Atomistic modeling of the electrostatic and transport properties of a simplified nanoscale field effect transistor

Li-Na Zhao · Xue-FengWang · Zhen-Hua Yao · Zhu-Feng Hou · Marcus Yee · Xing Zhou · Shi-Huan Lin · Teck-Seng Lee


Journal of Computational Electronics, Vol. 7, No. 4, pp. 500-508, Dec. 2008.


Copyright | Abstract | References | Citation | Figures | Back



Abstract

A first-principle model is proposed to study the electrostatic properties of a double-gated silicon slab of nano scale in the framework of density functional theory. The appliedgate voltage is approximated as a variation of the electrostatic potential on the boundary of the supercell enclosing the system. With the electron density estimated by the real space Green’s functions, efficient multigrid and fast Fourier-Poisson solvers are employed to calculate the electrostatic potential from the charge density. In the representation of localized SIESTA linear combination of atomic orbitals, the Kohn-Sham equation is established and solved self-consistently for the wavefunction of the system in the local density approximation. The transmission for ballistic transport across the atomic silicon slab at small bias is calculated. The charge distribution and electrostatic potential profile in the silicon slab versus the gate voltage are then analyzed with the help of the equivalent capacitive model. Quantum confinement and short gate effects are observed and discussed.


References

  1. ITRS website: http://www.itrs.net/
  2. Crofton, J., Barnes, P.A.: J. Appl. Phys. 69, 7660 (1991)
  3. Wu, H., Zhao, Y., White, M.H.: Solid-State Electron. 50, 1164 (2006)
  4. Rahman, A., Lundstrom, M.S.: IEEE Trans. Electron Devices 49, 481 (2002)
  5. Fuchs, E., Dollfus, P., Le Carval, G., Barraud, S., Villanueva, D., Salvetti, F., Jaouen, H., Skotnicki, T.: IEEE Trans. Electron Devices
  6. 52, 2280 (2005)
  7. Ahmed, S., Ringhofer, C., Vasileska, D.: J. Comput. Electron. 2, 113 (2003)
  8. Register, L.F., Hess, K.: Appl. Phys. Lett. 71, 1222 (1997)
  9. Polizzi, E., Datta, S.: In: Third IEEE Conference on Nanotechnology, vol. 1, p. 40 (2003)
  10. Datta, S.: Quantum Transport. Cambridge University Press, Cambridge (2005)
  11. Pecchia, A., Salamandra, L., Latessa, L., Aradi, B., Frauenheim, T., Di Carlo, A.: IEEE Trans. Electron Devices 54, 3159 (2007)
  12. Cui, Y., Lieber, C.M.: Science 291, 851 (2001)
  13. Pecchia, A., Di Carlo, A.: Rep. Prog. Phys. 67, 1497 (2004)
  14. Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D.: J. Phys. CM 14, 2745 (2002)
  15. Evans, M.H., Zhang, X.-G., Joannopoulos, J.D., Pantelides, S.T.: Phys. Rev. Lett. 95, 106802 (2005)
  16. Hadjisavvas, G., Tsetseris, L., Pantelides, S.T.: IEEE Electron Device Lett. 28, 1018 (2007)
  17. Fonseca, L.R.C., Demkov, A.A., Knizhnik, A.: Phys. Stat. Sol. (b) 239, 48 (2003)
  18. Liu, L.,Waldron, D., Timochevski, V., Guo, H.: In: Proceedings of 8th Intl. Conf. on Solid-State and IC Technology, p. 1415 (2006)
  19. Landman, U., Barnett, R.N., Scherbakoy, A.G., Avouris, P.: Phys. Rev. Lett. 85, 1958 (2000)
  20. Ng, M.-F., Zhou, L., Yang, S.-W., Sim, L.Y., Tan, V.B.C., Wu, P.: Phys. Rev. B 76, 155435 (2007)
  21. Fernández-Serra,M.V., Adessi, Ch., Blase, X.: Nano Lett. 6, 2674 (2006)
  22. Markussen, T., Rurali, R., Jauho, A.P., Brandbyge, M.: Phys. Rev. Lett. 99, 076803 (2007)
  23. Dai, Z.X., Shi, X.Q., Zheng, X.H., Zeng, Z.: Phys. Rev. B 73, 045411 (2006)
  24. Taylor, J., Guo, H., Wang, J.: Phys. Rev. B 63, 121104(R) (2001)
  25. Ke, S.H., Baranger, H.U., Yang, W.: Phys. Rev. B 71, 113401 (2005)
  26. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, New York (1995)
  27. Arora, N.: MOSFET Models for VLSI Circuit Simulation. Springer, New York (1993)
  28. Pikus, F.G., Likharev, K.K.: Appl. Phys. Lett. 71, 3661 (1997)
  29. Baccarani, G., Reggiani, S.: IEEE Trans. Electron Devices 46, 1656 (1999)
  30. Hohenberg, P., Kohn, W.: Phys. Rev. B 136, 864 (1964)
  31. Kohn, W., Sham, L.J.: Phys. Rev. A 140, 1133 (1965)
  32. Jauho, A.P., Wingreen, N.S., Meir, Y.: Phys. Rev. B 50, 5528 (1994)
  33. Büttiker, M., Imry, Y., Landauer, R., Pinhas, S.: Phys. Rev. B 31, 6207 (1985)
  34. Taylor, J., Ph.D. Thesis McGill University (2000)
  35. Taylor, J., Guo, H., Wang, J.: Phys. Rev. B 63, 245407 (2001)
  36. Brandbyge, M., Mozos, J.-L., Ordejn, P., Taylor, J., Stokbro, K.: Phys. Rev. B 65, 165401 (2002)
  37. Hamann, D.R., Schlüter, M., Chiang, C.: Phys. Rev. Lett. 43, 1494 (1979)
  38. Ordejón, P., Artacho, E., Soler, J.M.: Phys. Rev. B 53, R10441 (1996)
  39. Sanvito, S., Lambert, C.J., Jefferson, J.H., Bratkovsky, A.M.: Phys. Rev. B 59, 11936 (1999)
  40. Wang, B.G., Wang, J., Guo, H.: Phys. Rev. Lett. 82, 398 (1999)
  41. Fisher, D.S., Lee, P.A.: Phys. Rev. B 23, 6851 (1981)
  42. Atomistix ToolKit Tutorial and Reference Guide, version 2.0.4, Atomistix A/S. www.atomistix.com
  43. Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial, 2nd edn. SIAM, Philadelphia (1999)
  44. Beck, T.L.: Rev. Mod. Phys. 72, 1041 (2000)
  45. Perdew, J.P., Zunger, A.: Phys. Rev. B 23, 5048 (1981)
  46. Ceperley, D.M., Alder, B.J.: Phys. Rev. Lett. 45, 566 (1980)
  47. Omura, Y., Horiguchi, S., Tabe, M., Kishi, K.: IEEE Electron Device Lett. 14, 569 (1993)
  48. Sushko, P.V., Shluger, A.L.: Microelectron. Eng. 84, 2043 (2007)



Citation

  1. T. Ozaki, "Efficient implementation of the nonequilibrium Green function method for electronic transport calculations." Physical Review B, vol. 81, no. 3, 035116, 2010.