added into f-GFG. SAT returns
infloop TRUE to indicate to Mobolic that there is a loop occurrence in the exercising procedure.

Step#6. After exercising w32, Mobolic realizes that the UIs u2 and u3 are fully exercised. As such, Mobolic adds u2 and u3
with all their widgets into the set of fully exercised UIs feui and removes them from f-GFG. As a result, in f-GFG, Mobolic
changes the lastly discovered UI to u1. Also, Mobolic realizes that the current UI displaying on the device is still u3, which
is not already in f-GFG. Therefore, Mobolic generates a system event “Back.” Note that the “Back” event brings the app
to any previously discovered UI in f-GFG. Without loss of generality, we assume that the event brings the app UI to u1.
Thus, after the “Back” event, u1 becomes the current UI.

Step#7. Even though all noneditable widgets are fully exercised on all the discovered UIs u1, u2, and u3, Mobolic con-

tinues the exercising procedure since the decision nodes and are not fully covered yet. From the stored symbolic
constraints for e11, iScheduler forms a symbolic path constraint pc, ie, {(x> 5)}. However, iScheduler realizes that pc {(x> 5)}
has already been covered by input 11 that has been generated in Step#3. As such, it negates the pc {(x> 5)} and forms
another one, ie, {(x≤ 5)}.

Step#8. The smartCE generates a user input by solving the formed pc{(x≤ 5)}, eg, it generates a user input equal to 4.
Mobolic injects the input into e11 and updates the corresponding symbolic constraints for e11 from the formed symbolic
path constraint pc {(x≤ 5)}. Hence, the updated symbolic constraint for e11 is now [(x≤ 5)].

Step#9. Next, Mobolic executes SAT to exercise w12. Upon exercising w12, Mobolic covers the execution path 1⇒ 4⇒ 6

and executes code#3 since the UID conditional statement (x= 5) in the decision node is not satisfied, ie, x= 4≠ 5.
For the editable widget e11, SAT stores the generated user input 4 and the newly discovered symbolic constraint [(x= 5)],
which is encountered on the execution path 1⇒ 4⇒ 6. Thus, the editable widget e11 has now 2 new symbolic constraints
[(x≤ 5)] and [(x= 5)]. Note that the current UI u1 has not been changed since only the user inputs, satisfying the condition
x> 5, lead to discovering new app UIs u2 and u3, while other user inputs do not change u1 (see Figure 2).

Step#10. Next, iScheduler forms a symbolic path constraint pc {(x≤ 5) && (x= 5)} from the stored symbolic constraints
for e11. The smartCE generates a user input by solving the formed pc {(x≤ 5) && (x= 5)}. As a solution, it generates a
user input equal to 5. Next, Mobolic injects the generated input into e11 and executes SAT to exercise w12. Since the UID

ARNATOVICH ET AL. 19

TABLE 2 Summary of characteristics of the 10 apps tested

App Category App Name App Version LOC SGUI WGUI
Guessa 0.12 46 3 4
Hangmana 0.3.1-alpha 142 4 4
Yahtzeea 1.1 496 14 51

Games Cowsayb 1.4 243 55 183
GM Diceb 0.1.6 560 160 259
MunchLifeb 1.4.3 161 5 16
Pedometerb 1.4.1 985 39 96

Utility Ringtone generatorb 0.4 694 11 40
Bodha Convertera 1.0 779 49 180
Authenticatora 2.21 1937 19 50

aApps requiring specific user text inputs. bApps accepting random user text inputs.

conditional statement (x= 5) in the decision node is satisfied, ie, x= 5= 5, Mobolic covers the execution path 1⇒ 4⇒ 5
and executes code#2. The current UI u1 is not changed. Note that Mobolic does not update the corresponding symbolic
constraints for e11 from the formed symbolic path constraint pc {(x≤ 5) && (x= 5)} since e11 already includes the same
symbolic constraints from Step#9.

Step#11. Next, Mobolic realizes that the decision nodes and are fully covered since all their corresponding
UID conditional statements with all their subconditional statements are executed, and thus, the current UI u1 is fully
exercised. Hence, Mobolic adds it with all its widgets into the set of fully exercised UIs feui and removes it from f-GFG. At
this moment, Mobolic realizes that all discovered UIs u1, u2, and u3 are fully exercised, and thus, Mobolic terminates.

5 EMPIRICAL EVALUATION

Mobolic is designed to be a practical approach; therefore, it allows the automated testing procedure to notably shorten
the overall exercising time and increase code coverage. To demonstrate Mobolic performance in practice, we down-
loaded 10 real-world open-source Android apps from F-Droid,## performed testing, and compared results with several
state-of-the-art automated GUI-testing approaches. The obtained results have provided first evidence of Mobolic practical-
ity (see Section 5.6). Of the 10 apps, 5 are with primitive and 5 are with nontrivial GUI structures whose code is UI related;
we also have 5 apps that require specific user inputs and 5 apps that may accept random user inputs. We selected apps
with particular properties (complexity of GUI and user inputs) that could be sufficient to show adequacy and feasibility
of our approach.

To evaluate Mobolic performance, we ran it on 10 downloaded apps and compared the obtained code coverage results
and exercising time with other prevalent approaches, including manual testing (Human) and 3 automated ones (Sapienz,13

ACTEve,8 and MobiGUITAR7). We chose Human for comparison since manual testing can provide the most intelligent
inputs. We chose Sapienz as a representative of the multiobjective search-based testing, which shows the best performance
compared with Monkey and Dynodroid tools involving a random GUI exploration strategy. Note that Sapienz extends the
model-based testing by employing the search-based approach and exploiting an automated random user input generation.
We compared with ACTEve since it is the only tool that performs automated concolic testing. Also, we compared with
MobiGUITAR as a representative that shows the best performance in comparison to A3E and SwiftHand tools involving
a systematic GUI exploration strategy.

5.1 Experimental data set
In this section, we provide the summary of characteristics of the 10 selected apps showing in Table 2. We provide the
“category,” “name,” and “version” of the apps used in our experiment. In addition, we provide app characteristics such as
“LOC” (total number of executable lines of the Java code), “SGUI” (total number of screens in the app GUI), and “WGUI”
(total number of accessible widgets for all discovered screens in the app GUI).

##https://f-droid.org

https://f-droid.org

20 ARNATOVICH ET AL.

TABLE 3 Android emulator device specifications

Parameter Value

Device Galaxy Nexus
Target Google APIs (API Level 21)
CPU/ABI Intel Atom (x86_64)
Hardware Keyboard Present
RAM 2 GB
VM heap 128 MB
Front/Back cameras None
Internal storage 500 MB (with default content)
SD card 200 MB (with default content)

The “SGUI” value consists of the summation of every rendered screen (ie, app UI hierarchy view) discovered in the app
GUI as guided by the transitions existing between the screens. Note that “SGUI” may include duplicated screens since the
app GUI may have transitions leading to the same screen multiple times. The “WGUI” value consists of the summation
of every accessible widget found on every discovered screen in the app GUI. We define an accessible widget as the widget
that can be exercised via the app GUI by triggering any of the events supported by Mobolic (see Table 1). The value “LOC”
is obtained via the EMMA tool (see Section 5.3.5), and values “SGUI” and “WGUI” are obtained via Mobolic.

From Table 2, we can see that the selected apps fall into 2 categories “Games” and “Utility.” To give a sense of what
each app is about, we describe each as follows.

1. Guess: Our aim as a user is to guess a hidden random number within the [1,100] range with 8 trials.
2. Hangman: The app randomly picks 1 of 40 000 English words from its database. Our aim as a user is to guess the

hidden word. The app allows the user to type only a single character at a time.
3. Yahtzee: The app is a dice game. Generally, the game consists of a number of rounds and involves multiple players.

To initiate the game, it should consist of at least one round and involve one player.
4. Cowsay: It turns text into ASCII cows, with speech (or thought) balloons.
5. GM Dice: It is a dice rolling application with special focus on the 3D20 role-playing game system.
6. MunchLife: It is a simple counter application for keeping track of your level while you are playing the card game

Munchkin.
7. Pedometer: It is a step counter with speed, distance, steps-per-minute, and text-to-speech.
8. Ringtone generator: It generates Morse code ringtones in WAVE and iMelody formats.
9. Bodha Converter: The app supports general (binary, octal, decimal, and hex) conversions up to (263−1) in their

respective formats. It also supports ASCII character conversion in the range of NUL to DEL, ie, (0−127).
10. Authenticator: The app implements one-time password generators. When generating the one-time password, it

requires that the user key should not be shorter than a certain length.

5.2 Experimental environment
To run Mobolic, we use Android emulators on a Linux local host. The Linux machine was running 64-bit Ubuntu 14 on
a 4-core CPU-i5 with 16 GB of RAM. For the development of Mobolic, we use the Java programming language (Java 7)
and the UI Automator library from the Android SDK. To communicate with the Android emulators, we use the Android
Debug Bridge (adb) tool.

For our experiment and evaluation, we use Android emulators as this is the traditional and cost-effective solution. In
addition, the Android emulators can be freely accessed and is suitable for performing UI, stress, and performance testing.
However, Mobolic can also be deployed on the physical Android devices since this does not require any instrumentation
of the Android framework. By manual checking, we ensured that all our selected apps do not require any specific Android
device hardware so that our test results are not affected by running the apps on the Android emulator. As such, we
configured the emulator as shown in Table 3, and all other settings retained their default values. Also, we did not modify
the Android platform, and instead, we used all its default system images.

ARNATOVICH ET AL. 21

5.3 Experiment design
In this section, we describe a design of our experiment following the recommended guidelines.38,39 Here, we state the
rationale and objectives of this study as well as establish several Research Questions (RQs) to answer, define concepts and
measures and the methods of data generation and collection used in our study, and identify the data selection strategy.

5.3.1 Rationale: why this research work has been done?
We have been investigating previous research works about the automated testing of the GUI of mobile apps. From
our investigations, we found that they were trying to address the issue with poor code coverage while designing their
approaches to be fully automated. However, eventually, the developed approaches have managed to achieve, on average,
around 45%-50%. As we found, the main obstacles to achieving high code coverage (in practice, achieving 85%-90%, on
average, is usually a good coverage) are (1) automated input generation and (2) automated GUI exploration strategy since
manual human interaction is to be avoided. The previous works were trying to tackle these 2 main issues by applying dif-
ferent techniques to automate their approaches, eg, designing novel automated input generation systems, using dynamic
symbolic execution for input generation, improving the random GUI testing technique, and developing different applica-
tions of the model-based technique for systematic GUI exploration. However, upon publishing the works, the developed
approaches did not demonstrate in a convincing way that the issues were indeed resolved, or at least addressed to a certain
extent via a notable improvement.

We found that the previous research works do not address those 2 issues simultaneously. Instead, they focus on improv-
ing either the automated input generation or the GUI exploration strategy. However, even proposing different solutions
to address either of the 2 issues, the developed approaches were found to be not much practical. For example, in practice,
many of the developed approaches usually require an astronomical amount of time for app exercising, or automatically
generated textual inputs are not sensible enough for proper systematic GUI exploration. As such, to develop automated
approaches, the previous research works rely on the user's availability to manually set, eg, a termination condition for their
testing tools since they are not able to stop the testing process automatically or a certain limit for the depth exploration
of the app GUI to mitigate the problem with exponentially growing exercising time, or suggest for the user to manually
provide sensible textual inputs during the testing procedure or before the procedure is started for the purpose of automatic
replaying the user inputs.

From our investigations, we can see that the issues with poor code coverage and inadequate automated input gener-
ation still remain, such that many other research works have been further conducted to propose alternative automated
approaches. Therefore, we believe that there is still great relevance and necessity in providing a solution that addresses
both issues. As such, in our work, we propose an automated GUI testing approach, namely, Mobolic, that introduces (1)
a novel customated input generation mechanism to eliminate human interaction in the testing process and (2) a novel
f-GFG model of the app GUI to efficiently and effectively perform systematic GUI exploration in an automated man-
ner. Therefore, these 2 novel aspects enable our approach to significantly increase code coverage results and shorten the
exercising time, which makes our approach more practical.

5.3.2 Objectives: what is expected to be achieved with this research work?
In this research work, we raise several objectives to achieve. We list them as follows.

1. We are to develop an automated approach that allows, for mobile apps, to automatically generate functional UI tests
with high coverage within a reasonable amount of time via the systematic GUI exploration. We expect that our pro-
posed approach achieves high code coverage and significantly reduces exercising time (in comparison with existing
approaches).

2. We are to develop an automated approach that allows, for mobile apps, to automatically generate sensible user inputs
that are relevant to the current app UI. We expect that our proposed approach is able to find relevant inputs for many
real-case scenarios so that human interaction is not required.

3. We are to perform a comparison of our approach with state-of-the-art existing automated approaches and a man-
ual one. We expect that our proposed approach, on average, outperforms the existing automated approaches and the
manual one, while showing higher code coverage results and shorter exercising time.

22 ARNATOVICH ET AL.

5.3.3 Research Questions: what knowledge will be sought or expected to be discovered?
In this work, we establish several RQs to answer. We list them below as follows.

RQ#1. How does our Mobolic testing technique impact a code coverage in comparison with the manual testing of the
mobile app GUI?

RQ#2. How does our Mobolic testing technique impact a code coverage in comparison with the random testing of the
mobile app GUI?

RQ#3. How does our Mobolic testing technique impact a code coverage in comparison with the dynamic symbolic
execution of the mobile app GUI?

RQ#4. How does our Mobolic testing technique impact a code coverage in comparison with the model-based testing of
the mobile app GUI?

RQ#5. How does our Mobolic testing technique impact an exercising time in comparison with the state-of-the-art existing
automated testing techniques of the mobile app GUI?

To answer these RQs, we include Section 5.6 where we do analysis and interpretation of the experimental results.

5.3.4 Concepts and measures: which coverage metric (measure) for executed Java code
do we use?
Code coverage is the most useful indicator showing testing approach effectiveness, simply because the lower the coverage
results, the more app code that remains untested. The EMMA suggests that “basic block” is a fundamental coverage metric,
and other coverage metrics such as “branch,” “class,” “method,” and “line” can be derived from basic block.” As such, in
our experiment, we use the “basic block” coverage metric for the evaluation of the code coverage results. In fact, “basic
block” is a well-defined metric, and it is represented as a sequence of bytecode instructions without any jumps or jump
targets inside, ie, an atomic unit.

EMMA marks a “basic block” as covered once the control has reached its last instruction. Therefore, the “basic block”
is guaranteed to have been executed without failure at least once and reflects more precisely how adequately the app
functionality was exercised, rather than “lines,” “classes,” or “methods.” Note that the “line” coverage metric is a poorly
defined concept and should not be used as a code coverage metric except when linking line coverage to the original source
code. In contrast, the “class” and “method” metrics are well defined but indeed cannot be used to show how adequately
the app functionality was tested. In particular, EMMA marks a Java “class” or “method” as covered once the class is loaded
by the Dalvik VM or Java VM (depending on the running virtual machine), or method is entered (very first “basic block”
of the method is covered). Instead, the “class” and “method” coverage metrics should be used to detect, eg, “dead code”
in the app, rather than showing the performance in terms of achieved code coverage.

5.3.5 Method of data generation: what instruments do we use for Java code coverage
generation and collection?
For code coverage generation and collection, we use the EMMA tool.‖‖ EMMA is an open-source tool for measuring and
reporting Java code coverage, and it is included in the Android SDK by default. EMMA can instrument Java bytecode
(∗.class) for coverage either offline (before ∗.class files loaded) or on the fly (when Java bytecode is being executed). EMMA
supports coverage types such as “class,” “method,” “basic block,” and “line.” Note that “line” coverage is not provided
without the source code being available. In addition, EMMA supports 3 types of coverage reports in ∗.txt, ∗.html, and ∗.xml
file formats.

There are 2 ways to use EMMA with Android apps: (1) to include EMMA (pre-dexed form of emma.jar) into the Android
system image (system.img) or (2) to include EMMA into classes.dex of the app (∗.apk). We chose (2), which is an easier and
more universal way and allows us to run apps on multiple Android platforms (if needed). Note that the pre-dexed form
of emma.jar is not enough to make EMMA work on the Android platform. EMMA's folder structure with their content
must also be included into the root of the testing ∗.apk file (the same folder level as classes.dex).

‖‖http://emma.sourceforge.net/faq.html

http://emma.sourceforge.net/faq.html

ARNATOVICH ET AL. 23

5.3.6 Method of data collection: how do we collect Java code coverage data?
To dump (collect) code coverage, we send an activity broadcast intent*** to the app under test. To have unique intent names
for each app, we use their package names appended with “.EMMA_DUMP_COVERAGE.” Once such an intent has been
sent, it calls the onReceive(…) method from our Java class, namely, “NxAe85AOZo9UAYV,” for reasons of uniqueness,
which extends the BroadcastReceiver Java class. The Java class “NxAe85AOZo9UAYV” is included into the classes.dex
of testing ∗.apk where we dump the coverage by calling EMMA's method dumpCoverageData(…). Note that since we
include EMMA in ∗.apk, we are able to call EMMA methods directly without applying a Java reflection mechanism.

To let the app under test react to the sent broadcast intent, there are 2 ways: (1) to statically register a broadcast receiver
in the AndroidManifest.xml file or (2) to dynamically register a broadcast receiver at runtime. We chose method (1) as it
is a more reliable and less error-prone method. Note that in method (1), all receivers are registered globally, in contrast
to method (2) where receivers can be registered globally or locally. If method (2) is selected, in order to register a receiver
globally, the app context should be used, ie, getApplicationContext().registerReceiver(…). We use method (1) to register
the broadcast receiver globally since code coverage results are needed for the entire app (from all possible app states). If
the broadcast receiver is registered locally (eg, for the specific app activity), coverage results can be collected only for the
activity (∗.class) while it is running in the foreground.

To make sure that all coverage data are collected, after every performed action on the UI, we dump intermediate code
coverage (coverage.ec) into the app under test folder on the emulator, ie, “/data/data/app_package_name/files.” We use
the default app's folder on the emulator to avoid making other changes to the AndroidManifest.xml file (eg, adding extra
permissions to allow the app to write code coverage files on external storage). Note that coverage data will be lost if the app
is crashed; therefore, an intermediate code coverage is necessary to obtain coverage results for any previously executed
code.

5.3.7 Data selection strategy: how do we identify executed Java code?
We identify the executed Java code via app code instrumentation using the EMMA tool. To instrument app ∗.class files,
we use the offline EMMA method. First, we generate Android ∗.apk files from the source code using the Eclipse IDE for
Android. For instrumentation, we consider only ∗.class files that correspond to the source code ∗.java files. However, we
exclude autogenerated ∗.class files such as “BuildConfig.class” and all “R∗.class” files from EMMA instrumentation since
they would contribute to the code coverage with “0” coverage values for all coverage metrics since they are not executable.
Once all app ∗.class files are instrumented, EMMA generates one “coverage.em” file with all the metadata required for
code coverage report generation.

5.4 Threats to internal and external validity
In our experiment, we identify 3 main Threats (THs) to the internal and external validity39-41 of the obtained results for
the code coverage and exercising time. We describe threats in the list below and propose solutions to mitigate or eliminate
them (if possible).

TH#1 As a threat to the internal validity, it concerns about code instrumentation and code coverage collection. Due to
the human error, in the app, there is a possibility that it has places with unreachable code, ie, “dead code,” or,
somewhere, it contains “unused code,” eg, for future implementation, or forgotten to delete. Also, the app may
implement “version-dependent” code via conditional statements to support multiple versions of the Android plat-
form, or the app code can be “device dependent,” ie, the runtime behavior on the Android emulator and the actual
device is different as the app may require specific physical device hardware components. Hence, if we instrument
the Java bytecode without prior checks for the code mentioned above, the EMMA tool will include such irrel-
evant code in the overall code coverage. For example, instead of the overall number of executable lines of the
Java code, which is 1800LOC (expected, ie, true value), EMMA will report 2100LOC (misleading, ie, false value);
hence, 300LOC is the extra code that cannot be executed as explained above. Thus, such threat may lead to unex-
pected code coverage results and, potentially, to misleading conclusions about the performance of Mobolic. Thus,
to exclude such a code from instrumentation and code coverage, in our experiment, we check the source code for

***https://developer.android.com/guide/components/broadcasts.html

https://developer.android.com/guide/components/broadcasts.html

24 ARNATOVICH ET AL.

all the abovementioned code with the aid of the Eclipse IDE for Android. As such, we ensure that the obtained
code coverage results are calculated using the expected true values of LOC.

TH#2 As a threat to the internal validity, it concerns about completeness of GUI exploration and obtained code coverage.
In our experiment, we expect that Mobolic discovers as many app UIs as possible in the existing app GUI model.
However, there is still a chance that not all possible app UIs are discovered. It is due to the fact that the app may
not have entered its certain states that depend on the internal app logic implementation or textual user inputs
that are provided during the testing process. As such, certain app UIs still may not be discovered. As a result, our
code coverage results may not reflect an absolute code coverage value that is theoretically possible to achieve in
an ideal case. However, such threat is uncontrollable due to the nature of the performed testing, ie, “black-box,”
where Mobolic does not have prior knowledge about the number of possible app UIs existing in the app GUI,
which, theoretically, could be discovered.

TH#3 As a threat to the external validity, it concerns about execution environment, experimental data set size, and exer-
cising time. The exercising time depends not only on the absolute execution time of the automated approaches
but also on the execution environment. To eliminate the factor of execution environment, we run the testing
tools on the same personal desktop computer. However, such external factors as tools configuration (eg, emulator
parameters, testing tool parameters, and others), internal implementation (eg, it depends on the developer cod-
ing skills and code optimization), and testing techniques involved (eg, random, dynamic symbolic, search-based,
or model-based testing techniques) impact the exercising time. In addition, for certain apps, the exercising time
may be dramatically increased depending on the app itself (eg, complexity of the app GUI, required user inputs, or
internal execution flows in the app). Even though the average exercising time for our experimental data set may
not be used “as is” to rely upon in general, it nevertheless gives reasonable sensing of how efficient the testing
techniques could be.

5.5 Experiment operation: preparation and execution
In this section, we explain how we set up experiments for Human, Sapienz, ACTEve, MobiGUITAR, and Mobolic. We
ran Mobolic, Sapienz, ACTEve, and MobiGUITAR for all 10 apps on 5 Android emulators and averaged the obtained
code coverage results. For Mobolic, we did not set any time limit for the exercising procedure since it implements
the self-terminative GUI exploration strategy. For Sapienz, ACTEve, and MobiGUITAR, we configured them using the
suggested configuration,††† which was proposed by Choudhary et al.14 As suggested, we also set a 60-minute exercising
time limit for each app for Sapienz, ACTEve, and MobiGUITAR.

For Human, we selected 5 advanced Android users, including 2 of the authors of this paper, and students. We ensured
that the selected students have knowledge in the testing of the mobile app GUIs and know their intricacies. We manually
tested all 10 apps following rules such as (1) run the testing apps on the same Android platform as Mobolic, (2) avoid
installing any dependent apps if the testing app prompts, and (3) navigate back if the testing app goes to any external app.
After testing is completed, we averaged the obtained code coverage results. To make a fair comparison of Human with
Mobolic, we did not set any time limit for the manual exercising since it innately cannot be extremely long due to the
human nature but reasonable for every particular app. Thus, according to our reasoning about the app GUI and its depth
exploration, we exercised each app until it was visually possible to identify the newly discovered app UIs.

5.6 Experimental results: analysis and interpretation
We evaluate the effectiveness of Human, Sapienz, ACTEve, MobiGUITAR, and Mobolic in terms of achieved code
coverage and exercising time. In Table 4, we show their obtained code coverage (columns 2-6) and exercising time
(column 7) for Mobolic. Note that we do not report the exercising time for Human, Sapienz, ACTEve, and MobiGUITAR.
In our experiment, we focus on the comparison of the effectiveness of Mobolic with Human, Sapienz, ACTEve, and Mobi-
GUITAR in terms of the achieved code coverage. As such, for these approaches, we only report the code coverage. Since
the exercising time is not reported for Human, Sapienz, ACTEve, and MobiGUITAR, we refer to Section 5.5 where we
discuss how the exercising time is chosen. However, for Mobolic, we still report the exercising time for evidence purposes
to show that it does not take an astronomically long time to exercise the apps.

†††http://bear.cc.gatech.edu/∼shauvik/androtest/

http://bear.cc.gatech.edu/∼shauvik/androtest/

ARNATOVICH ET AL. 25

TABLE 4 Code coverage for Mobolic, Human, Sapienz, ACTEve, and MobiGUITAR and the time taken by Mobolic

App Name Mobolic, % Human, % Sapienz, % ACTEve, % MobiGUITAR, % Mobolic, mins

Guessa 96 36 32 24 26 3.47
Hangmana 100 58 35 21 19 8.29
Yahtzeea 99 99 44 19 35 6.48
Bodha Convertera 98 98 53 16 48 39.81
Authenticatora 83 88 41 28 33 5.95
Cowsayb 91 80 78 43 47 49.47
GM Diceb 87 78 56 41 51 58.44
MunchLifeb 89 89 58 42 49 5.08
Pedometerb 86 81 77 36 58 19.13
Ringtone generatorb 93 77 60 49 69 23.95
Average 92 78 53 32 44 22

aApps requiring specific user text inputs. bApps accepting random user text inputs.

In Table 4, we show the code coverage, computed as follows:

Coverage =
Average number of covered basic blocks

Total number of basic blocks
.

As for Human, the average number of covered basic blocks is computed by taking the average of the results given by 5
users. As for Mobolic, Sapienz, ACTEve, and MobiGUITAR, the average number of covered basic blocks is computed by
taking the average of the coverage results given by 5 Android emulators.

5.6.1 To answer RQ#1: Mobolic vs Human (manual testing)
From Table 4, we can see that, on average, Human achieves lower code coverage with 78% as compared with Mobolic with
92%. In comparison with Mobolic, Human provides relatively low code coverage for only 2 apps “Guess” and “Hangman”
due to their specific app nature. In particular, the app “Guess” prompts the user to guess a hidden random number within
the [1,100] range with 8 trials. Similarly, the app “Hangman” prompts the user to guess the hidden word that is randomly
chosen from the app database of 40 000 English words. Due to such specific app nature and the human reasoning behind
them, it can be seen that Human will hardly guess the number or word correctly within the limited number of trials.
Therefore, Human will likely be covering the code along the execution path that always loses the game and may never
cover the code along the execution path winning the game. In contrast, through app instrumentation, Mobolic obtains
the concrete value that is chosen by the app for the user to guess. Therefore, knowing that concrete value, Mobolic is
capable of covering the code along both execution paths winning and losing the game. For the remaining apps, Mobolic
and Human perform similarly.

5.6.2 To answer RQ#2: Mobolic vs Sapienz (search-based testing)
From Table 4, we can see that, on average, Sapienz and Mobolic cover 53% and 92% of the code, respectively. In compar-
ison with Mobolic, Sapienz provides relatively low code coverage. For “Guess” and “Hangman” apps, Sapienz achieves
low coverage. Due to the underlying random-based input seeding mechanism, Sapienz is unable to exercise these 2 apps
adequately since they require concrete user inputs. For “Yahtzee,” “Bodha Converter,” and “Authenticator” apps, Sapienz
gives a higher coverage. However, these apps have complex GUI models and, thus, would require systematic GUI explo-
ration for achieving a higher code coverage (in fact, it depends on the actual tool implementation). Therefore, for these
apps, due to the underlying random-based GUI exploration strategy, Sapienz fails to provide high coverage as well.

For the other apps marked with symbol “b” in Table 4, Sapienz achieves its highest coverage. The results are simply
explained by the fact that these apps are good to exercise with any random inputs since they accept any user inputs.
However, we realized that Sapienz obtains the lowest coverage for “MunchLife” and “GM Dice” apps. After manual inves-
tigation, we found that the “MunchLife” app requires more complex UI actions such as “Roll” and “Press” to trigger
particular execution paths covered. Similarly, for the “GM Dice” app, Sapienz obtains low coverage due to the lack of sup-
port for particular UI actions such as “Scroll” and “LongClick.” In contrast, Mobolic supports the most comprehensive list
of UI events and a limited set of systems (see Table 1), and its improved systematic GUI exploration strategy with custom-

26 ARNATOVICH ET AL.

ated input generation could discover certain execution paths that are inaccessible to the random-based GUI exploration
techniques with random-input generation.

5.6.3 To answer RQ#3: Mobolic vs ACTEve (dynamic symbolic execution)
From Table 4, we can see that, on average, ACTEve and Mobolic cover 32% and 92% of the code, respectively. In comparison
with Mobolic, ACTEve provides significantly lower code coverage. We manually studied the nature of the underlying
implementation of ACTEve to understand why the code coverage is low. We found that ACTEve explores the apps starting
from their entry point and employs symbolic execution for the entire app rather than for particular statements. In sharp
contrast, Mobolic performs symbolic execution on only UID statements rather than trying to symbolically execute all
possible statements in the entire app. Therefore, in comparison with Mobolic, ACTEve may require a large amount of time
to adequately exercise the app and achieve high code coverage. As a result, in practice, achieving high code coverage for
ACTEve for all but trivial apps is generally impossible within a reasonable time limit, and thus, ACTEve is a time-capped
approach. Also, ACTEve does not scale beyond event sequences consisting of more than four events, and thus, ACTEve
is also a depth-limited approach. In sharp contrast, Mobolic does not have such limitations and forms event sequences of
any length to reach a particular UID conditional statement and does so within a reasonable time.

5.6.4 To answer RQ#4: Mobolic vs MobiGUITAR (model-based testing)
From Table 4, we can see that in comparison with Mobolic, MobiGUITAR provides significantly lower code coverage. On
average, MobiGUITAR and Mobolic cover 44% and 92% of the code, respectively. In particular, MobiGUITAR provides
the lowest code coverage for “Guess” and “Hangman” due to their specific app nature, where the apps prompt the user to
guess a hidden random number or word, respectively, within several trials. However, MobiGUITAR is not able to generate
concrete user inputs, and thus, it may never cover the execution paths that are constrained by concrete user inputs. For
the rest of the apps, MobiGUITAR shows better performance since the app functionality does not mainly depend on the
concrete user inputs, ie, random user inputs can also be generated to discover unexplored app UIs.

In fact, MobiGUITAR has an option to provide concrete user inputs manually through the tool's configuration file.
However, in practice, it may require major manual efforts since the provided user inputs will be relevant to only the
specified app (due to MobiGUITAR implementation); therefore, the provided inputs cannot be reused by another app.
That is, if the inputs are to be provided by a user, it will require the user to manually specify inputs for every app to be tested.
In contrast, Mobolic is designed to automatically generate relevant user inputs through the customated input generation
mechanism so that the constrained app functionality can be adequately exercised without human intervention.

5.6.5 To answer RQ#5: Mobolic vs state-of-the-art automated testing techniques
(exercising time)
In our experiment, we run the automated tools Sapienz, ACTEve, and MobiGUITAR for 60 minutes each, as discussed in
Section 5.5. Choudhary et al14 explained that, for their experiment, they had to set a time limit for the exercising procedure
as none of the tools were able to terminate automatically. Although, we believe that 60 minutes would be a sufficient time
frame to demonstrate the performance (in terms of the achieved code coverage) of the testing approaches used in our
experiment. From Table 4, we can see that, on average, our proposed Mobolic approach achieves higher code coverage
within a shorter time compared to the other automated approaches. On average, for the Java code, Mobolic achieves
92% within an average time of 22 minutes, whereas Sapienz, ACTEve, and MobiGUITAR achieve 53%, 32%, and 44%,
respectively, within an average time of 60 minutes.

Comparing the time taken by every app involved in our experiment, we can see that the maximum time is 58.44 minutes
for the “GM Dice” app and the minimum time is 3.47 minutes for the “Guess” app. Thus, the exact exercising time taken
by Mobolic for each app is less than 60 minutes, whereas the coverage results are higher in comparison with the other
tools. From such observations, we may conclude that, in general, setting a time limit for the GUI testing tools is not a
proper solution for the termination of the testing process. We can see that giving a large time frame (60 minutes for each
app) does not necessarily guarantee high code coverage results. Based on Mobolic performance, we believe that in order to
achieve better efficiency (ie, shorter exercising time) and efficacy (higher code coverage), more sophisticated GUI traversal
algorithms, input generation mechanisms, and tools underlying implementation are needed.

ARNATOVICH ET AL. 27

6 DISCUSSION

In this section, we discuss the principal differences between Mobolic, traditional model-based testing, and symbolic exe-
cution. We describe novel aspects brought by Mobolic into an automated testing of Android apps. In particular, Mobolic
integrates the online testing and symbolic execution techniques into one single solution so that it inherits the benefits of
both approaches, and thus, it avoids their limitations if they were used separately.

6.1 How does Mobolic differ from existing model-based testing tools?
Mobolic uses the online testing technique to systematically explore an app GUI by generating relevant events “on the fly”
that are immediately executed. Using the online testing technique, it benefits Mobolic to potentially execute tests for a
long time so that long, intricate, or stressful tests can be performed and significantly reduce the state space (ie, size of the
GUI model) to be stored since only a small portion of the GUI model needs to be stored at any point in time. The UI model
is automatically extracted from the app and incrementally updated during the testing procedure. In particular, Mobolic
dynamically builds and updates an f-GFG to ensure that the exercising procedure never falls into the infinite loop (since
f-GFG has no loops) and is always able to finish the testing procedure (since f-GFG has finite number of app UIs). Mobolic
builds the f-GFG from the discovered app UIs, which is further used to explore another yet undiscovered app UI.

To efficiently explore the app GUI, Mobolic implements A∗, an informed search algorithm, which is the best-known
form of BFS.23,42 The A∗ search algorithm combines BFS for efficiency with the uniform cost search for optimality and
completeness. The key idea behind the A∗ search algorithm is to find the shortest path leading to the target app UI. It is
worth noticing that Mobolic performs A∗ search in the f-GFG; therefore, Mobolic always generates the shortest sequence
of UI events leading to the target app UI. In addition, in f-GFG, there is always at least one path leading to the target app
UI; therefore, Mobolic guarantees that the sequence of UI events is always generated.

In sharp contrast, the existing model-based testing tools14 commonly implement uniformed (standard) depth- or
breadth-first search algorithms42 as a standalone (ie, either one), or their combination is used for automated GUI explo-
ration. However, in practice, their implementation of depth- or breadth-first search algorithms does not demonstrate
sufficient efficacy to adequately explore the app GUI.14,15 As a fact, due to the nature of the mobile app GUIs, their mod-
els commonly have an infinite number of app UIs and/or loops in the GUI model. Therefore, the existing tools14,15 with
their depth- or breadth-first search algorithm implementation may fall into the loops or find an infinite number of app
UIs preventing the exercising procedure from automatic termination. Thus, in order to adapt the tools in practice and
enable them to automatically finish the exercising procedure, the user is required to manually set a termination condition,
eg, limit the exercising time, limit the overall number of events to be injected, or limit the depth of GUI exploration.
As a result, such limitations may deny the automated tools from performing an adequate GUI exploration. However, in
the case of a finite-state app GUI model without loops, using their depth- or breadth-first search implementation, the tools
may effectively explore the app GUIs.

In summary, Mobolic is capable of exploring app UIs at deep depth while avoiding falling into an infinite loop or dis-
covering an infinite number of app UIs. Therefore, Mobolic addresses Problem#1 by building f-GFG and performing A∗

search in the f-GFG model. In contrast, the existing tools have limited exploration capability since they perform either
depth- or breadth-first search in the innate app UI model that is used “as is” for systematic GUI exploration.

6.2 How does Mobolic differ from existing symbolic execution tools?
In this section, we omit the discussion on user-predefined inputs since this is a unique property of Mobolic and does not
exist in the relevant tools we used and, thus, cannot be compared. Instead, we shall focus our discussion on symbolic exe-
cution since it is a common technique used by Mobolic and the relevant tools we run in our experiment for concrete-input
generation. Mobolic uses the symbolic execution technique to generate concrete inputs to force the exercising proce-
dure to execute the code along a certain program path. According to Li et al,43 nearly 99% of statements in real-world
programs are user input–independent, and thus, performing symbolic execution on these statements is not necessary.
Therefore, Mobolic symbolically executes only UID statements, whereas other user input–independent statements are
executed concretely.

In sharp contrast, the existing symbolic execution tools8,28,29,44 tend to execute all program paths symbolically, ie, 100%
of all statements, which makes the existing tools impractical due to the unacceptable time required to finish the testing

28 ARNATOVICH ET AL.

procedure. Therefore, in practice, search of the program paths needs to be depth-bounded or time-capped.31,32 It is worth
noticing that since Mobolic uses the symbolic execution technique, it also copes with symbolic execution problems such
as path explosion, path divergence, and complex constraints. In particular, Mobolic mitigates the path explosion problem
by executing symbolically only UID statements. The UID statements comprise a small portion of the entire app code, and
thus, it helps avoid the path explosion problem in most cases. In contrast, the existing tools execute all program paths
symbolically. Therefore, path explosion becomes a common problem, and to deal with it, they limit their search of the
program paths either by depth or time.

In practice, symbolic execution also suffers from untrustworthy implementation of existing satisfiability modulo theo-
ries (SMT) solvers.45-47 Therefore, path divergence and complex constraints become common problems. To mitigate these
problems, we found a solution by using a reliable SMT solver such as Symbolic Math Toolbox in MATLAB.37 The Symbolic
Math Toolbox provides functions for solving and manipulating symbolic math expressions. In fact, the symbolic engine
in MATLAB is solid, and such proprietary solution sounds more trustworthy and reliable and could be less buggy than
any other existing third-party open-source SMT solvers.‡‡‡

In fact, existing open-source SMT solvers only have a limited set of built-in theories because implementing a complete
SMT solver may require overwhelming efforts. As a result, the existing open-source SMT solvers do not support all math-
ematics and symbolic computations. Importantly, by using the symbolic engine in MATLAB, Mobolic is capable of solving
symbolic constraints in integer and decimal domains, whereas the existing open-source SMT solvers solve symbolic con-
straints in the integer domain only. Also, Mobolic is capable of solving symbolic constraints in the textual domain, whereas
the existing open-source SMT solvers commonly do not solve string symbolic constraints.

In summary, Mobolic is capable of generating concrete inputs in most cases, except for highly complex symbolic
constraints. Therefore, Mobolic addresses Problem#2 by symbolically executing only UID statements and using solid
symbolic engine Symbolic Math Toolbox in MATLAB. In contrast, the existing tools have limited capabilities of solving
complex symbolic constraints due to the unreliable implementation of the SMT solvers used.

7 RELATED WORK

In this section, we provide an overview of state-of-the-art automated GUI testing tools that implement random
model-based or dynamic symbolic execution testing approaches. To perform a multivariate analysis of the tools, we com-
pare the various aspects of them, as shown in Tables 5, 6, and 7. Each Table holds and compares related properties for
the listed tools. For each Table, Column 1 indicates the name of the tool that implements an approach, and the symbol ⇑
indicates an improvement of a particular property or feature of Mobolic over the other listed tools.

Table 5 gives a comparison of the specifications of the testing tools. Column 2 shows the underlying framework on top
of which the tool is built. Column 3 states ease of use of the tool, ie, it states whether the tool works out of the box without
any complex configurations or fixes, ie, “Easy”; whether it required some effort, ie, “Medium”; or whether it required
a major effort, ie, “Hard,” to make it run. This judgment is solely based on our experience, and the evaluation does not
have the value of a user study, mainly because most of these tools are just early prototypes. Note that at the moment of
writing our paper, Word2Vec was not publicly available due to the developer's company policy; therefore, our analysis of
the tool is based on its paper content. Thus, for Word2Vec, we indicate ease of use as “Unknown” since we were not able
to identify ease of use. Columns 4 and 5 indicate the minimum supported API level of the Android framework requiring
the tool to run and the Android device on which the tool can be deployed, respectively. Note that Word2Vec is developed
for the iOS platform. As such, for this tool, the API level attribute is not applicable; hence, we indicate “N/A.” Columns 6
and 7 state if a discussed tool is self-terminative and what its termination condition is, respectively. If “No,” it means that
the tool is implemented in such a way that it will infinitely continue app execution unless the user manually specified a
termination condition (ie, termination condition is user dependent). For example, the user limits the exercising procedure
by time (ie, minutes, hours, days, etc), by the number of events to be injected (ie, UI and/or system events), or by depth of
exploration in the app GUI model (ie, limit length of the event sequence to be injected) (Column 7). If “Yes,” it means that
the tool is able to terminate automatically, and thus, a user is not required to manually specify a termination condition
(ie, termination condition is user independent). For example, Mobolic innately terminates once it cannot discover any

‡‡‡https://en.wikipedia.org/wiki/Satisfiability∖_modulo∖_theories∖#SMT_solvers

https://en.wikipedia.org/wiki/Satisfiability&uscore;modulo&uscore;theories#SMT&uscore;solvers

ARNATOVICH ET AL. 29

TA
B

LE
5

C
om

pa
ris

on
of

sp
ec

ifi
ca

tio
ns

of
m

ob
ile

te
st

in
g

to
ol

s

To
ol

U
nd

er
ly

in
g

Fr
am

ew
or

k(
s)

Ea
se

of
U

se
A

PI
Le

ve
l

D
ev

ic
e

Se
lf

-T
er

m
in

at
iv

e?
Te

rm
in

at
io

n
C

on
di

ti
on

M
on

ke
y

U
I/

A
pp

lic
at

io
n

Ex
er

ci
se

rM
on

ke
y

Ea
sy

1+
Ph

ys
ic

al
&

Em
ul

at
or

N
o

N
um

be
ro

fi
nj

ec
te

d
ev

en
ts

A
3 E

Tr
oy

d
&

RE
RA

N
M

ed
iu

m
1+

Ph
ys

ic
al

&
Em

ul
at

or
N

o
D

ep
th

ex
pl

or
at

io
n

of
G

U
Im

od
el

D
yn

od
ro

id
M

on
ke

yR
un

ne
r

Ea
sy

10
Em

ul
at

or
N

o
N

um
be

ro
fi

nj
ec

te
d

ev
en

ts
A

CT
Ev

e
M

on
ke

yR
un

ne
r

H
ar

d
10

Em
ul

at
or

N
o

Ex
ec

ut
io

n
tim

e
M

ob
iG

U
IT

A
R

A
nd

ro
id

Ri
pp

er
H

ar
d

10
+

Em
ul

at
or

N
o

Ex
ec

ut
io

n
tim

e
Sw

ift
H

an
d

C
hi

m
pc

ha
t

H
ar

d
16

+
Ph

ys
ic

al
&

Em
ul

at
or

N
o

Ex
ec

ut
io

n
tim

e
M

ob
ol

ic
U

IA
ut

om
at

or
Ea

sy
18

+
Ph

ys
ic

al
&

Em
ul

at
or

Ye
s⇑

In
na

te
ex

pl
or

at
io

n
of

G
U

Im
od

el
⇑

Sa
pi

en
z

M
on

ke
yR

un
ne

r
Ea

sy
19

Ph
ys

ic
al

&
Em

ul
at

or
N

o
Ex

ec
ut

io
n

tim
e

W
or

d2
Ve

c
iO

S
M

on
ke

y
(X

CT
es

t)
U

nk
no

w
n

N
/A

(iO
S)

Em
ul

at
or

N
o

Ex
ec

ut
io

n
tim

e

30 ARNATOVICH ET AL.

new UIs in the given app GUI model, ie, Mobolic has explored as many app UIs in the GUI model as possible, and all the
discovered UIs in f-GFG are fully exercised.

Self-termination and the termination condition are coupled together in such a way that the termination condition
determines if an automated tool can be self-terminative. After our experiments, we would conclude that the termination
condition is one of the key factors and important properties of the automated tools to increase the chance that the function-
ality of the app under test is covered as much as possible. An importance of the termination condition is simply explained
by the true fact that, beforehand, we are not aware how much, eg, time, events, or GUI depth exploration are needed
to cover a particular or all possible app functionalities via automated app GUI exercising. Note that, here, we are dis-
cussing about black-box functional UI stress testing and not white-box unit testing where app internals are known to the
user (tester) before it runs a test. In comparison with the other listed tools, Mobolic implements an improved termination
condition that makes Mobolic self-terminative.

Table 6 gives a comparison of the common characteristics of the testing tool. Column 2 shows whether the tool requires
an Android platform and/or the app under test to be instrumented prior to the app testing. Note that this column indi-
cates only instrumentation that is required as a part of the tool implementation to make it possible to run the app. It
does not indicate instrumentation for any other purposes, eg, for code coverage collection, which is not required for app
testing. Column 3 indicates what events are supported by a tool. Note that Monkey, Dynodroid, and ACTEve support a
limited number of system events since they are highly structured and vary depending on the Android platform and the
app itself. Therefore, there is not a clear way on how to universally generate them on all available Android platform ver-
sions and the existing Android apps. Column 4 shows in which manner a tool generates a user input. A manual user input
could be provided either during an app testing or could be a predefined set of desired user values that are stored in a tool
configuration file for a particular app. An automated user input can be either randomly generated or derived based on
the heuristics collected from the app, eg, GUI model or app code (eg, source or bytecode), during or before app testing.
Columns 5 and 6 state in which box-mode a tool is able to perform app testing, eg, depending on the source code availabil-
ity, and which GUI exploration strategy it implements as an underlying testing approach. Generally, black-box requires
only an executable source, whereas gray-box may require reversing of the executable source, eg, for instrumentation. The
white-box requires the source code to be available. The gray- and white-boxes may limit the tools' practicability due to
source code unavailability or the inability to properly reverse an executable source.

It is a fact that mobile app GUIs are highly interactive and commonly require sensible user inputs that are difficult to
generate in an automated manner. Thus, we made a step ahead and introduced an improved automated input genera-
tion, namely, Customated. In comparison with the other listed tools, customated input generation is a fully automated
mechanism aiming to generate “human-like” user inputs. It consolidates concrete (via performing symbolic execution),
user-predefined (via analyzing heuristics [textual attributes] of a relevant editable widget on the foreground screen), and
random (numerical or textual) user inputs. As such, customated input generation enables Mobolic to more adequately
exercise an app functionality in an automated manner.

Table 7 gives a comparison of the underlying GUI exploration strategies of the testing tool. In Table 7, b is the branching
factor, ie, a number of subsequent paths that originate from a given app UI, and n is a depth, ie, the number of app UIs
in the path leading to an interested app UI. Column 2 states which GUI explanation strategy is implemented in a tool.
Columns 3 and 4 indicate which GUI search algorithm it involves and what worst-case search time complexity it has,
respectively. For random-based GUI exploration strategies, GUI search and worst-case values are not applicable, ie, “N/A.”

TABLE 6 Comparison of characteristics of testing tools

Tool Instrumentation Events Input Generation Box Approach

Monkey N/A UI&System Automated Black Random-based
A3E N/A UI Manual Black&Gray Model-based
Dynodroid Platform UI&System Automated&Manual Black Random-based
ACTEve Platform&App UI&System Automated White Dynamic symbolic
MobiGUITAR N/A UI Manual Gray Model-based
SwiftHand App UI Automated&Manual Gray Model-based
Mobolic N/A UI&System Customated⇑ Black Model-based
Sapienz App UI Automated Black&Gray&White Search-based
Word2Vec N/A UI Automated Black Model-based

ARNATOVICH ET AL. 31

TABLE 7 Comparison of graphical user interface (GUI) exploration
strategies of testing tools

Tool GUI Exploration GUI Search Worst-Case

Monkey Random N/A N/A
A3E Systematic Depth-first (bn)
Dynodroid Improved Random N/A N/A
ACTEve Improved Systematic N/A N/A
MobiGUITAR Systematic Depth&Breadth-first (bn)
SwiftHand Systematic Depth-first (bn)
Mobolic Improved Systematic A∗⇑ (n)⇑
Sapienz Improved Random N/A N/A
Word2Vec Systematic Depth-first (bn)

In comparison with the listed tools, Mobolic significantly reduces search time in f-GFG model by involving an informed
search algorithm A∗.23,42 In Mobolic, we implemented A∗ search in such a way that its time complexity is (n), which is
linear in the number of app UIs (n) on the path leading to the lastly discovered app UI. Thus, A∗ enables Mobolic to build
the shortest UI-path to quickly reach the lastly discovered app UI. As such, Mobolic is able to continue the exercising pro-
cess from the lastly discovered app UI and exercise all its yet unexercised widgets, and to discover new, yet undiscovered,
app UIs (if any). Such the improvement makes Mobolic efficient and effective in terms of the exercising time and achieved
code coverage.

Apart from our comparison, there is another research work15 which performs a statistical analysis, and comparison of
various attributes and properties of multiple automated testing techniques for Android mobile apps. The work offers a
comprehensive in-depth comparison list of the testing tools existing in the literature including those which are used in
our paper. It establishes a general framework which abstracts all the common characteristics of online testing techniques
proposed in the literature. In particular, it shows how the framework can be used to design experiments aimed at per-
forming objective comparisons among different online testing approaches, and how it helps to identify an influence of
different tools parameters on the performance of the testing techniques.

7.1 Random testing
Random testing5,48,49 is the most simple approach to exercising mobile apps. Random testing typically starts by creating
a simplified model (or without model) of the app under test. The built model can be used to generate the random inputs
and/or sequences of actions. The random testing can be guided or unguided. The unguided (undirected) random test-
ing does not have heuristics to guide its search. The guided (directed) random testing extracts heuristics from the app
under test to guide its search and possibly input generation, eg, feedback-directed50 or adaptive51,52 random testing. In prac-
tice, there are several testing tools such as Randoop,53 Artemis,54 Dynodroid,9 EvoDroid,27 and DART44 that implement
feedback-directed automated random testing with an event-prioritizing mechanism for mobile app testing.

Monkey§§§55-57 does not require any knowledge of the app GUI model. It simply generates a sequence of pseudo-random
UI events such as clicks, touches, or gestures as well as a limited number of system events. To run Monkey, the user
requires to set a number of events to be injected. It terminates once all events have been injected. The Monkey does not
consider any app state or UI transitions and simply performs random actions at random positions on the UI. Therefore,
adequacy of Monkey could be affected by the density and/or the physical size of the UI widgets on the app UIs. Also,
Monkey is not able to generate relevant to the current app state input that is commonly required for the mobile apps
due to the highly interactive nature of GUIs. Thus, generally, it is a challenge for random tests to adequately exercise app
functionality without intelligent input generation.

Dynodroid9 implements an improved random-based GUI exploration strategy compared to Monkey. It can either select
the events that have been least frequently selected (Frequency strategy) or keep into account the context (BiasedRandom
strategy), ie, events that are relevant in more contexts will be selected more frequently. Compared to Monkey, Dynodroid
generates UI and a limited set of system events that are relevant to the current app state. In addition, Dynodroid allows

§§§http://developer.android.com/tools/help/monkey.html

http://developer.android.com/tools/help/monkey.html

32 ARNATOVICH ET AL.

the users to manually provide inputs (eg, login/password) when concrete ones are required. Same as Monkey, Dynodroid
does not terminate automatically; therefore, it requires the user to manually set a certain number of events to be injected
as a termination condition.

7.2 Model-based testing
Model-based testing approaches5,6,58-62 use a UI model that is derived from the app GUI either manually or dynamically
during app exercising. Generally, model-based testing is the most suitable mechanism for guiding automated UI testing
and is usually combined with random testing or dynamic symbolic execution. For example, A2T2 63 implements a default
random testing mechanism guided by the inferred app UI model. In particular, it relies on a GUI crawler to mimic the
actual user events on the app GUI and automatically infer the GUI model. The GUI crawler builds the GUI model based on
the extracted Event-Flow Graph abstraction of the fireable events on the app UIs. That is, the crawling procedure operates
using the fundamental entity “Event” to explore the app GUI. It uses the extracted events with their preconditions (event
sequences), which are to be executed from the root to the leaves of the GUI tree, ie, from the first app UI showing upon
app launch to the subsequent app UIs. Hence, due to such design of the GUI crawler, it does not concern itself with the 2
important innate issues existing in the automated GUI exploration. Firstly, it does not consider the problem of multiple
app restarts.11 Secondly, it does not consider re-exercising of the previously discovered app UIs multiple times (ie, exercise
the same app UIs more than only once depending on the GUI flow). In particular, in order to execute every extracted
event sequence, the GUI crawler requires multiple app restarts that could make the exercising process notably lengthy.
In addition, the GUI crawler does not consider re-exercising the same app interfaces if they were previously discovered.
Thus, the GUI crawling algorithm may overlook certain app interfaces, especially if they are located at deep levels in the
GUI model.

MobiGUITAR7 is an automated GUI-driven testing framework for Android apps. The MobiGUITAR is based on
the 3-stage principal such as “observation,” “extraction,” and “abstraction” of the runtime state of UI widgets. The
“abstraction” is a scalable state-machine model that, together with test coverage criteria, helps automatically generate
functional test cases. MobiGUITAR implements a breadth-first and depth-first search algorithms for traversing the app
UI model. It restarts the exercising procedure from the starting app state when it cannot find any new ones. In prac-
tice, a restart can be time consuming11 for most of real-world Android apps. MobiGUITAR requires major user efforts to
manually configure multiple tool parameters.14

A3E10 aims to systematically discover new app states with high coverage via 2 techniques, namely, Depth-first and
Targeted explorations, to improve method and activity coverage, respectively. The Depth-first exploration is a dynamic
approach that is based on the automated exploration of GUI activities and their widgets in a depth-first manner. It builds
the abstract GUI model that represents each activity as a single app state, without considering different states of the wid-
gets on the activity. Thus, this abstraction may lead to missing certain app functionalities that would be easy to exercise
if a more concrete model was used. The Targeted exploration is a directed approach that allows to explore activities more
efficiently by generating relevant intents. It uses static bytecode analysis to build the Static Activity Transition Graph
(SATG) of the app, and then, it systematically explores the SATG while the app runs on the mobile device (real or emula-
tor). By solely generating relevant intents, only a limited number of activities can be explored. Certain activities (eg, login
activity) could be constrained by the specific user input so that all subsequent activities will not be discovered unless the
relevant user input is provided.

SwiftHand11 aims to achieve code coverage quickly by learning and exploring an abstraction of the app GUI model. It
learns the GUI model by exploiting execution traces generated during the testing process and applying the state-merging
deterministic finite automaton induction machine learning algorithm. SwiftHand uses the learned GUI model to choose
inputs that lead to yet undiscovered app states. Also, it builds the GUI model to minimize the number of app restarts by
searching for paths to reach new app states using only UI inputs.

Sapienz13 is an approach to automated Android testing that uses multiobjective search-based testing. It automatically
explores and optimizes event sequences and minimizes their length while simultaneously maximizing code coverage
and fault detection. Sapienz extends model-based testing by employing search-based exploration and exploits automated
random user input seeding and multilevel app instrumentation. Sapienz minimizes the event sequence length and max-
imizes other objectives that can be combined in a Pareto-optimal multiobjective search-based approach. By using Pareto
optimality, it does not sacrifice longer event sequences, when they are the only ones that find faults, nor where they
are necessary to achieve higher code coverage. Through its use of Pareto optimality, Sapienz progressively replaces such
longer sequences with shorter ones when their performance is equivalent.

ARNATOVICH ET AL. 33

Word2Vec62 is a novel deep learning–based approach that addresses a problem of automatic generation of the most
relevant text inputs in a use case context and that is applicable on a large scale as well. The relevance is specific to the
natural-language semantics that only humans can understand. As such, the approach focuses on natural-language pro-
cessing using a recurrent neural network (RNN) and Word2Vec models, where traditional automated input generation
approaches such as symbolic execution are not applicable. For automated systematic GUI exploration, the developed
approach uses the XCTest, an iOS Monkey engine, which, in turn, adopts the Depth-first search strategy. For automated
input generation, the developed approach leverages a combination of the RNN and Word2Vec models to find meaningful
text inputs that are related to the current app context.

The approach demonstrates its effectiveness. It measures the effectiveness by computing the screen coverage, ie, it
counts the number of different (unique) UI screens that have been explored within a fixed time limit. The results show
that, in terms of the achieved screen coverage, using the automated input generation, the RNN model outperforms the
random one by 46%, whereas the combination of the RNN and Word2Vec models outperforms it by 60%. The difference
between the RNN model and the combination of the RNN and Word2Vec models highlights the effectiveness of using the
Word2Vec.

7.3 Dynamic symbolic execution
Symbolic execution64-66 is another software testing technique. Its objective is to systematically discover as many execution
paths in a program as possible. The main idea of symbolic execution is to replace concrete values with symbolic expressions
that can assume any possible value. Therefore, symbolic execution theoretically may explore all possible paths through the
program and generate test cases to achieve high structural coverage. In practice, symbolic execution has severe problems
such as constraint complexity, path divergence, and path explosion.30 Furthermore, symbolic execution generally requires
the user to instrument the app or execution environment before testing.

ACTEve8 performs automated testing for Android applications using concolic execution. ACTEve explores the apps
starting from their entry point, but does not aim for particular targets, and employs concolic execution at the level of the
entire app rather than on individual event handlers. ACTEve symbolically tracks events from the point in the Android
framework where they are generated up to the point where they are handled in the app. Also, ACTEve uses concolic
execution for reasoning about low-level properties of events (eg, coordinates of UI widgets), which it can treat more
abstractly by using the UI models.

8 CONCLUSION

In this work, we have proposed a novel automated GUI testing technique, namely, Mobolic, to achieve high code coverage
for Android app testing by combining the online testing technique and customated input generation. We implemented
Mobolic for Android apps, considering their specific nontrivial structure and the highly interactive nature of GUIs.
We evaluated the performance of Mobolic on 10 real-world open-source Android apps and compared it with prevalent
approaches, ie, manual testing (Human) and automated ones (Sapienz, ACTEve, and MobiGUITAR). Our experimental
results show that, on average, Mobolic is capable of achieving high code coverage of 92% within a time limit of 22 minutes
on average, whereas Human, Sapienz, ACTEve, and MobiGUITAR achieved 78%, 54%, 32%, and 44%, respectively, within
a time limit of 60 minutes.

In our future work, we are planning to further improve the smartCE customated input generation. In particular, we
will improve the accuracy and reliability of concrete-input generation. Thus, we further improve its ability to solve more
complex variations of symbolic string constraints, ie, constraints whose solutions lie in a textual domain. In addition, we
will expand a set of supported commonly used input types that are needed for the user-predefined inputs. Also, we will
expand a limited number of currently supported system events to enable Mobolic to exercise service apps as well, ie, apps
that do not have a GUI. As a result, we will improve our tool reliability and practicability, widen a range of mobile apps
that could be exercised, and further increase code coverage approaching 100% of covered Java app code.

ORCID

Yauhen Leanidavich Arnatovich http://orcid.org/0000-0001-8266-9151

http://orcid.org/0000-0001-8266-9151
http://orcid.org/0000-0001-8266-9151

34 ARNATOVICH ET AL.

REFERENCES
1. Gianazza A, Maggi F, Fattori A, Cavallaro L, Zanero S. Puppetdroid: A User-Centric UI Exerciser for Automatic Dynamic Analysis of Similar

Android Applications. 2014. arXiv preprint arXiv:1402.4826.
2. Hu C, Neamtiu I. Automating GUI testing for Android applications. Paper presented at: Proceedings of the 6th International Workshop

on Automation of Software Test; 2011; Honolulu, HI.
3. Nguyen BN, Robbins B, Banerjee I, Memon A. GUITAR: an innovative tool for automated testing of GUI-driven software. Autom Softw

Eng. 2014;21(1):65-105.
4. Yuan X, Memon AM. Using GUI run-time state as feedback to generate test cases. Paper presented at: Proceedings of the 29th International

Conference on Software Engineering (ICSE'07); 2007; Washington, DC.
5. Yang W, Chen Z, Gao Z, Zou Y, Xu X. GUI testing assisted by human knowledge: random vs. functional. J Syst Softw. 2014;89:76-86.
6. Gutiérrez J, Escalona M, Mejías M. A model-driven approach for functional test case generation. J Syst Softw. 2015;109:214-228.
7. Amalfitano D, Fasolino AR, Tramontana P, Ta BD, Memon AM. MobiGUITAR: automated model-based testing of mobile apps. IEEE

Softw. 2015;32(5):53-59.
8. Anand S, Naik M, Harrold MJ, Yang H. Automated concolic testing of smartphone apps. Paper presented at: Proceedings of the ACM

SIGSOFT 20th International Symposium on the Foundations of Software Engineering, Vol. 59; 2012; Cary, NC.
9. Machiry A, Tahiliani R, Naik M. Dynodroid: An input generation system for Android apps. Paper presented at: Proceedings of the 2013

9th Joint Meeting on Foundations of Software Engineering; 2013; Saint Petersburg, Russia.
10. Azim T, Neamtiu I. Targeted and depth-first exploration for systematic testing of Android apps. Paper presented at: Proceedings of the 2013

ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages and Applications; 2013; Indianapolis, IN.
11. Choi W, Necula G, Sen K. Guided GUI testing of Android apps with minimal restart and approximate learning. Paper presented at: Pro-

ceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages and Applications;
2013; Indianapolis, IN.

12. Amalfitano D, Fasolino AR, Tramontana P, De Carmine S, Memon AM. Using GUI ripping for automated testing of Android applica-
tions. Paper presented at: Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering; 2012; Essen,
Germany.

13. Mao K, Harman M, Jia Y. Sapienz: Multi-objective automated testing for Android applications. Paper presented at: Proceedings of the
25th International Symposium on Software Testing and Analysis; 2016; Saarbrücken, Germany.

14. Choudhary SR, Gorla A, Orso A. Automated test input generation for Android: Are we there yet? Paper presented at: 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE); 2015; Lincoln, NE.

15. Amalfitano D, Amatucci N, Memon AM, Tramontana P, Fasolino AR. A general framework for comparing automatic testing techniques
of Android mobile apps. J Syst Softw. 2017;125:322-343.

16. Utting M, Pretschner A, Legeard B. A taxonomy of model-based testing approaches. Softw Test Verification Reliab. 2012;22(5):297-312.
17. Larsen KG, Mikucionis M, Nielsen B. Online Testing of Real-Time Systems Using Uppaal. Berlin, Germany: Springer Berlin Heidelberg;

2005:79-94.
18. Linehan MH. Semantics in model-driven business design. Paper presented at: Proceedings of the 2nd International Semantic Web Policy

Workshop; 2006; Yorktown Heights, NY.
19. Lee J. Model-driven business transformation and the semantic web. Commun ACM. 2005;48(12):75-77.
20. Gamboa MA, Syriani E. Automating activities in MDE tools. Paper presented at: 2016 4th International Conference on Model-Driven

Engineering and Software Development (MODELSWARD); 2016; Rome, Italy.
21. Klein J, Levinson H, Marchetti J. Model-driven engineering: automatic code generation and beyond [Technical report]. Pittsburgh, PA:

Software Engineering Institute at Carnegie Mellon University; 2015.
22. Arnatovich YL, Ngo MN, Kuan THB, Soh C. Achieving high code coverage in Android UI testing via automated widget exercising. Paper

presented at: 2016 23rd Asia-Pacific Software Engineering Conference (APSEC); 2016; Hamilton, New Zealand.
23. Potdar GP, Thool R. Comparison of various heuristic search techniques for finding shortest path. Int J Artif Intell Appl. 2014;5(4):63.
24. Jensen CS, Prasad MR, Møller A. Automated testing with targeted event sequence generation. Paper presented at: Proceedings of the 2013

International Symposium on Software Testing and Analysis; 2013; Lugano, Switzerland.
25. Nguyen CD, Marchetto A, Tonella P. Combining model-based and combinatorial testing for effective test case generation. Paper presented

at: Proceedings of the Combining International Symposium on Software Testing and Analysis; 2012; Minneapolis, MN.
26. Yang W, Prasad MR, Xie T. Grey-box approach for automated GUI-model generation of mobile applications. Fundamental Approaches to

Software Engineering. Rome, Italy: Springer; 2013:250-265.
27. Mahmood R, Mirzaei N, Malek S. EvoDroid: Segmented evolutionary testing of Android apps. Paper presented at: Proceedings of the 22nd

ACM SIGSOFT International Symposium on Foundations of Software Engineering; 2014; Hong Kong, China.
28. Cadar C, Ganesh V, Pawlowski PM, Dill DL, Engler DR. EXE: automatically generating inputs of death. ACM Trans Inf Syst Secur.

2008;12(2):1-38.
29. Inkumsah K, Xie T. Evacon: A framework for integrating evolutionary and concolic testing for object-oriented programs. Paper pre-

sented at: Proceedings of the Twenty-Second IEEE/ACM International Conference on Automated Software Engineering (ASE'07); 2007;
New York, NY.

30. Anand S. Techniques to Facilitate Symbolic Execution of Real-World Programs [PhD thesis]. Atlanta, GA; Georgia Institute of Technology:
2012.

ARNATOVICH ET AL. 35

31. Siddiqui JH, Khurshid S. Parsym: Parallel symbolic execution. Paper presented at: 2010 2nd International Conference on Software
Technology and Engineering; 2010; San Juan, Puerto Rico.

32. Staats M, Pasareanu C. Parallel symbolic execution for structural test generation. Paper presented at: Proceedings of the 19th International
Symposium on Software Testing and Analysis; 2010; Trento, Italy.

33. Scholz B, Zhang C, Cifuentes C. User-input dependence analysis via graph reachability [Technical report]. Mountain View, CA; 2008.
34. Elish KO, Yao D, Ryder BG. User-centric dependence analysis for identifying malicious mobile apps. Paper presented at: Workshop on

Mobile Security Technologies; 2012; San Francisco, CA.
35. Wei F, Roy S, Ou X, et al. Amandroid: A precise and general inter-component data flow analysis framework for security vetting of

android apps. Paper presented at: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security; 2014;
Scottsdale, AZ.

36. Hao S, Li D, Halfond WG, Govindan R. SIF: A selective instrumentation framework for mobile applications. Paper presented at:
Proceedings of the 11th Annual International Conference on Mobile Systems, Applications, and Services (MobiSys'13); 2013; Taipei,
Taiwan.

37. Symbolic Math Toolbox. https://www.mathworks.com/help/symbolic. Accessed January; 2017.
38. Runeson P, Host M, Rainer A, Regnell B. Case Study Research in Software Engineering: Guidelines and Examples. Hoboken, NJ: John Wiley

& Sons; 2012.
39. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A. Experimentation in Software Engineering. Berlin, Germany: Springer

Science & Business Media; 2012.
40. Feldt R, Magazinius A. Validity threats in empirical software engineering research-an initial survey. SEKE; 2010.
41. Wright HK, Kim M, Perry DE. Validity concerns in software engineering research. Paper presented at: Proceedings of the FSE/SDP

Workshop on Future of Software Engineering Research (FoSER'10); 2010; Santa Fe, NM.
42. Poole DL, Mackworth AK. Artificial Intelligence: Foundations of Computational Agents. Cambridge, UK: Cambridge University Press; 2010.
43. Li G, Lu K, Zhang Y, Lu X, Zhang W. Mixing concrete and symbolic execution to improve the performance of dynamic test generation.

Paper presented at: 2009 3rd International Conference on New Technologies, Mobility and Security; 2009; Cairo, Egypt.
44. Godefroid P, Klarlund N, Sen K. DART: Directed automated random testing. Paper presented at: Proceedings of the 2005 ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI'05); 2005; Chicago, IL.
45. De Moura L, Bjørner N. Z3: An efficient SMT solver. Paper presented at: 14th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems; 2008; Hungary, Budapest.
46. De Moura L, Bjørner N. Satisfiability modulo theories: An appetizer. Paper presented at: 12th Brazilian Symposium on Formal Methods;

2009; Gramado, Brazil.
47. Chipounov V, Kuznetsov V, Candea G. S2E: A platform for in-vivo multi-path analysis of software systems. Paper presented at: Proceedings

of the Sixteenth International Conference on Architectural Support for Programming Languages and Operating Systems; 2011; Newport
Beach, CA.

48. Hamlet R. Random testing. Encyclopedia of software Engineering; 1994.
49. Zhang J, Cheung SC. Automated test case generation for the stress testing of multimedia systems. Softw Pract Exp. 2002;32(15):1411-1435.
50. Pacheco C, Lahiri SK, Ernst MD, Ball T. Feedback-directed random test generation. Paper presented at: Proceedings of the 29th

International Conference on Software Engineering; 2007; Minneapolis, MN.
51. Chen TY, Leung H, Mak I. Adaptive Random Testing. Advances in computer science-ASIAN. Higher-Level Decision Making. Chiang Mai,

Thailand: Springer; 2004:320-329.
52. Liu H, Xie X, Yang J, Lu Y, Chen TY. Adaptive random testing through test profiles. Softw Pract Exp. 2011;41(10):1131-1154.
53. Pacheco C, Ernst MD. Randoop: Feedback-directed random testing for Java. Paper presented at: Companion to the 22nd ACM SIGPLAN

Conference on Object-Oriented Programming Systems and Applications Companion; 2007; Montreal, Canada.
54. Artzi S, Dolby J, Jensen SH, Moller A, Tip F. A framework for automated testing of JavaScript web applications. Paper presented at: 2011

33rd International Conference on Software Engineering (ICSE); 2011; Honolulu, HI.
55. Nyman N. Using monkey test tools. Software Testing & Quality Engineering Magazine; 2000.
56. Hofer B, Peischl B, Wotawa F. GUI savvy end-to-end testing with smart monkeys. Paper presented at: 2009 ICSE Workshop on Automation

of Software Test; 2009; Vancouver, Canada.
57. Brummayer R, Lonsing F, Biere A. Automated Testing and Debugging of SAT and QBF Solvers. Berlin, Germany: Springer Berlin Heidelberg;

2010:44-57.
58. Mehlitz P, Tkachuk O, Ujma M. JPF-AWT: Model checking GUI applications. Paper presented at: Proceedings of the 2011 26th IEEE/ACM

International Conference on Automated Software Engineering; 2011; Lawrence, KS.
59. White L, Almezen H. Generating test cases for GUI responsibilities using complete interaction sequences. Paper presented at: Proceedings

of the 11th International Symposium on Software Reliability Engineering; 2000; San Jose, CA.
60. Marback A, Do H, He K, Kondamarri S, Xu D. A threat model-based approach to security testing. Softw Pract Exp. 2013;43(2):241-258.
61. Walton GH, Poore JH. Generating transition probabilities to support model-based software testing. Softw Pract Exp. 2000;30(10):1095-1106.
62. Liu P, Zhang X, Pistoia M, Zheng Y, Marques M, Zeng L. Automatic text input generation for mobile testing. Paper presented at:

Proceedings of the 39th International Conference on Software Engineering (ICSE'17); 2017; Buenos Aires, Argentina.
63. Amalfitano D, Fasolino AR, Tramontana P. GUI crawling-based technique for Android mobile application testing. Paper presented at:

2011 IEEE Fourth International Conference on Software Testing, Verification and Validation Workshops; 2011; Berlin, Germany.

36 ARNATOVICH ET AL.

64. Cadar C, Godefroid P, Khurshid S, et al. Symbolic execution for software testing in practice: Preliminary assessment. Paper presented at:
Proceedings of the 33rd International Conference on Software Engineering; 2011; Honolulu, HI.

65. Mirzaei N, Malek S, Păsăreanu CS, Esfahani N, Mahmood R. Testing Android apps through symbolic execution. ACM SIGSOFT Software
Engineering Notes. 2012;37(6):1-5.

66. Godboley S, Mohapatra DP, Das A, Mall R. An improved distributed concolic testing approach. Softw Pract Exp. 2017;47(2):311-342.

How to cite this article: Arnatovich YL, Wang L, Ngo NM, Soh C. Mobolic: An automated approach to exercis-
ing mobile application GUIs using symbiosis of online testing technique and customated input generation. Softw
Pract Exper. 2018;1–36. https://doi.org/10.1002/spe.2564

https://doi.org/10.1002/spe.2564

	Mobolic: An automated approach to exercising mobile application GUIs using symbiosis of online testing technique and customated input generation
	Abstract
	Introduction
	Proposed Approach: Mobolic
	Problem statement
	Definitions
	Novel aspects of Mobolic
	Overview of Mobolic
	Components of Mobolic
	Static Analyzer (stAnalyzer)
	Application Instrumenter (appInster)
	Systematic Automated Test Driver (SAT)
	Input Scheduler (iScheduler)
	Smart Customated Engine (smartCE)

	Design and Implementation of Mobolic: Practical Experience
	How do we implement GUI traversal technique using A*in practice?
	How do we relate editable UI widgets with Java code in practice?
	How do we generate customated user inputs in practice?
	UI-context-aware user input generation
	Concrete user input generation
	Random and default user input generation

	Demo of Mobolic
	Empirical Evaluation
	Experimental data set
	Experimental environment
	Experiment design
	Rationale: why this research work has been done?
	Objectives: what is expected to be achieved with this research work?
	Research Questions: what knowledge will be sought or expected to be discovered?
	Concepts and measures: which coverage metric (measure) for executed Java code do we use?
	Method of data generation: what instruments do we use for Java code coverage generation and collection?
	Method of data collection: how do we collect Java code coverage data?
	Data selection strategy: how do we identify executed Java code?

	Threats to internal and external validity
	Experiment operation: preparation and execution
	Experimental results: analysis and interpretation
	To answer RQ#1: Mobolic vs Human (manual testing)
	To answer RQ#2: Mobolic vs Sapienz (search-based testing)
	To answer RQ#3: Mobolic vs ACTEve (dynamic symbolic execution)
	To answer RQ#4: Mobolic vs MobiGUITAR (model-based testing)
	To answer RQ#5: Mobolic vs state-of-the-art automated testing techniques (exercising time)

	Discussion
	How does Mobolic differ from existing model-based testing tools?
	How does Mobolic differ from existing symbolic execution tools?

	Related Work
	Random testing
	Model-based testing
	Dynamic symbolic execution

	Conclusion
	References

