Scalable MOSFET Short-channel
Charge Model for All Regions
Guan Huei See*, Siau Ben Chiah*,**, Xing Zhou*, Karthik Chandrasekaran*,
Wangzuo Shangguan*, Zhaomin Zhu*, Guan Hui Lim*, Shesh Mani Pandey**, Michael
Cheng**, Sanford Chu**, and Liang-Choo Hsia**
* School of Electrical & Electronic Engineering, Nanyang Technological
University, Nanyang Avenue, Singapore 639798
Phone: (65) 6790-4532. Fax: (65) 6793-3318. Email:
exzhou@ntu.edu.sg
** Chartered Semiconductor Manufacturing Ltd, 60 Woodlands Industrial
Park D, St. 2, Singapore 738406
Proc. of the NSTI Nanotech 2006 (WCM-MSM2006)
Boston, MA, May 7-11, 2006, vol. 3, pp.
749-752.
Copyright | Abstract
| References | Citation | Reprint
| Slides
| Poster
| Back
Copyright Notice
© 2006 Nano Science and Technology Institute. Personal use of
this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from
Nano Science and Technology Institute.
Abstract
A scalable short-channel MOSFET charge model valid for all bias regions
is presented. As the device length is reduced, long-channel intrinsic
charge model cannot predict the short-channel dynamic behavior correctly.
The extrinsic capacitances, such as overlap capacitance and bias-dependent
fringing capacitance, must be included in the charge model as they are
comparable to the intrinsic capacitance at short-channel dimensions.
In order to ensure model scalability over geometry, short-channel effects
must be included in the core charge model. This paper extends the
short-channel models, such as bulk-charge sharing and potential-barrier
lowering, for charge modeling that is valid for all regions. The
model is verified by comparison with numerical simulations for three short-channel
devices, 0.5, 0.25 and 0.09 um. It is shown that the model accurately
scales with the short-channel capacitances.
References
-
[1] K. Suzuki, “Parasitic capacitance of submicrometer MOSFET’s,” IEEE
Trans. Electron Devices, vol. 46, pp. 1895–1900, 1999.
-
[2] D. Pattanayak, J. Poksheva, R. Downing, and L. Akers, “Fringing field
effect in MOS devices,” IEEE Trans. Components, Hybrids, and Manufacturing
Technology, [see also: IEEE Trans. on Components, Packaging, and Manufacturing
Technology, Part A, B, C], vol. 5, pp. 127–131, 1982.
-
[3] F. Pregaldiny, C. Lallement, and D. Mathiot, “A simple efficient model
of parasitic capacitances of deep-submicron LDD MOSFETs,” Solid-State Electron.,
vol. 46, pp. 2191–2198, 2002.
-
[4] P. Klein, K. Hoffmann, and B. Lemaitre, “Description of the bias dependent
overlap capacitance at LDD MOSFETs for circuit applications,” IEDM Tech.
Dig., 1993, pp. 493–496.
-
[5] L. D. Yau, “A simple theory to predict the threshold voltage of short-channel
IGFET’s,” Solid-State Electron., vol. 17, pp. 1059–1063, 1974.
-
[6] T. Toyabe and S. Asai, “Analytical models of threshold voltage and
breakdown voltage of short-channel MOSFET’s derived from two-dimensional
analysis,” IEEE Trans. Electron Devices, vol. 26, pp. 453–461, 1979.
-
[7] X. Zhou and K. Y. Lim, “Unified MOSFET compact I V model formulation
through physics-based effective transformation,” IEEE Trans. Electron Devices,
vol. 48, pp. 887–896, 2001.
-
[8] X. Zhou, S. B. Chiah, K. Chandrasekaran, G. H. See, W. Shangguan, S.
M. Pandey, M. Cheng, S. Chu, and L.-C. Hsia, “Unified regional charge-based
versus surface-potential-based compact modeling approaches,” Proc. NSTI
Nanotech 2005, Anaheim, CA, May 2005, WCM, pp. 25–30.
-
[9] T. L. Chen and G. Gildenblat, “An extended analytical approximation
for the MOSFET surface potential,” Solid-State Electron., vol. 49, pp.
267–270, 2005.
-
[10] Z.-H. Liu, C. Hu, J.-H. Huang, T.-Y. Chan, M.-C. Jeng, P. K. Ko, and
Y. C. Cheng, “Threshold voltage model for deep-submicrometer MOSFETs,”
IEEE Trans. Electron Devices, vol. 40, pp. 86–95, 1993.
-
[11] G. H. See, S. B. Chiah, X. Zhou, K. Chandrasekaran, W. Shangguan,
S. M. Pandey, M. Cheng, S. Chu, and L-C Hsia, “Unified regional charge-based
MOSFET model calibration,” Proc. NSTI Nanotech 2005, Anaheim, CA, May 2005,
WCM, pp. 143–146.
-
[12] M. J. Kumar, V. Venkataraman, and S. K. Gupta, “On the parasitic gate
capacitance of small-geometry MOSFETs,” IEEE Trans. Electron Devices, vol.
52, pp. 1676–1677, 2005.
-
[13] C.-T. Sah, “A history of MOS transistor compact modeling,” Proc. NSTI
Nanotech 2005, Anaheim, CA, May 2005, WCM, pp. 347–390.
Citation
-