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Abstract—The electric field integral equation (EFIE) with the
method of moments (MoM) is used for treating problems of a thin
wire antenna in the presence of a conducting cube. Pulse-expansion
and point-matching technique in MoM are applied to both thin wire
and closed object. For simplicity and efficiency, hybrid method for
calculating near field and more importantly the surface field of objects
is presented. Several examples in this paper show the validity of
the proposed pulse-expansion and point-matching technique and the
simplified hybrid calculation method.
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1. INTRODUCTION

In a complex electromagnetic environment, such as ships, aircraft
and other vehicles, surface and near field analysis is of practical and
theoretical interest. There are various numerical methods available
to calculate these fields. It is a common principle that the surface
tangential electric fields are zero on perfect conductors when excited
by electromagnetic fields. Due to the inherent numerical errors of
computational methods, the surface tangential electric fields may
not be exactly zero on perfect conductors. One can easily find
out which numerical method is more accurate by comparing the
resulting surface tangential electric fields distribution on the surfaces
of perfect conductors. The method whose surface tangential electric
field distribution is more close to zero gives a more accurate estimation
to the solution of the problem.

The moment method (MoM) is a proven technique to solve far field
problems such as radiation pattern and Radar Cross Section (RCS).
Glisson [1] modeled the surface of open objects by using rectangular
patch model, and reported only the current distribution on several
open objects such as conducting strips, and rectangular conducting
bend structures etc. Rao [2] presented the current distribution with
the planar triangular patch model that was later extended by Wilkes
and Cha [3] to the curved triangular patch.
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When wire and surface currents are obtained using the MoM, it
becomes more difficult to solve near field problems since the size of wire
current units or surface current patches is comparable to the distance
between source and observation point. There is a need to develop a
novel technique for the calculation of the near field numerically rather
than integrally. Furthermore, when the observation point is located
on the conducting object, the surface fields cannot be obtained due to
the integral’s singularity. Fortunately, Erich Kemptner [4] presented
an analytical method to treat the singular terms of the integrals when
calculating the surface fields of conducting bodies. However, the low
computational efficiency is not acceptable when calculating an entire
region by numerical integration.

In this paper, the Glisson patch model is extended to the
application of closed objects such as conducting cubes by using the
pulse expansion and point matching procedure in the MoM. By
the appropriate treatment of singular properties, the surface current
density is obtained. The Series Electric Dipole Method (SEDM) [5] is
then used to model the wire current units and surface current patches.
A hybrid method that combines the SEDM and the Eric Kemptner
Method to improve the computational efficiency is presented.

2. FORMULATION USING EFIE AND MOM

2.1. Segmentation of the Objects

A thin wire antenna in the presence of a conducting cube is shown
in Fig. 1. The cube is divided into mx,my,mz segments in the x, y, z
direction respectively. There are three directions for the current flowing
on the surface as shown in Fig. 2, which are called sx, sy, sz respectively.
Thus, each plane on the cube includes currents of two orthogonal
directions. A division scheme of current in direction is shown in Fig. 3.

msx = 2mx + 2my, msy = 2my + 2mz, msz = 2mz + 2mx

2.2. Electric Field Integral Equation (EFIE)

The tangential electrical field on the perfect conductors is zero. The
incident field expressions are [1]

− �Einc(�r ) · ŝ =
[
−jω �A(�r ) −∇Φ(�r )

]
· ŝ (1a)

− �Einc(�r ) · l̂ =
[
−jω �A(�r ) −∇Φ(�r )

]
· l̂ (1b)
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Figure 1. Wire antenna in the presence of a perfect conducting cube.
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Figure 2. Current flow in the three directions of a conducting cube.
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xŝ

ˆ

ˆ
ˆ

ˆ

Figure 3. A schematic of the current flow in the direction, ŝx.
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where the vector �r in Eq. (1a) is located on the surface of the
conductors; the vector �r in Eq. (1b) is located on the wire antenna.
The potentials are given by

�A(�r ) = µ
∫

wire

�I(l′)Gldl
′ + µ

∫∫
plane

�J(�r ′)Gpds
′dy′ (2a)

Φ(�r ) =
1
ε

∫
wire

q(l′)Gldl
′ +

1
ε

∫∫
plane

ρ(�r ′)Gpds
′dy′ (2b)

where �I, �J are current density on the wire antenna and conductors
surface respectively. q and p are electric charge density on the wire
antenna and conductors surface respectively and the Green’s functions
are

Gp =
e−jk|�r−�r ′|

4π|�r − �r ′| (3a)

Gl =
e−jk|�r−�rc−l′ l̂|

4π|�r − �rc − l′ l̂|
(3b)

The current on the wire antenna and the surface patch can be
represented as

�I(l) =
Nl∑

n=1

In∆l̂nPn (4a)

Pn =

{
1, ln− 1

2
∼ ln+ 1

2

0, others
(4b)

where Nl stands for the segment number into which the wire antenna
is divided, and the current density is given by

�J(�r ) =
3∑

k=1

ma(k)∑
n=1

msk∑
m=1

Jmn
sk ŝk(�r )P

mn
k (5)

where k = 1, 2 and 3 correspond to x, y and z respectively. For
example, when k = 1, ma(k), stands for mx and msk stands for msx.

a(k) =




3, k = 1
1, k = 2
2, k = 3

(6a)
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and

Pmn
k =




1,


 m− 1

2
∼ m+

1
2

n− 1 ∼ n
0, others

(6b)

The electric charge can be represented as

q(l) = − 1
jω

Nl+1∑
n=1

In − In−1

∆ln
Pn

l (7a)

Pn
l =

{
1, ln−1 ∼ ln
0, others (7b)

ρ(�r ) = − 1
jω

3∑
k=1

ma(k)∑
n=1

msk∑
m=1

[
Jmn

sk − Jm−1,n
kx

skm − sk(m−1)

]
Pmn

sk (�r ) (8a)

Pmn
sk =


 1,

{
m− 1 ∼ m
n− 1 ∼ n

0, others
(8b)

Therefore, Eq. (2) become

�A(�r ) = µ
Nl∑

n=1

In∆l̂n
∫ ln+0.5

ln−0.5

Gldl
′

+µ
3∑

k=1

ma(k)∑
n=1

msk∑
m=1

Jmn
sk

∫ sa(k)(n)

sa(k)(n−1)

∫ sk(m+0.5)

sk(m−0.5)

ŝk(�r ′)Gpds
′dy′ (9a)

Φ(�r ) = − 1
jωε

Nl+1∑
n=1

In − In−1

∆ln

∫ ln

ln−1

Gldl
′

− 1
jωε

3∑
k=1

ma(k)∑
n=1

msk∑
m=1

[
Jmn

sk −Jm−1,n
sk

skm − sk(m−1)

]∫ sa(k)(n)

sa(k)(n−1)

∫ skm

sk(m−1)

Gpds
′dy′

(9b)

2.3. The Matching Procedure

Since point matching is used on thin wire antenna, the so-called ‘line’
matching is applied to the surface structure. The matching on the ŝx
direction is shown below. The matching function is,
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δsx =

{
δ(z − zN−0.5), sx(m−0.5) ≤ sx ≤ sx(m+0.5)

0, others
(10)

If m,n are the source points andM,N are the observation points, then
the expression resulting due to matching procedure is

− �Einc
(
M,N − 1

2

)
· ∆�sx

= −jωµ
3∑

k=1

ma(k)∑
n=1

msk∑
m=1

Jmn
sk

∫ sa(k)(n)

sa(k)(n−1)

∫ sk(m+0.5)

sk(m−0.5)

ŝk(�r ′) · ∆�sxGpds
′dy′

−jωµ
Nl∑

n=1

In

∫ ln+0.5

ln−0.5

∆l̂n · ∆�sxdl′

+
1
jωε

[
Φ′(sx(M+0.5), sz(N−0.5)) − Φ′(sx(M−0.5), sz(N−0.5))

]
(11)

where

Φ′(sx(M+0.5), sz(N−0.5))

=
3∑

k=1

ma(k)∑
n=1

msk∑
m=1

[
Jmn

sk −Jm−1,n
sk

skm − sk(m−1)

]∫ sa(k)(n)

sa(k)(n−1)

∫ skm

sk(m−1)

Gpds
′dy′

+
Nl+1∑
n=1

In − In−1

∆In

∫ ln

ln−1

Gldl
′ (12)

Φ′(sx(M−0.5), sz(N−0.5)) is not shown here because the same principle
applies as in Eqs. (11) and (12).

In the procedure shown above, if the source point is located on
the edge of the cube, it is necessary to separate the equation to two
parts, as shown∫ sxn

sx(n−1)

∫ sy(m+0.5)

sy(m−0.5)

ŝ(�r ′) · ∆�sGpds
′dy′=

{∫ sxn

sx(n−1)

∫ sym

sy(m−0.5)

Gpds
′dy′ŝ−(�r ′)

∫ sxn

sx(n−1)

∫ sy(m+0.5)

sym

Gpds
′dy′ŝ+(�r ′)

}
· ∆�s (13)

2.4. The Treatments of the Singularity

The singularities at the patches along all edges (special singularity)
occur in the calculation of �A. However, the singularities on the
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plane surfaces (normal singularity) will occur when both �A and Φ are
calculated.

One will encounter the following integral when calculating the
normal singularity.

∫ ∆s
2

−∆s
2

∫ ∆y
2

−∆y
2

e−jk
√

s2+y2√
s2 + y2

dyds = 4
∫ ∆s

2

0

∫ ∆y
2

0

e−jk
√

s2+y2√
s2 + y2

dyds

= 4
∫ ∆s

2

0

∫ ∆y
2

0

e−jk
√

s2+y2 − 1√
s2 + y2

dyds

+4
∫ ∆s

2

0

∫ ∆y
2

0

1√
s2 + y2

dyds (14)

The first part of Eq. (14) belongs to the singularity that can be
omitted. The integral in the second part is [1]

4
∫ ∆s

2

0

∫ ∆y
2

0

1√
s2 + y2

dyds = 2 · ∆s · ln


∆y

∆s
+

√
1 +

(
∆y
∆s

)2



+2 · ∆y · ln


∆s

∆y
+

√
1+

(
∆s
∆y

)2

 (15)

When the special singularity is dealt with, it is necessary to split the
integral into two parts. Assuming that sk,m is to be on the edge of the
object. The first part is

∫ sa(k),n

sa(k),n−1

∫ sk,m

sk,m−0.5

Gpds
′dy′ = 2

∫ ∆s
2

0

∫ ∆y
2

0

e−jk
√

s2+y2

4π
√
s2 + y2

dsdy (16)

The second part is

∫ sa(k),n

sa(k),n−1

∫ sk,m+0.5

sk,m

Gpds
′dy′ = 2

∫ ∆s
2

0

∫ ∆y
2

0

e−jk
√

s2+y2

4π
√
s2 + y2

dsdy (17)

The treatment remains the same as that in Eq. (14).

3. THE NEAR FIELDS OF WIRE CURRENT UNIT

A brief introduction to the SEDM method and its application to
compute the near fields of wire antennas is presented in this section.
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3.1. Series Electric Dipoles Modeling (SEDM) of Wire
Current Unit

When solving the wire antenna problem by using MoM, antennas are
usually divided into several segments. A single segment with current is
defined as wire-current unit. The wire-current unit can be considered
as follows: it is connected by many electric dipoles end-to-end with the
same current value. This is so-called Series Electric Dipoles Modeling
(SEDM).

The electromagnetic fields of the electric dipole, as shown in Fig. 1,
are as the follows [6],

Er =
I0l

2π
e−j�k·�r

(
η

r2
+

1
jωεr3

)
cos θ (18a)

Eθ =
I0l

4π
e−j�k·�r

(
jωµ

r
+
η

r2
+

1
jωεr3

)
sin θ (18b)

Hϕ =
I0l

4π
e−j�k·�r

(
jk

r
+

1
r2

)
sin θ (18c)

The above fields are valid under the conditions,

l� r d� l (19)

where d is diameter of the electric dipole. When the condition in
Eq. (19) cannot be satisfied, it is necessary to model the wire-current
unit as several series dipole segments in order to use Eqs. (18a-c).

3.2. Application of SEDM to Wire Antenna

The SEDM can be used to analyze the near-field problem of wire
antennas. Typically, a wire that is about one wavelength is usually
divided into about 25 segments [6] when using MoM with pulse
expansion point matching technique. For example, a 20 m long wire
antenna working on a wavelength of 150 m can be divided into four
segments. When one wants to find the fields situated 5 m away, the
valid condition in Eq. (19) can not be satisfied, as the segment length is
also 5 m long. One can always divide the antennas into more segments
to make the segment length shorter. However, this is at the cost of
more memory requirement and lower computational efficiency.

In this paper, two novel methods are used to overcome the
mentioned shortcomings. They are used to calculate the near and
far fields of the wire antenna after their current distribution has been
obtained by MoM with traditional segment division method [6]. The
two methods are the ‘Subdivision with Interpolation’ (SI) method and
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Figure 4. Schematic of a surface current patch.

the ‘Subdivision Without Interpolation’ (S0I) method. The SI method
subdivides the wire current units into segments while ensuring that
the satisfaction of the condition in Eq. (19). The current values of the
subdivisions are then determined by interpolation. The SOI method
is similar to the SI method in terms of its subdivision but does not
perform the interpolation process after subdividing the wire current
units.

3.3. Comparisons between the SEDM Method and the
NEC2 Codes [7]

Table 1 shows the computed results of near fields of a wire antenna
using the SEDM method and NEC2 Codes. The radius, operating
frequency, and the height of the antenna are 2 mm, 7.5 MHz and 20 m
respectively. The coordinate origin is located at the center of the
antenna.

Table 1. Near fields results of a wire antenna (V/m).

Observation Point (1m, 0, 0) Observation Point (50m, 0, 0)Items
compared

Number of
Divisions No Subdivision S0I SI No Subdivision S0I SI

13 548.42 53.49 50.10 6.15 6.11 6.11
SEDM

51 51.74 51.47 51.19 6.16 6.16 6.16

12 43.00 42.10 6.15 6.15
NEC2

200 51.49 51.45

In Table 1, ‘No Subdivision’ means that Eq. (18) is applied directly
after the current distributions obtained by MoM, without further
subdividing the wire current units. It is clear that the ‘No Subdivision’
technique cannot be used when the number of divisions is too small in
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both the SEDM method and NEC2 codes. For far field calculations,
both the SEDM method and the NEC2 codes are in good agreement
even when ‘No Subdivision’ is used. When one calculates the near-
field problem using SOI and SI with the SEDM method, the results
agree well with the technique using many more basis functions, even
when the divisions as little as 13 segments. For comparison, NEC2
codes produce incorrect results when only 12 segments are used. This
shows the validity of the SEDM method, even when the segments are
comparable to the field vector length r. For the SEDM method, with
51 segments, the accuracy of the results is sufficient for comparison
with the NEC2 code with 200 segments.

4. THE SURFACE AND NEAR FIELDS OF PATCH CELL

A brief introduction to the simplified hybrid method [5] for the
calculation of the near and surface fields of objects efficiently is
presented here.

z

yo
zJ

z

y

x

o

r

r
R�
�

�

’

’

’

’�

Figure 5. Schematic of a surface current patch for the Kemptner
Method.

4.1. SEDM for Surface Current Patches

The electric fields of surface current patches as shown in Fig. 5 can
be expressed in Eq. (20) which can be derived from the Stratton-Chu
Formula [8].

�E(�r ) = −jωµ
∫

s
G(�r , �r ′) · �J(�r ′)ds′ (20)
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With the current on the patch only in the z direction, the Eq. (20) can
be simplified to the following double surface integral,

Ez =
−jη
k

{∫∫
s
k2JzGdz

′dy′ +
∫∫

s
Jz
∂2G

∂z2
dz′dy′

}
(21)

where η is the wave impedance in free space, k is wave number, G is
the Green’s Function in free space.

In order to avoid the numerical integrals in Eq. (21), the authors
have presented a novel method named SEDM for surface current
patches. Fig. 6 shows the subdivision of surface patches. The length
of the sub-patch (∆l) after the subdivisions should still satisfy the
condition in Eq. (19). In fact, good results can be obtained if we let
r ≥ 10 · ∆l.

l∆

Figure 6. SEDM of surface patch for Kemptner Method.

4.2. Kemptner Method for Surface Field Calculation

The radiated field of the surface current patch shown in Fig. 5 can be
expressed as follows [4],

�E(�r ) =
k3

4πjωε

∫∫
s′

{[
− 1
k3R3

+
1

2kR
− j

2
− kR

2

]
�Jz + S1(R) · �Jz

+
[

3
k3R3

+
1

2kR
− j

2
+
kR

2

]
(z − z′)Jz

R



x− x′
y − y′
z − z′




+ S2(R)
(z − z′)Jz

R



x− x′
y − y′
z − z′





 dy′dz′ (22)
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where,

S1(R) = (−1 − jkR+ k2R2)
e−jkR −

(
1 − jkR− k

2R2

2

)

k3R3
(23a)

S2(R) = (3 + j3kR− k2R2)
e−jkR −

(
1 − jkR− k

2R2

2

)

k3R3
(23b)

R =
√

(x− x′)2 + (y − y′)2 + (z − z′)2 (23c)

One can analytically calculate the integrals terms in Eq. (22), excluding
s1 and s2. The terms including s1 and s2 can be computed by numerical
integration since the following limiting value exists,

lim
R→0

e−jkR −
(

1 − jkR− k
2R2

2

)

k3R3
=
j

6
(24)

thus ensuring no singular behavior when R→ 0.

4.3. Simplified Hybrid Method for Near and Surface Field
Calculation

Table 2 shows the computed electric field results and the CPU time
required for four observation positions using four different methods.
The observation point is located at (x, 0, 0) with reference to the
coordinate shown in Fig. 5. A Pentium 450 personal computer is used.
The results show that the Kemptner Method takes much longer than
the other methods, thus it is very inefficient when applied to all the
sub-patches. It can also be seen that the SEDM method is an efficient
method for computing near field, however, it cannot be used to obtain
the surface fields of patches closest to the observation point.

The novel technique combines the advantages of two methods;
the Kemptner Method for the calculation of the sub-patches that are
closest to the observation point; the SEDM for the computation of
the rest of the sub-patches. The fields can be obtained by vector
combination of the above electric and magnetic fields of each sub-patch.
The simplified hybrid method has high computational efficiency as can
be seen in Table 2.
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Table 2. Comparison of the four methods.

λ=x λ1.0=x λ01.0=x λ0=xzE &Time

( s,/ mV )
Value Time Value Time Value Time Value Time

Double
Integral

-1.33-j7.27 <0.01 -27.97+j32.76 0.02 -30.33+j51.92 0.07

SEDM -1.32-j7.28 <0.01 -27.97+j32.78 0.01 -30.33+j51.92 0.17

Kemptner
Method

-1.33-j7.27 1.21 -27.97+j32.76 0.27 -30.33+j51.92 0.71 -30.36+j42.31 0.38

Simplified
Hybrid

-1.33-j7.27 <0.01 -27.97+j32.76 0.01 -30.33+j51.92 0.60 -30.36+j42.31 0.19
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Figure 7. Schematic of a perfect conducting 90 bend structure.

5. NUMERICAL RESULTS

5.1. A Perfect Conducting 90◦ Bend Structure Irradiated by
a Plane Wave

A perfect conducting 90◦ bend structure as shown in Fig. 7 is irradiated
by a plane wave. The size of the structure is λ in all three directions:
x, y, z and each direction is divided into 5 segments. The plane wave
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Figure 8. Current distribution on the bend structure (a) real part of
Jz (b) imaginary part of Jz.

is as follows,
�Einc

z = −êz120πe−jky (25)

This example is the same as that in Glisson’s dissertation [1]. Using
Glisson’s, the result of the current distribution is as shown in Fig. 8
and is found to be the same as that in the reference. The simplified
hybrid calculation method is used to compute the z surface tangential
electric field distributions and is plotted in Fig. 9. For this result,
the observation points used are located at the positions marked ‘×’ as
shown in Fig. 7. Both theoretically and practically, the z tangential
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Figure 9. z tangential electric field on the surface of the bend
structure.

electric field value on the surface of perfect conducts is zero. However,
Fig. 9 shows that when the tangential electric field is calculated using
the simplified hybrid method, it is not zero and is rather large especially
when the top and bottom of the structure are reached. One of the
possible reasons for the discrepancy when using the simplified hybrid
calculation is that the pulse expansion used in this method is too
rough to model the current distribution on the plane surface of open
structures. Nevertheless, this situation is improved when used for
closed objects such as cubes. This is shown in the next section.

5.2. A Perfect Conducting Cube Irradiated by a Plane Wave

A perfect conducting cube of size as shown in Fig. 1 is irradiated by a
plane wave. The plane wave is as in Eq. (25).

Fig. 10 shows the results of current density along the locus 0268
(Fig. 1) for two cases: 4× 4 elements per plane, resulting in 192× 192
elements in the impedance matrix; 6 × 6 elements per plane, resulting
in 432× 432 elements in the impedance matrix. The results of the two
cases are in good agreement with the results obtained by using FDTD
method. As expected, the results are better when more segmentations
of the object are made.

The x-z plane tangential electric field distributions are calculated
by using the simplified hybrid calculation method and results are shown
in Fig. 11. The observation points are marked ‘×’ as shown in Fig. 1.
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As can be seen, the z tangential electric field is below 100 V/m in most
of the patch region and below 50 V/m in the center of the patch region,
but becomes larger near the top and bottom edge of the object. Lower
values can be achieved by making more segmentation near the edges
of the objects. As the plane wave used to irradiate both structures
in Fig. 1 and Fig. 7 is the same, the two cases in Section 5.1 and
5.2 can be compared. It is clear that the values in Fig. 11 are much
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lower than the values in Fig. 9. Therefore, the pulse expansion point
matching technique of MoM is more suitable for the applications to
closed objects.

5.3. Center Fed Half-Wave Wire Antenna in the Presence of
a Perfect Conducting Cube

Numerical results for a center fed half-wave wire antenna in the
presence of a perfect conducting cube as shown in Fig. 1 is shown
in Fig. 12 and Fig. 13. The thin wire antenna is 1 m high and the
radius of the antenna is 0.0001 m and the location vectors are,

�rc = (0, 0, 0) �rp = (2m,−0.5m,−0.5) (26)

In this case, the total number of elements in the impedance matrix is
325×325, where the wire antenna is divided into 25 sections and 5×5
elements per plane of cube.

At 300 MHz, 1 volt is applied to the input port of the thin wire
antenna. The current density along the locus 0268 is shown in Fig. 12.
The near field, Ez, on the plane x = λ calculated using the simplified
hybrid method is shown in Fig. 13. The z tangential electric field on
the cube surface is not shown here because its value is only around
0.3 V/m as the input voltage is low. The input impedance of wire
antenna is 79.3 + j41.8 ohms in free space which are very close to the
available theoretical value. It becomes 82.2 + j38.4 ohms for the case
of a wire antenna in the presence of a perfect conducting cube. The
real part of the input impedance is large due to the presence of the
cube.
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6. CONCLUSION

Near field and surface field analysis of thin wire antennas in the
presence of a perfect conducting cube are performed using MoM and
EFIE. This paper extended the Glisson’s method to the applications
of closed objects. Numerical results both for a perfect conducting 90(
bend open structure and a perfect conducting closed cube irradiated
by a plane wave are in good agreement with the available references.
Thus verifying the proposed pulse expansion point matching technique.
Furthermore, the tangential electric field distributions for the above
two cases obtained by the proposed simplified hybrid calculation
method shows that the pulse expansion point matching technique
method is more suitable for use with closed object problems as
compared to open object problems. The result of a center fed half-
wave wire antenna in the presence of a conducting cube is presented.
The advantages of using this hybrid method to calculate the near field
and surface field of an object is its simplicity and efficiency.

The proposed pulse expansion point matching technique can also
be used for solving cases where several wire antennas are in the presence
of conducting cubes. Moreover, the proposed method can also be
used to solve far field problems. The result is useful for the RF and
microwave antenna community.
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