Major Process Steps — A Simplified View

TCAD: Process and Device Simulation

Semiconductor Fabrication Processes

Masking and Photolithography

TCAD: Process and Device Simulation

Semiconductor Fabrication Processes

CMOS Device Design Considerations

TCAD: Process and Device Simulation

<u>Circuit</u>
ЧҀ

- <u>Variables</u>
- SPICE: *V*₇₀, KP, λ, γ, ...
- Geometrical: *L*, *W*
- Electrical: V_{dd}, V_{sub}

CMOS Process Flow and Device Design

Targets

- Digital: *t_r*, *t_f*, *t_d*, *P_d*, *I_{dsat}*, *BV*, NM
- Analog: g_m , g_d , f_T , f_{max} , A_V

De	<u>vice</u>
\Box	

- Physical: t_{ox}, x_j, N(x), R_{sh}
- Model: *μ*, *τ*, ...

- Electrical: V_T, I_{dsat}, g_m, g_d, C_g, BV, W_d, L_{eff}
- Physical: ψ(x), E(x), J(x), v(x), n(x), p(x)

Process ↓↓↓

- Process: *T*, *t*, *E*₀, Φ_0 , P_{H_2O} , ambient
- Model-related

- Layer: *t_{ox}*, *x_j*, *R_{sh}*
- Profile: N(x), N_{surf} , N_{peak} , R_p , ΔR_p
- Structure-related

TCAD: Process and Device Simulation

CMOS Process Flow and Device Design

□ Objective of simulation

- Short-channel electrical performance use full FET structure (truncation/ reflection will not be accurate)
- Device performance due to structural variation mask should include the necessary changes (e.g., channel length; gate–drain spacing of an LDD)

□ Trade-off between grid points and design rule

• Well-active separation: well lateral diffusion vs field oxide dimension

Optional mask levels

• Certain masks can be omitted with the use of negative photoresist or other films as mask in process simulation

Well Design Considerations

TCAD: Process and Device Simulation

CMOS Process Flow and Device Design

Parameters

- Well doping: *N* well
- Surface concentration: Nsurf
- Junction depth: x_j
- Lateral diffusion: x_{jL}

Dependencies

- $\overline{N}_{well}(\Phi)$
- $N_{surf}(\Phi, R_p(E), t_{ox}(t_{pad}, T_{pad}))$
- $x_j(t_{drv}, T_{drv}, R_p(E), N_{sub})$
- $x_{jL}(t_{drv}, T_{drv}, R_p(E))$

Well Design Considerations

TCAD: Process and Device Simulation

CMOS Process Flow and Device Design

□ Well doping

- $\overline{N}_{well} > (5-10)N_{sub}$ for PMOS control
- \overline{N}_{well} too high: $\begin{cases}
 back-gate bias sensitivity \\
 excessive-doping effect (<math>\mu \downarrow$) $C_{S/D-well} \uparrow$

□ Surface concentration

 N_{surf} ↑ (Φ ↑): { improve PMOS punch-through performance no need for channel stop in N-well field oxide

□ Junction depth and lateral diffusion

•
$$R_p \uparrow (E \uparrow)$$
: { less thermal cycle $(x_{jL} \downarrow)$ increased packing density

Source/Drain Design Considerations

TCAD: Process and Device Simulation

CMOS Process Flow and Device Design

Design parameters

- Junction depth: *x_j*, *x_{jL}*
- Doping level and profile: *N*_{surf}

Design variables

- S/D implant dose and energy
- Annealing temperature and time
- Gate oxide thickness (gate oxidation temperature and time)

Design considerations

- Short-channel effect: $L_{eff} = L \sqrt{2\varepsilon_{ox}\varepsilon_{Si}/(qN_{sub})} [V_{DS} (V_{GS} V_T)]$
- Hot-electron effect: \mathcal{E}_{max} ("drain engineering" LDD)

Threshold Design Considerations — Definition

TCAD: Process and Device Simulation

CMOS Process Flow and Device Design

$$V_T \equiv V_G \mid_{\phi_s = 2\phi_F} = \phi_{MS} - \frac{Q_{oX}}{C_{oX}} + 2\phi_F - \frac{Q_{sub}}{C_{oX}}$$

Basic terms

• Gate capacitance: $C_{OX} = \varepsilon_{OX}/t_{OX}$

• Fermi potential:
$$\phi_F = \frac{kT}{q} \ln \left(\frac{N_{sub}}{n_i} \right)$$

- Flat-band voltage: $V_{FB} = \phi_{MS} \frac{Q_{OX}}{C_{OX}}$ Workfunction: $\phi_{MS} = \phi_{F(\text{poly})} \phi_{F(\text{Si})}$
- Oxide charge: $Q_{ox} = Q_f + Q_l + Q_{ss} = t_{ox} \int_{0}^{\infty} x \rho_{ox}(x) dx$
- Depletion charge: $Q_{sub} = -\sqrt{2q\epsilon_{si}N_{sub}(V_{SB} + 2\phi_F)}$
- Alternative form

$$V_T = V_{T0} + \gamma \left[\sqrt{V_{SB} + 2\phi_F} - \sqrt{2\phi_F} \right]; \ \gamma = \frac{t_{ox}}{\varepsilon_{ox}} \sqrt{2q\varepsilon_{Si}N_{sub}}; \ V_{T0} = V_T |_{V_{SB}=0}$$

Threshold Design Considerations — Extraction

TCAD: Process and Device Simulation

- □ Linear region: $V_{GS} > V_T + V_{DS}$ (i.e., $V_{DS} << \phi_s$) $I_{DS} = \beta \left(V_{GS} - V_T - \frac{V_D S}{2} \right) V_{DS} \approx \beta (V_{GS} - V_T) V_{DS}; \ \beta = \mu C_{ox} \left(\frac{W}{L_{eff}} \right)$ $V_T = \frac{V_{GS1} - (I_{DS1}/I_{DS2}) V_{GS2}}{1 - I_{DS1}/I_{DS2}}; \ V_T = 2V_{GS1} - V_{GS2}$ (if $I_{DS2} = 2I_{DS1}$)
- **Saturation region**: $V_T < V_{GS} < V_T + V_{DS}$

$$\sqrt{I_{DS}} = \sqrt{\frac{\beta}{2}} (V_{GS} - V_T)$$

$$V_T = \frac{V_{GS1} - \sqrt{I_{DS1}/I_{DS2}}V_{GS2}}{1 - \sqrt{I_{DS1}/I_{DS2}}}; V_T = 2V_{GS1} - V_{GS2} \text{ (if } I_{DS2} = 4I_{DS1})$$

Threshold Extraction from Simulation

TCAD: Process and Device Simulation

TCAD: Process and Device Simulation

CMOS Process Flow and Device Design

□ Theoretical approach

- What is the meaning of an "effective substrate doping," \overline{N}_{sub} ?
- Is the square-root law really accurate?
- What is ϕ_F from an experimental point of view?

□ Simulation approach

• Based on the intercept of the simulated inversion charge Q_n (or sheet conductance G_s) vs V_{GS} and the extrapolation of the linear part of the $I_{DS}-V_{GS}$ curve

$$G_s = \frac{1}{R_s} = \frac{I}{V} \frac{L}{W} \Rightarrow I_{DS} = G_s \frac{W}{L} V_{DS}$$
 (assuming small V_{DS})

- Similar approach to obtaining threshold voltage from measured I-V data
- Simulated "data" ($Q_n V_{GS}$) are obtained by solving semiconductor equations with arbitrary doping profiles, independent of the above assumptions

Threshold Design Considerations

TCAD: Process and Device Simulation

- Threshold dependencies
 - Body bias (γ , V_{SB})
 - Substrate doping (Q_{sub}, ϕ_F)
- □ Design variables and trade-offs
 - Constant shifts: ϕ_{MS} , Q_{OX}

- Temperature (Q_{sub} , ϕ_F , n_i , E_g)
- Material (ϕ_{MS} , $C_{OX}(\varepsilon_{OX})$, Q_{OX} (orientation))
- "Fixed" (scaling rule): tox
- Key parameter: *channel doping*: N_{ch} { too high $-\mu \downarrow$ too low $-\mu$ too low $-\mu$ through
- Use shallow implant to adjust V_{T} , and deep implant to prevent punch-through

$$\begin{cases} \phi_{MS} \\ Q_{ss}; Q_f \\ t; T \to t_{ox} \end{cases} V_T \begin{cases} \Phi_{V_T}; E_{V_T} \\ N_{sub} \text{ or } N_{well} \leftarrow \Phi_w; E_w \\ L_{eff} \leftarrow \Phi_{S/D}; E_{S/D} \\ \text{after thermal cycles } (t; T) \end{cases}$$

Circuit requirements — NM, I_{dsat} , g_m , f_T , etc.

Relate Circuit/Device Performance to Process Variations

TCAD: Process and Device Simulation

CMOS Process Flow and Device Design

- In principle, any circuit/device performance parameter can be related to process variables. The question is: how are they related?
- □ Analysis
 - Start with definitions
 - Find appropriate analytical formulations
 - Relate physical parameters to process variables
- □ Trade-off
 - Study design/technology constraints and parameter ranges
 - Identify conflicting conditions

Optimization

- Find the "process window" through numerical simulation
- Optimize targets using DOE and RSM

Example: Unity Current Gain Cutoff Frequency

TCAD: Process and Device Simulation

$$f_T = \frac{g_m}{2\pi C_G}$$

$$g_m = \frac{\partial I_{DS}}{\partial V_{GS}} \Big|_{V_{DS}} = \begin{cases} \beta V_{DS} \text{ (linear)} \\ \beta (V_{GS} - V_T) \text{ (saturation)} \end{cases} \qquad \beta = \mu C_{ox} \frac{W}{L_{eff}}$$

$$C_G = C_{GB} + C_{GS} + C_{GD} = f(C_{ox}, L_{eff}, N_{sub}, V_{GS}, V_{DS}) \qquad C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}$$

- t_{OX} : Gate oxidation temperature, time, ambient, etc.
- μ : Substrate doping (well implant dose and energy), etc.
- *L_{eff}*. S/D implant dose and energy, annealing temperature and time, gate oxide thickness, channel doping, etc.