Atomistic modeling of the electrostatic and transport
properties of a simplified nanoscale field effect transistor
Li-Na Zhao · Xue-FengWang · Zhen-Hua Yao · Zhu-Feng
Hou · Marcus Yee · Xing Zhou · Shi-Huan Lin ·
Teck-Seng Lee
Journal of Computational Electronics,
Vol.
7, No. 4, pp.
500-508, Dec. 2008.
Copyright | Abstract
| References | Citation | Figures
| Back
Abstract
A first-principle model is proposed to study the electrostatic properties
of a double-gated silicon slab of nano scale in the framework of density
functional theory. The appliedgate voltage is approximated as a variation
of the electrostatic potential on the boundary of the supercell enclosing
the system. With the electron density estimated by the real space Green’s
functions, efficient multigrid and fast Fourier-Poisson solvers are employed
to calculate the electrostatic potential from the charge density. In the
representation of localized SIESTA linear combination of atomic orbitals,
the Kohn-Sham equation is established and solved self-consistently for
the wavefunction of the system in the local density approximation. The
transmission for ballistic transport across the atomic silicon slab at
small bias is calculated. The charge distribution and electrostatic potential
profile in the silicon slab versus the gate voltage are then analyzed with
the help of the equivalent capacitive model. Quantum confinement and short
gate effects are observed and discussed.
References
-
ITRS website: http://www.itrs.net/
-
Crofton, J., Barnes, P.A.: J. Appl. Phys. 69, 7660 (1991)
-
Wu, H., Zhao, Y., White, M.H.: Solid-State Electron. 50, 1164 (2006)
-
Rahman, A., Lundstrom, M.S.: IEEE Trans. Electron Devices 49, 481 (2002)
-
Fuchs, E., Dollfus, P., Le Carval, G., Barraud, S., Villanueva, D., Salvetti,
F., Jaouen, H., Skotnicki, T.: IEEE Trans. Electron Devices
-
52, 2280 (2005)
-
Ahmed, S., Ringhofer, C., Vasileska, D.: J. Comput. Electron. 2, 113 (2003)
-
Register, L.F., Hess, K.: Appl. Phys. Lett. 71, 1222 (1997)
-
Polizzi, E., Datta, S.: In: Third IEEE Conference on Nanotechnology, vol.
1, p. 40 (2003)
-
Datta, S.: Quantum Transport. Cambridge University Press, Cambridge (2005)
-
Pecchia, A., Salamandra, L., Latessa, L., Aradi, B., Frauenheim, T., Di
Carlo, A.: IEEE Trans. Electron Devices 54, 3159 (2007)
-
Cui, Y., Lieber, C.M.: Science 291, 851 (2001)
-
Pecchia, A., Di Carlo, A.: Rep. Prog. Phys. 67, 1497 (2004)
-
Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J.,
Ordejón, P., Sánchez-Portal, D.: J. Phys. CM 14, 2745 (2002)
-
Evans, M.H., Zhang, X.-G., Joannopoulos, J.D., Pantelides, S.T.: Phys.
Rev. Lett. 95, 106802 (2005)
-
Hadjisavvas, G., Tsetseris, L., Pantelides, S.T.: IEEE Electron Device
Lett. 28, 1018 (2007)
-
Fonseca, L.R.C., Demkov, A.A., Knizhnik, A.: Phys. Stat. Sol. (b) 239,
48 (2003)
-
Liu, L.,Waldron, D., Timochevski, V., Guo, H.: In: Proceedings of 8th Intl.
Conf. on Solid-State and IC Technology, p. 1415 (2006)
-
Landman, U., Barnett, R.N., Scherbakoy, A.G., Avouris, P.: Phys. Rev. Lett.
85, 1958 (2000)
-
Ng, M.-F., Zhou, L., Yang, S.-W., Sim, L.Y., Tan, V.B.C., Wu, P.: Phys.
Rev. B 76, 155435 (2007)
-
Fernández-Serra,M.V., Adessi, Ch., Blase, X.: Nano Lett. 6, 2674
(2006)
-
Markussen, T., Rurali, R., Jauho, A.P., Brandbyge, M.: Phys. Rev. Lett.
99, 076803 (2007)
-
Dai, Z.X., Shi, X.Q., Zheng, X.H., Zeng, Z.: Phys. Rev. B 73, 045411 (2006)
-
Taylor, J., Guo, H., Wang, J.: Phys. Rev. B 63, 121104(R) (2001)
-
Ke, S.H., Baranger, H.U., Yang, W.: Phys. Rev. B 71, 113401 (2005)
-
Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University
Press, New York (1995)
-
Arora, N.: MOSFET Models for VLSI Circuit Simulation. Springer, New York
(1993)
-
Pikus, F.G., Likharev, K.K.: Appl. Phys. Lett. 71, 3661 (1997)
-
Baccarani, G., Reggiani, S.: IEEE Trans. Electron Devices 46, 1656 (1999)
-
Hohenberg, P., Kohn, W.: Phys. Rev. B 136, 864 (1964)
-
Kohn, W., Sham, L.J.: Phys. Rev. A 140, 1133 (1965)
-
Jauho, A.P., Wingreen, N.S., Meir, Y.: Phys. Rev. B 50, 5528 (1994)
-
Büttiker, M., Imry, Y., Landauer, R., Pinhas, S.: Phys. Rev. B 31,
6207 (1985)
-
Taylor, J., Ph.D. Thesis McGill University (2000)
-
Taylor, J., Guo, H., Wang, J.: Phys. Rev. B 63, 245407 (2001)
-
Brandbyge, M., Mozos, J.-L., Ordejn, P., Taylor, J., Stokbro, K.: Phys.
Rev. B 65, 165401 (2002)
-
Hamann, D.R., Schlüter, M., Chiang, C.: Phys. Rev. Lett. 43, 1494
(1979)
-
Ordejón, P., Artacho, E., Soler, J.M.: Phys. Rev. B 53, R10441 (1996)
-
Sanvito, S., Lambert, C.J., Jefferson, J.H., Bratkovsky, A.M.: Phys. Rev.
B 59, 11936 (1999)
-
Wang, B.G., Wang, J., Guo, H.: Phys. Rev. Lett. 82, 398 (1999)
-
Fisher, D.S., Lee, P.A.: Phys. Rev. B 23, 6851 (1981)
-
Atomistix ToolKit Tutorial and Reference Guide, version 2.0.4, Atomistix
A/S. www.atomistix.com
-
Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial, 2nd
edn. SIAM, Philadelphia (1999)
-
Beck, T.L.: Rev. Mod. Phys. 72, 1041 (2000)
-
Perdew, J.P., Zunger, A.: Phys. Rev. B 23, 5048 (1981)
-
Ceperley, D.M., Alder, B.J.: Phys. Rev. Lett. 45, 566 (1980)
-
Omura, Y., Horiguchi, S., Tabe, M., Kishi, K.: IEEE Electron Device Lett.
14, 569 (1993)
-
Sushko, P.V., Shluger, A.L.: Microelectron. Eng. 84, 2043 (2007)
Citation
-
T. Ozaki, "Efficient implementation of the nonequilibrium Green
function method for electronic transport calculations." Physical Review
B, vol. 81, no. 3, 035116, 2010.