Unification of MOS compact models with the unified regional modeling approach

Xing Zhou · Guojun Zhu · Guan Huei See · Karthik Chandrasekaran · Siau Ben Chiah · Khee Yong Lim


Journal of Computational Electronics, Vol. 10, No. 1, pp. 121-135, Online: Mar. 8, 2011. (Invited Paper)


Copyright | Abstract | References | Reprint | Back



Abstract

This paper reviews the development of the MOSFET model (Xsim), for unification of various types of MOS devices, such as bulk, partially/fully-depleted SOI, double-gate (DG) FinFETs and gate-all-around (GAA) silicon-nanowires (SiNWs), based on the unified regional modeling (URM) approach.  The complete scaling of body doping and thickness with seamless transitions from one structure to another is achieved with the unified regional surface potential, in which other effects (such as those due to poly-gate doping and quantum-mechanical) can be incorporated.  The unique features of the Xsim model and the essence of the URM approach are described.


References

  1. H. K. Gummel and H. C. Poon, “An integral charge control model of bipolar transistors,” Bell Sys. Tech. J., vol. 49, no. 5, pp. 827–852, May–Jun. 1970.
  2. J. R. Brews, “A charge-sheet model of the MOSFET,” Solid-State Electron., vol. 21, no. 2, pp. 345–355, Feb. 1978.
  3. H. C. Pao and C. T. Sah, “Effects of diffusion current on characteristics of metal-oxide (insulator)-semiconductor transistors,” Solid-State Electron., vol. 9, no. 10, pp. 927–937, Oct. 1966.
  4. J. Watts, C. McAndrew, C. Enz, C. Galup-Montoro, G. Gildenblat, C. Hu, R. van Langevelde, M. Miura-Mattausch, R. Rios, and C-T Sah, “Advanced compact models for MOSFETs,” in Proc. WCM-Nanotech 2005, Anaheim, CA, May 2005, vol. WCM, pp. 3–12.
  5. K. Y. Lim, “Design, Modeling, and Characterization of Submicron MOSFETs,” Ph.D. thesis, Nanyang Technological Univ., Singapore, 2001.
  6. S. B. Chiah, “Unified AC Charge and DC Current Modeling for Very-Deep-Submicron CMOS Technology,” Ph.D. thesis, Nanyang Technological Univ., Singapore, 2007.
  7. K. Chandrasekaran, “Nanoscale Strained-Si/SiGe and Double-Gate MOSFET Modeling,” Ph.D. thesis, Nanyang Technological Univ., Singapore, 2007.
  8. G. H. See, “Scalable Compact Modeling for Nanometer CMOS Technology,” Ph.D. thesis, Nanyang Technological Univ., Singapore, 2008.
  9. G. J. Zhu, “Compact Modeling of Non-classical MOSFETs for Circuit Simulation,” Ph.D. thesis, Nanyang Technological Univ., Singapore, 2011.
  10. R. H. Kingston and S. F. Neustadter, “Calculation of the space charge, electric field, and free carrier concentration at the surface of a semiconductor,” J. Appl. Phys., vol. 26, no. 6, pp. 718–720, Jun. 1955.
  11. T. L. Chen and G. Gildenblat, “Symmetric bulk charge linearization in charge-sheet MOSFET model,” Electron. Lett., vol. 37, no. 12, pp. 791–793, Jun. 2001.
  12. K. Y. Lim, X. Zhou, D. Lim, Y. Zu, H. M. Ho, K. Loiko, C. K. Lau, M. S. Tse, and S. C. Choo, “A predictive semi-analytical threshold voltage model for deep-submicrometer MOSFET’s,” in Proc. HKEDM98, Hong Kong, Aug. 1998, pp. 114–117.
  13. X. Zhou, K. Y. Lim, and D. Lim, “A general approach to compact threshold voltage formulation based on 2 D numerical simulation and experimental correlation for deep-submicron ULSI technology development,” IEEE Trans. Electron Devices, vol. 47, no. 1, pp. 214–221, Jan. 2000.
  14. K. Y. Lim, X. Zhou, and Y. Wang, “Modeling of threshold voltage with reverse short channel effect,” in Proc. MSM2000, San Diego, CA, Mar. 2000, pp. 317–320.
  15. K. Y. Lim and X. Zhou, “A physically-based semi-empirical effective mobility model for MOSFET compact I V modeling,” Solid-State Electron., vol. 45, no. 1, pp. 193–197, Jan. 2001.
  16. K. Y. Lim and X. Zhou, “A physically-based semi-empirical series resistance model for deep-submicron MOSFET ? V modeling,” IEEE Trans. Electron Devices, vol. 47, no. 6, pp. 1300–1302, Jun. 2000.
  17. K. Y. Lim and X. Zhou, “An analytical effective channel-length modulation model for velocity overshoot in submicron MOSFETs based on energy-balance formulation,” Microelectron. Reliab., vol. 42, no. 12, pp. 1857–1864, Dec. 2002.
  18. X. Zhou and K. Y. Lim, “Unified MOSFET compact I V model formulation through physics-based effective transformation,” IEEE Trans. Electron Devices, vol. 48, no. 5, pp. 887–896, May 2001.
  19. X. Zhou, S. B. Chiah, K. Chandrasekaran, G. H. See, W. Shangguan, S. M. Pandey, M. Cheng, S. Chu, L.-C. Hsia, “Comparison of unified regional charge-based and surface-potential-based compact modeling approaches,” (Invited Paper), in Proc. Nanotech2005, Anaheim, CA, May 2005, vol. WCM, pp. 25–30.
  20. G. H. See, S. B. Chiah, X. Zhou, K. Chandrasekaran, W. Shangguan, S. M. Pandey, M. Cheng, S. Chu, L.-C. Hsia, “Unified regional charge-based MOSFET model calibration,” in Proc. Nanotech2005, Anaheim, CA, May 2005, vol. WCM, pp. 147–150.
  21. S. B. Chiah, X. Zhou, K. Chandrasekaran, W. Z. Shangguan, G. H. See, and S. M. Pandey, “Single-piece polycrystalline silicon accumulation/depletion/inversion model with implicit/explicit surface-potential solutions,” Appl. Phys. Lett., vol. 86, no. 20, 202111, May 2005.
  22. K. Chandrasekaran, X. Zhou, S. B. Chiah, W. Z. Shangguan, and G. H. See, “Physics-based single-piece charge model for strained-Si MOSFETs,” IEEE Trans. Electron Devices, vol. 52, no. 7, pp. 1555–1562, Jul. 2005.
  23. K. Chandrasekaran, X. Zhou, S. B. Chiah, W. Z. Shangguan, G. H. See, L. K. Bera, N. Balasubramanian, and S. C. Rustagi, “Extraction of physical parameters of strained-silicon MOSFETs from C–V measurement,” in Proc. ESSDERC2005, Grenoble, France, Sep. 2005, pp. 521–524.
  24. K. Chandrasekaran, X. Zhou, S. B. Chiah, W. Z. Shangguan, and G. H. See, L. K. Bera, N. Balasubramanian, and S. C. Rustagi, “Effect of substrate doping on the capacitance–voltage characteristics of strained-silicon pMOSFETs,” IEEE Electron Device Lett., vol. 27, no. 1, pp. 62–64, Jan. 2006.
  25. K. Chandrasekaran, X. Zhou, S. B. Chiah, G. H. See, and S. C. Rustagi, “Implicit analytical surface/interface potential solutions for modeling strained-Si MOSFETs,” IEEE Trans. Electron Devices, vol. 53, no. 12, pp. 3110–3117, Dec. 2006.
  26. K. Chandrasekaran, Z. M. Zhu, X. Zhou, W. Z. Shangguan, G. H. See, S. B. Chiah, S. C. Rustagi, and N. Singh, “Compact modeling of doped symmetric DG MOSFETs with regional approach,” in Proc. Nanotech2006, Boston, MA, May 2006, vol. 3, pp. 792–795.
  27. G. H. See, S. B. Chiah, X. Zhou, K. Chandrasekaran, W. Z. Shangguan, Z. M. Zhu, G. H. Lim, S. M. Pandey, M. Cheng, S. Chu, and L.-C. Hsia, “Scalable MOSFET short-channel charge model in all regions,” in Proc. Nanotech2006, Boston, MA, May 2006, vol. 3, pp. 749–752.
  28. G. H. See, X. Zhou, G. Zhu, Z. Zhu, S. Lin, C. Wei, J. Zhang, and A. Srinivas, “Unified regional surface potential for modeling common-gate symmetric/asymmetric double-gate MOSFETs with any body doping,” in Proc. Nanotech2008, Boston, MA, Jun. 2008, vol. 3, pp. 770–773.
  29. G. H. See, X. Zhou, G. Zhu, Z. Zhu, S. Lin, C. Wei, J. Zhang, and A. Srinivas, “Unified regional surface potential for modeling common-gate symmetric/asymmetric double-gate MOSFETs with quantum mechanical correction,” in Proc. Nanotech2008, Boston, MA, Jun. 2008, vol. 3, pp. 756–759.
  30. G. H. See, X. Zhou, K. Chandrasekaran, S. B. Chiah, Z. M. Zhu, C. Q. Wei, S. H. Lin, G. J. Zhu, and G. H. Lim, “A compact model satisfying Gummel symmetry in higher order derivatives and applicable to asymmetric MOSFETs,” IEEE Trans. Electron Devices, vol. 55, no. 2, pp. 616–623, Feb. 2008.
  31. G. J. Zhu, X. Zhou, G. H. See, S. H. Lin, C. Q. Wei, and J. B. Zhang, “A unified compact model for FinFET and silicon nanowire MOSFETs,” in Proc. Nanotech2009, Houston, TX, May 2009, vol. 3, pp. 588–591.
  32. X. Zhou, G. J. Zhu, M. K. Srikanth, S. H. Lin, Z. H. Chen, J. B. Zhang, C. Q. Wei, Y. F. Yan, R. Selvakumar, and Z. H. Wang, “Xsim: Benchmark tests for the unified DG/GAA MOSFET compact model,” in Proc. Nanotech2010, Anaheim, CA, Jun. 2010, vol. 2, pp. 785–788.
  33. G. J. Zhu, G. H. See, S. H. Lin, and X. Zhou, “‘Ground-referenced’ model for three-terminal symmetric double-gate MOSFETs with source/drain symmetry,” IEEE Trans. Electron Devices, vol. 55, no. 9, pp. 2526–2530, Sep. 2008.
  34. X. Zhou, G. J. Zhu, M. K. Srikanth, S. H. Lin, Z. H. Chen, J. B. Zhang, and C. Q. Wei, “A unified compact model for emerging DG FinFETs and GAA nanowire MOSFETs including long/short-channel and thin/thick-body effects,” (Invited Paper), in Proc. ICSICT2010, Shanghai, China, Nov. 2010, pp. 1725–1728.
  35. G. J. Zhu, X. Zhou, T. S. Lee, L. K. Ang, G. H. See, S. H. Lin, Y. K. Chin, and K. L. Pey, “A compact model for undoped silicon-nanowire MOSFETs with Schottky-barrier source/drain,” IEEE Trans. Electron Devices, vol. 56, no. 5, pp. 1100–1109, May 2009.
  36. G. J. Zhu, X. Zhou, T. S. Lee, L. K. Ang, G. H. See, and S. H. Lin, “A compact model for undoped symmetric double-gate MOSFETs with Schottky-barrier source/drain,” in Proc. ESSDERC2008, Edinburgh, UK, Sep. 2008, pp. 182–185.
  37. G. J. Zhu, X. Zhou, Y. K. Chin, K. L. Pey, J. B. Zhang, G. H. See, S. H. Lin, Y. F. Yan, and Z. H. Chen, “Subcircuit compact model for dopant-segregated Schottky gate-all-around Si-nanowire MOSFETs,” IEEE Trans. Electron Devices, vol. 57, no. 4, pp. 772–781, Apr. 2010.
  38. G. J. Zhu, X. Zhou, Y. K. Chin, K. L. Pey, G. H. See, S. H. Lin, and J. B. Zhang, “Subcircuit compact model for dopant-segregated Schottky silicon-manowire MOSFETs,” in Proc. SSDM2009, Sendai, Japan, Oct. 2009, pp. 402–403.
  39. S.-Y. Oh, D. Ward, and R. Dutton, “Transient analysis of MOS transistors,” IEEE Trans. Electron Devices, vol. ED-27, no. 8, pp. 1571–1578, Aug. 1980.
  40. M. J. van Dort, P. H. Woerlee, and A. J. Walker, “A simple model for quantization effects in heavily-doped silicon MOSFET’s at inversion conditions,” Solid-State Electron., vol. 37, pp. 411–414,1994.
  41. W. Z. Shangguan, X. Zhou, S. B. Chiah, G. H. See, and K. Chandrasekaran, “Compact gate-current model based on transfer-matrix method,” J. Appl. Phys., vol. 97, 123709, Jun. 2005.
  42. C. Q. Wei, G. H. See, X. Zhou, and L. Chan, “A new impact-ionization current model applicable to both bulk and SOI MOSFETs by considering self-lattice-heating,” IEEE Trans. Electron Devices, vol. 55, no. 9, pp. 2378–2385, Sep. 2008.
  43. Y. Taur, “An analytical solution to a double-gate MOSFET with undoped body,” IEEE Electron Device Lett., vol. 21, no. 5, pp. 245–247, May 2000.
  44. Y. Chen and J. Luo, “A comparative study of double-gate and surrounding-gate MOSFETs in strong inversion and accumulation using an analytical model,” in Proc. MSM2001, Hilton Head Island, SC, Mar. 2001, pp. 546–549.
  45. W. Z. Shangguan, X. Zhou, K. Chandrasekaran, Z. M. Zhu, S. C. Rustagi, S. B. Chiah, and G. H. See, “Surface-potential solution for generic undoped MOSFETs with two gates,” IEEE Trans. Electron Devices, vol. 54, no. 1, pp. 169–172, Jan. 2007.
  46. S. H. Lin, X. Zhou, G. H. See1, Z. M. Zhu, G. H. Lim, C. Q. Wei, G. J. Zhu, Z. H., Yao, X. F. Wang, M. Yee, L. N. Zhao, Z. F. Hou, L. K. Ang, T. S. Lee, and W. Chandra, “A rigorous surface-potential-based I V model for undoped cylindrical nanowire MOSFETs,” in Proc. IEEE-Nano2007, Hong Kong, Aug. 2007, vol. 3, pp. 889–892.
  47. X. Zhou, Z. M. Zhu, S. C. Rustagi, G. H. See, G. J. Zhu, S. H. Lin, C. Q. Wei, and G. H. Lim, “Rigorous surface-potential solution for undoped symmetric double-gate MOSFETs considering both electrons and holes at quasi nonequilibrium,” IEEE Trans. Electron Devices, vol. 55, no. 2, pp. 616–623, Feb. 2008.
  48. Z. H. Chen, X. Zhou, G. J. Zhu, and S. H. Lin, “Interface-trap modeling for silicon-nanowire MOSFETs,” in Proc. IRPS2010, Anaheim, CA, May 2010, pp. 977–980.
  49. Z. H. Chen, X. Zhou, Y. Z. Hu, and M. K. Srikanth, “Neutral interface traps for negative bias temperature instability,” to appear in Proc. IRPS2011, Monterey, CA, Apr. 2011.
  50. X. Zhou, G. J. Zhu, S. H. Lin, Z. H. Chen, M. K. Srikanth, Y. F. Yan, R. Selvakumar, W. Chandra, J. B. Zhang, C. Q. Wei, Z. H. Wang, and P. Bathla, “Subcircuit approach to inventive compact modeling for CMOS variability and reliability,” in Proc. ISIC2009, Singapore, Dec. 2009, pp. 133–138.
  51. X. Zhou, “The missing link to seamless simulation,” (Invited Feature Article), IEEE Circuits Devices Mag., vol. 19, no. 3, pp. 9–17, May 2003.