Virtual Process Integration (VPI) – Design Exercise

NTU-TUM: NM6604

VPI – Design Exercise

□ Syllabus

- Wafer-split experiment. Device-target vs. process-variable relations. Transistor performance optimization/trade-offs through process variation. Technology development and optimization.
- Design of Experiment (DOE): Implement a computer experiment to study the scaling characteristics (varying gate length) of the given sub-micron technology. Study the influence of process variations on device performance parameters.

Objectives

- Design and simulate the processing and characteristics of nMOS transistors for a given 0.25-μm (2.5-V) CMOS logic process.
- Observe layer structures and profiles at various stages of the process.
- Visualize transistor operation in terms of terminal *I*–*V* characteristics as well as internal doping, potential, field, carrier, current distributions.
- Observe and relate device performance parameters to process variations.
- Understand design trade-offs in submicron device performance optimization.
- Learn data analysis and graphical prediction from numerical data.

Tasks

 Review and understand the basic definitions of MOS transistor performance parameters: linear and saturation threshold voltages (V_{t0} and V_{ts}), on-state saturation current (I_{dsat} or I_{on}), off-state leakage current (I_{off}), transconductance (g_m), and subthreshold swing (S_t).

Linear threshold voltage:	$V_{t0} = V_{gs} \mid I_{ds} = 0 @ g_{m0} = \max(V_{ds} = 0.05 V)$
Critical current.	$I_{crit} = I_{ds} @ V_{gs} = V_{t0} (V_{ds} = 0.05 V)$
Saturation threshold voltage:	$V_{ts} \equiv V_{gs} \mid I_{ds} = I_{crit} (V_{ds} = 2.5 \text{ V})$
On-state saturation current:	$I_{on} \equiv I_{ds} \mid V_{gs} = V_{ds} = 2.5 \text{ V}$
Off-state leakage current.	$I_{off} \equiv I_{ds} \mid V_{gs} = 0, \ V_{ds} = 2.5 \ V$
Transconductance:	$g_{ms} \equiv dI_{ds}/dV_{gs} (V_{gs} = V_{ds} = 2.5 \text{ V})$
Subthreshold swing:	$S_{ts} \equiv \Delta V_{gs} / \Delta \log(I_{ds}) = 1 \operatorname{dec} (\mathrm{mV/dec}) (V_{ds} =$
-	2.5 V)

All the above are at zero body bias: $V_{sb} = 0$. For body effect, threshold voltage is defined as: $V_t(V_{sb}) \equiv V_{gs} \mid I_{ds} = I_{crit} (V_{ds} = 0.05 \text{ V}, V_{sb} = 2.5 \text{ V})$

- With reference to the given CMOS process recipe, implement the process to simulate <u>only</u> the nMOS transistor of the 0.25-μm CMOS process. The resulting structures of your design of experiment (DOE) will be used to investigate the device scaling characteristics and performance optimization with process variations.
 - View device structures and doping profiles at the end of various major processing steps.
 - Create transistors with different gate lengths, obtain various device I-V characteristics, such as $I_{ds}-V_{gs}$, $log(I_{ds})-V_{gs}$, and $I_{ds}-V_{ds}$, and extract device parameters (V_{t0} , V_{ts} , g_{ms} , S_{ts} , I_{on} , I_{off}) into the RunTable.
- Study the *transistor scaling characteristics*: performance parameters (V_t , I_{on} , I_{off} as well as g_m and S_t) as a function of decreasing gate length, L_g .
 - Obtain MEDICI device structures of different gate lengths using structure truncation/reflection (Recommended: L_g = 10, 1, 0.5, 0.35, 0.25, 0.2, 0.18, 0.15 μm).
 - Obtain *technology optimization* curves, e.g., V_{t0} -log(L_g), V_{ts} -log(L_g), g_{m} -log(L_g), S_t -log(L_g), I_{on} -log(L_g), log(I_{off})-log(L_g), and log(I_{off})- I_{on} . Understand different aspects of and concerns for short-channel effects.
- ► <u>Exercise</u>: Through DOE, split wafer with selected process variations. Observe and optimize the device performance through target–variable relationship. Determine new process variables for improved "on/off" current trade-off for logic-circuit applications. <u>Specifically</u>, by tuning the given process such that for the *designed Lg* = 0.25 µm device, "on/off" current performance can be improved (i.e., *I*_{on} increased and *I*_{off} decreased), with the *guide* that the linear threshold voltage at *L*_g = 0.25 µm is relatively unchanged. The following experiments are suggested:
 - Tune the gate oxide thickness (t_{ox}) in the gate oxidation step (e.g., vary gate-oxidation *time t*) together with tuning the channel average doping (N_A) in the V_{t^-} adjustment implant step (e.g., vary the V_{t^-} implant *dose* Φ and/or the "halo" implant dose/energy/tilt) such that the $L_g = 0.25 \ \mu m$ device I_{on} and I_{off} can <u>both</u> be improved.
 - Compare technology optimization curves of your "new" wafer with the "original" (given) wafer, and understand why your new process is better than the original given process.
- □ Continuous assessment and report submission
 - Submit an individual written report summarizing your approach and understanding. <u>Due</u>: Friday, 13 October 2023. Softcopy of the report submit through email: <u>exzhou@ntu.edu.sg</u>; <u>or</u> Hardcopy submit to my office (S1-B1c-95, 6790-4532).