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Abstract. In the paper we propose a new approach to control system
design. The approach is characterized by automated parameters tuning
and structure selection of the controller. Structure selection and parame-
ter tuning are performed using evolutionary algorithm and allow accurate
control with elimination or minimizing of unfavourable phenomena like
overshoot or harmonic distortion. Our method was tested on a model of
quarter car active suspension system.

1 Introduction

Automatic control is an important issue from scientific and practical point of
view (see e.g. [62]-[63]). In the literature, various approaches to design of param-
eters and the structure of control systems are considered. More of them are in one
of the following groups: (a) Controllers based on the combination of linear
correction terms: P, I, D. These terms can be coupled as e.g.: PI, PID, PI in
cascade, PI with feed-forward (see e.g. [1], [38]), PI or PID with additional low-
pass filter (see e.g. [38]), PID with anti-windup and compensation mechanism
(see e.g. [47]). In this group controllers based on state-feedback, in which the
current state vector (estimated or measured) of the controlled object is used for
proportional control (see e.g. [59]), are also included. It is important to remark
that the task of controller structure design (i.e. selection of the best configuration
of linear correction terms) requires from designer comprehensive knowledge sup-
ported by the experience. It should be noted that design of controller structure
and tuning of parameters are very time-consuming. (b) Controllers based on
computational intelligence. In this group, controller structure is not strictly
defined. Controller uses neural networks (see e.g. [7]-[10], [27]-[31], [41]-[42], [60]),
fuzzy systems (see e.g. [2]-[6], [18]-[21], [25], [32], [40], [57]-[58]), neuro-fuzzy sys-
tems (see e.g. [11]-[16], [33], [36]-[37], [52]-[55], [64]-[68]), etc. (c) Hybrid con-
trollers. In this group, controller combines approaches from other groups. In
hybrid controller we can distinguish correction term and additional supporting
mechanism (for example based on an artificial intelligence) for adaptive control
(see e.g. [17], [44]-[46], [55]-[56]).
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Fig. 1. Idea of the new method for controller design

In this paper a new method for designing control system based on combination
of linear correction terms is proposed. Our method is characterized by automa-
tion of both operations: structure selection and parameter tuning (see Fig. 1).
Concurrent parameter tuning and structure selection is important, because it
eliminates mentioned earlier control design problems. Our method also offers
strictly, but very flexibly, defined control criteria as a tool for control system
tuning, what allows to reach objective expected by its designer.

This paper is organised into four sections. Section 2 presents a detailed de-
scription of the new method for controller design. In Section 3 simulation results
are presented. Conclusions are drawn in Section 4.

2 Description of the New Method for Designing Optimal
Controllers

Presented method gives to designer the freedom of choice of controller blocks
(CB) number, connection and definition. In Fig. 2 initial controller structure
idea is presented: in Fig. 2.a CB connection idea for the MISO system is pre-
sented, in Fig. 2.b CB processing element idea is presented. Dashed lines in Fig.
2.a and in Fig. 2.b denote freedom of connection between CBs and simple correc-
tion terms. Existence or lack of connection depends on evolutionary algorithm
execution result. Signal fbn, n=1, . . . , N , denotes feedback signal, signal ffm, m
= 1, . . . , M , denotes feedforward signal. CB connection idea (see Fig. 2.a) is a re-
sult of generalisation of PID controller, cascaded PID controller with feedforward
signals and state-feedback controller. CB definition idea (see Fig. 2.b) is combi-
nation of simple correction terms like P, I and D. There is a possibility to place
inside CB other processing elements like finite impulse response filter, infinite
response filter, saturation or nonlinear block. Generalised controller structure
(CB connection and definition) is initial point of evolutionary algorithm.

In proposed method full controller (with its structure and parameters) is en-
coded in a single chromosome Xch. Chromosome Xch is described as follows:

Xch =
{
Xpar

ch ,Xred
ch

}
, (1)
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Fig. 2. Initial controller structure idea: a)CB connection idea, b)CB definition idea

where Xpar
ch is a chromosome encoding correction term parameters, Xred

ch is a
chromosome encoding CB connection. Chromosome Xpar

ch is described as follows:

Xpar
ch = (P1, I1, D1, P2, I2, D2, . . .) =

(
Xpar

ch,1, X
par
ch,2, . . . , X

par
ch,L

)
, (2)

where P1, I1, D1, . . . , denote control system parameter values, ch = 1, .., Ch,
denotes index of the chromosome in the population, Ch denotes a number of
chromosomes in the population, L denotes length of the chromosome Xpar

ch . Chro-
mosome Xred

ch is described as follows:

Xred
ch =

(
Xred

ch,1, X
red
ch,2, . . . , X

red
ch,L

)
, (3)

where every gene Xred
ch,g ∈ {0, 1}, ch = 1, .., Ch, g = 1, .., L, decides if relevant

part of control system occurs in control process (relevant gene Xred
ch,g = 1).

The steps of the method used in this paper are the same as in typical evo-
lutionary algorithm (see e.g. [12], [22]-[24], [26], [34]-[35], [39], [43], [48]). The
evolutionary algorithm is a method of solving problems (mainly optimisation
problems) which is based on natural evolution. Evolutionary algorithms are
search procedures based on the natural selection and inheritance mechanisms.
Method steps are following: chromosomes initialisation, chromosomes evaluation,
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Fig. 3. Active suspension control system

stop condition checking, chromosomes selection, chromosomes crossover, mu-
tation and repair, offspring population generation. For more details see our
previous papers, e.g. [61].

3 Simulations Results

In the simulations a model of controller design for quarter car active suspen-
sion control system was considered (see e.g. [33], [59]). Alternative approaches
to nonlinear modelling can be found in [49]-[51]. Active suspension control sys-
tem is presented in Fig. 3. Assumed values of the parameters of the model are
presented in Table 1. Parameters of active suspension model are following: mu

denotes unsprung mass, ms denotes sprung mass, kt denotes tire stiffness, ks
denotes sprung stiffness, ds denotes sprung damping. Meaning of the rest of the
active suspension model parameters is following: zr denotes road profile, zt de-
notes tire compression, zu denotes displacement of unsprung mass, z denotes
suspension travel, zs denotes displacement of sprung mass. Aim of the controller
is to improve the passenger comfort and car handling, etc. We assume that im-
provement of ride comfort is more important that handling improvement.

In order to create model and perform simulations, following assumptions were
taken:

– Controlled object is modelled as follows:

ẋ = Ax+Bu+ f, (4)

where A is a state matrix in the form:

A =

⎡

⎢⎢
⎣

0 1 0 0

− ks

ms
− ds

ms

ks

ms

ds

ms

0 0 0 1
ks

mu

ds

ms
−ks+kt

mu
− ds

ms

⎤

⎥⎥
⎦ , (5)
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Fig. 4. Initial controller structure for active suspension controller

x is a state vector (initial values of state vector were set to zero) described
as follows:

x =

⎡

⎢
⎢
⎣

x1

x2

x3

x4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

zs
żs
zu
żu

⎤

⎥
⎥
⎦ , (6)

B is an input matrix represented by the formula:

B =
[
0 1

ms
0 − 1

mu

]T
, (7)

u is an input vector from controller, f is an input vector from kinematic
extortion described by the following equation:

f =
[
0 0 0 − kt

mu

]T
zr. (8)

– The road profile is presented in Fig. 6.a. It represents the typical situations
which may occur on the road.

Table 1. Parameters of active suspension control system

name value unit
mu 48.3 kg
ms 395.3 kg
ks 30 010 N/m
kt 340 000 N/m
ds 1450 Ns/m

– Controlled object was discretized with the first order equation with time
step T = 0.1 ms as follows: x(i + 1) = Ad · x(i) + Bd · u(i) + fd, where
Ad = I+A · T , Bd = B · T and fd = f · T .

– Initial controller structure, directly derived from the structure shown in Fig.
2 on the basis on available feedback signals, is shown in Fig. 4 and equipped
with four CBs. Every CB is equipped with P, I, D processing elements.

– Feedback signals: fb1 and fb2 were set to -z̈s and -z̈u respectively.
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– Search range for controller parameter encoding gene in every control block
was experimentally set as follows: for term P : [0, 2000], for term I: [0,
200000], for term D: [0, 20].

– In order to model actuator constrains, output signal of the controller u was
limited to the range [−1000,+1000] (see e.g. [59]).

– In order to model sensor constrains, quantisation resolution for the output
signal u and feedback signals (fb1, fb2) was set to 0.0001.

– Simulation length T was set to 8 seconds. Simulation time step Ts was set
to 0.1ms, while interval between subsequent controller activations was set to
five simulation steps (Tr = 5T = 0.5 ms). This is reasonable value for the
implementation of the controller in real microprocessor system.

In order to design controller, following assumptions were taken:

– Fitness function was defined with elements improving operating conditions of
genetic algorithm (i.e. accelerating the search of the optimal solution). Those
elements are: reference to passive suspension system performance, unifica-
tion by adding 1 and respectively multiplying by 1000. Fitness function was
defined as follows:

ff(Xch) =

(
cfch · wcf + hdch · whd + stch · wst+
+cpch · wcp + osch · wos + cnch · wcn

)
, (9)

where

• cfch denotes passenger comfort and was defined as follows:

cfch = (1 + cfp)−
√√
√
√ 1

Z
·

Z∑

i=1

z̈2s,i, (10)

where cfp denotes, found by experiment, passenger comfort for passive
suspension value equal 0.861 (see Table 3), i = 1, . . . , Z, denotes sample
index, Z denotes the number of samples and was defined as follows:

Z =
T

Ts
. (11)

• wcf denotes weight of cfch and was set to 5.
• hdch denotes car handling and was defined as follows:

hdch = (1 + hdp)−
√√
√√ 1

Z
·

Z∑

i=1

z2t,i, (12)

where hdp denotes, found by experiment, car handling for passive sus-
pension value equal 1.09 (see Table 3).

• whd denotes weight of hdch and was set to 1.
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Fig. 5. Evolutionary designed controller structure for active suspension system

• stch denotes suspension travel and was defined as follows:

stch =

(
(1 + stp)− 1000 · max

z=1,...,Z
{abs (zi)}

)
, (13)

where stp denotes, found by experiment, passive system suspension travel
value equal 50.9 (see Table 3).

• wst denotes weight of stch and was set to 0.01.
• cpch denotes controller structure complexity and was defined as follows:

cpch =

L∑

g=1

Xred
ch,g. (14)

• wcp denotes weight of cpch and was set to 0.5.
• osch denotes oscillation of controller output signal and was defined as

follows:

osch =
1

1 +
Z∑

i=1

{
1 forΔui > 200
0 otherwise

, (15)

where Δui = abs (u (i)− u (i− 1)).
• wos denotes weight of osch and was set to 0.01.
• cnch denotes average control force and was defined as follows:

cnch =
1

1 +

√
1
Z ·

Z∑

i=1

ui
2

. (16)

• wcn denotes weight of cnch and was set to 0.1.
– Evolutionary algorithm parameters were set as follows: (a) the number of

chromosomes in the population was set to 20, (b) the algorithm performs
10 000 steps (generations), (c) the crossover probability was set as pc = 0.8,
(d) the mutation probability was set as pm = 0.3, (e) the mutation intensity
was set as σ = 0.3.

Simulation results can be summarised as follows: (a) Goal of significant pas-
senger comfort improvement and slight car handling improvement was achieved
(see Table 3). (b) Proposed method has automatically selected controller struc-
ture for control of quarter car active suspension system (see Fig. 5 and Table 2).
(c) In simulation two operation modes of suspension system were tested: active
and passive (see Fig. 6).
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Fig. 6. Simulation results: a) road profile, b) passenger comfort, c) car handling, d) sus-
pension travel, e) actuator force. In b)-d) grey line relates to the passive system and
the black line relates to the active system.

Table 2. Parameters of evolutionary designed controller structure

KP KI KD

CB1 reduced reduced reduced
CB2 reduced reduced reduced
CB3 343 45743 reduced
CB4 reduced reduced reduced

Table 3. Result comparison of evolutionary designed controller structure

name ff cf hd st
[m/s2] [mm] [mm]

passive 6.619 0.861 1.09 50.9
evolutionary 9.373 0.273 0.94 41.7

4 Summary

In this paper a new approach to designing controller based on linear correction
terms was proposed. During simulation it was possible to select controller struc-
ture and tune its parameters including diverse control criteria. Results presented
in the paper show that initial controller structure was significantly reduced - by
83% (see Table 2). Proposed method for controller design includes not only con-
trol accuracy, but also other control related criteria, e.g. harmonic distortion or
overshoot.
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