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Abstract

In this paper, we apply the theory of multivariate polynomial matrices to the study of
syzygy modules for a system of homogeneous linear equations with multivariate polynomial
coefficients. Several interesting structural properties of syzygy modules are presented and
illustrated with examples. © 1999 Elsevier Science Inc. All rights reserved.
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1. Introduction

A classical and important subject in commutative algebra is to obtain the set of
all polynomial solutions, called the syzygy module, for a system of homogeneous
linear equations with multivariate polynomials coefficients (see, e.g., [1–7] and ref-
erences therein). This subject has been studied for decades by mathematicians in
commutative algebra and various methods have been proposed for computing syzygy
modules [1–7]. However, the emphasis has so far mainly been on the computational
aspects, such as developing more efficient methods for obtaining syzygy modules
using Gröbner bases, and finding polynomial solutions with lower degrees [1–7].

In this paper, we apply the theory of multivariate polynomial matrices developed
by researchers in linear multidimensional (nD) systems [8–18] to the study of syzygy
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modules. Using simple polynomial matrix manipulations, we are able to derive sev-
eral interesting structural properties of syzygy modules. Specifically, we will address
the following questions: Can we simplify a givennD polynomial matrix1 before
computing its syzygy module? Does there exist an explicit relationship between a
given polynomial matrix and its syzygy module? Can we obtain a globally minimal
number of generators for the syzygy module? We show in this paper how to answer
these questions by exploiting relevant results innD system theory.

The organization of the paper is as follows. In the next section, we review some
notation, definitions and known results, and also formulate the problems to be dis-
cussed mathematically. The main results are presented in Section 3. Three examples
are illustrated in Section 4.

2. Preliminaries and problem formulation

In the following, we shall denoteC(z) = C(z1, . . . , zn) the set of rational func-
tions in complex variablesz1, . . . , zn with coefficients in the field of complex num-
bersC; C[z] the set of polynomials in complex variablesz1, . . . , zn with coefficients
in C; Cm×l[z] the set ofm× lmatrices with entries inC[z], etc. To be consistent with
notation in module theory [2], we simply writeCm×1[z] asCm[z]. Throughout this
paper, the argument(z) is omitted whenever its omission does not cause confusion.

Definition 1 [2]. Let f1, . . . , fl ∈ Cm[z]. A syzygy of the m× l matrix F =
[f1 · · · fl] is a vector[h1 · · ·hl]T ∈ Cl[z], where(·)T denotes transposition, such that2

l∑
i=1

hi fi = 0m,1. (1)

The set of all such syzygies is called the syzygy module ofF and is denoted by
Syz(f1, . . . , fl ) or by Syz(F ).

It is easy to see3 that Syz(F ) is a submodule ofCl[z] and is finitely generated [2].
Let h1, . . . ,hs ∈ Cl[z] be agenerating setof Syz(F ), i.e.,

Fhj = 0m,1, j = 1, . . . , s, (2)

and for anyt ∈ Syz(F ), there existw1, . . . , ws ∈ C[z] such that

t = w1h1+ · · · +wshs . (3)

If we let fi = [f1i · · · fmi ]T (i = 1, . . . , l), hj = [h1j · · ·hlj ]T (j = 1, . . . , s) and
t = [t1 · · · tl]T, (2) and (3) become

1 With slight abuse of notation, we use the term “nD” to abbreviate “multivariate” or “n-variate”. This
usage is common among researchers innD system theory [8,17,18].

2 Denote 0m,l anm× l zero matrix andIm anm×m identity matrix.
3 See, e.g., [2] for an introduction to modules and submodules.
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... ð

...

fm1 · · · fml


︸ ︷︷ ︸

F

h11 · · · h1s
... ð

...

hl1 · · · hls


︸ ︷︷ ︸

H

= 0m,s, (4)

and h11 · · · h1s
... ð

...

hl1 · · · hls


w1
...

ws

 =
t1...
tl

 . (5)

Since Syz(F ) is generated by the “column space” of the matrixH = [h1, . . . ,hs ],
we shall callH a generating matrixof Syz(F ) in this paper. IfH1 = HE1 for some
nD polynomial matrixE1, we shall say thatH generatesH1. Clearly, if H1 is a
generating matrix of Syz(F ) andH generatesH1, thenH is also a generating matrix
of Syz(F ).

We can now formulate mathematically the problems to be discussed using the lan-
guage of matrix theory. LetF ∈ Cm×l[z]. Assume thatH ∈ Cl×s [z] is a generating
matrix of Syz(F ). The following questions arise:

(i) Can we find anothernD polynomial matrixF1 that is simpler thanF in some
sense,4 such that Syz(F1) = Syz(F )?
(ii) Does there exist an explicit relationship betweenF (orF1) andH?
(iii) Can we find anH such that the dimension ofH is globally minimal?

We say that the dimension ofH is globally minimal if size(H) is equal to or smaller
than size(H0) for any generating matrixH0 of Syz(F ). Because of the relationship
between a generating matrix and a generating set of Syz(F ), obtaining a globally
minimal number of generators for Syz(F ) is equivalent to finding a generating matrix
whose dimension is globally minimal. It should be pointed out that a minimal gener-
ating set defined in [1–7] is in fact only locally minimal since a given generating set
is said to be minimal when no proper subset is a generating set of Syz(F ) [1–7]. We
shall come back to this in more detail later.

To motivate the discussion, we first consider a simple example.

Example 1. Let

F =
[
f11 f12
f21 f22

]
=
[
d1b1 d1b2
d2b1 d2b2

]
, (6)

where di, bi (i = 1,2) are all nD polynomials, and gcd(d1, d2) = 1 and
gcd(b1, b2) = 1, where gcd(d1, d2) means the greatest common divisor ofd1 and
d2. We first notice that rank(F ) = 1 if b1 andb2 (d1 andd2) are not both identic-
ally zero. LetF1 = [d1b1 d1b2], F2 = [b1 b2], andH = [h11 h21]T = [b2 − b1]T.

4 By “simpler” we mean thatF1 is a submatrix ofF or F1 is a proper factor ofF.
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It is easy to see that Syz(F ) = Syz(F1) = Syz(F2), and H is a generating mat-
rix of Syz(F ). There is also an explicit relationship betweenF andH, i.e., h11=
f12/d1, h21= −f11/d1. Furthermore, for this simple example, it is obvious that the
dimension ofH is globally minimal.

However, for a generalnD polynomial matrixF, it is not straightforward to answer
questions (i)–(iii). For example, in general there does not exist an explicit relation-
ship between entries ofF andH. Hence, we need to review some useful definitions
and known results which have played a central role innD system theory.

Definition 2 [9]. Let F ∈ Cm×l [z], withm 6 l. ThenF is said to be:
(i) zero left prime (ZLP) if there exists non-tuplez0 ∈ Cn which is a zero ofall
them×mminors ofF;
(ii) minor left prime (MLP) if thesem×m minors ofF are relatively prime;
(iii) factor left prime (FLP) if in any polynomial decompositionF = F1F2 in
whichF1 is square,F1 is a unimodular matrix, i.e., detF1 = k0 ∈ C∗.5

Zero right prime (ZRP), minor right prime (MRP) and factor right prime (FRP)
can be similarly defined.

Proposition 1 [9]. For n = 1, the three definitions of zero, minor and factor prime-
ness are equivalent, i.e., ZLP≡ MLP ≡ FLP; for n = 2, ZLP /≡ MLP ≡ FLP; for
n > 3, ZLP /≡ MLP /≡ FLP; for all n > 1, ZLP⇒MLP⇒ FLP.

Remark 1. Because of the implication of FLP by MLP, we shall use the phrase
“strictly FLP” for annD polynomial matrix that is FLP but not MLP.

The following rather lengthy definition is necessary to establish an explicit rela-
tionship between annD polynomial matrix and its syzygy module.

Definition 3 [13,16]. LetF ∈ Cm×l [z] andH ∈ Cl×r [z] be of full rank with l =
m+ r andFH = 0m,r . Consider first all them×m submatrices ofF. If a submat-
rix Fi (1 6 i 6 β = ( l

m

)
) is formed by selecting columns 16 i1 < · · · < im 6 l

from F, we associateFi with an m-tuple (i1, . . . , im). Clearly, there exists a one
to one correspondence between all them×m submatrices ofF and the collection
of all strictly increasingm-tuple (i1, . . . , im), where 16 i1 < · · · < im 6 l. By
enumerating the abovem-tuple (i1, . . . , im) in the lexicographic order, them×m
submatrices ofF are ordered accordingly. Let detFi = b̃i d̃, i = 1, . . . , β, whered̃
is gcd(detF1, . . . ,detFβ). We call{b̃1, . . . , b̃β} the reduced minors ofF.

Now consider the matrixH. If a submatrixHi is formed by selecting rows 16
j1 < · · · < jr 6 l from H, we deletej1, . . . , jr from the finite set of integers
{1,2, . . . , l} and keep the remainingm integers, denoted byi1, . . . , im. Associating
the indexi with the orderedm-tuple(i1, . . . , im) as we do forF, we can establish the

5 C∗ = C\{0}, the set of nonzero complex numbers.
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order for all ther × r submatrices ofH. Let detHi = bi d, i = 1, . . . , β, whered is
gcd(detH1, . . . ,detHβ). We call {b1, . . . , bβ} the complementary reduced minors
of H.

Proposition 2 [13,16].LetP = D̃−1Ñ = ND−1 ∈ Cm×r (z), whereD̃ ∈ Cm×m[z],
D ∈ Cr×r [z], Ñ,N ∈ Cm×r [z], and let b1, . . . , bβ denote the complementary re-
duced minors of[DT NT]T, b̃1, . . . , b̃β the reduced minors of[−Ñ D̃]. Then

bi = ±b̃i, i = 1, . . . , β, (7)

where the sign depends on the index i.

3. Some properties of syzygy modules

In this section, we answer the questions (i)–(iii) raised in the previous section one
by one. We shall begin with question (i) on how to obtain annD polynomial matrix
F1, simpler than a given matrixF, such that Syz(F1) = Syz(F ).

Proposition 3. Let F ∈ Cq×l[z] be of rank m, wherem < min{q, l}. Let F1 be a
full row rankm× l submatrix of F. ThenSyz(F ) = Syz(F1).

Proof. SinceF1 is a submatrix ofF, it is obvious that Syz(F1) ⊃ Syz(F ). We next
show that Syz(F ) ⊃ Syz(F1). LetH1 ∈ Cl×s [z] be a generating matrix of Syz(F1).
We haveF1H1 = 0m,s . Since bothF andF1 are of rankm andF1 is a submatrix of
F, all rows ofF can be generated by linear combinations of them rows ofF1 over
C(z), i.e., there existsW ∈ Cq×m(z) such thatF = WF1. We then haveFH1 =
WF1H1 = 0q,s , i.e., Syz(F ) ⊃ Syz(F1). Therefore, Syz(F ) = Syz(F1). �

SinceF1 in the above proposition is a submatrix ofF, it will be computation-
ally more efficient to compute Syz(F1) than Syz(F ). The next result shows that
this kind of simplification can also be achieved if a given matrixF admits certain
factorizations.

Proposition 4. LetF ∈ Cm×l [z] be of rank m. IfF = E1F1 for someE1 ∈ Cm×m[z],
F1 ∈ Cm×l [z], thenSyz(F ) = Syz(F1).

Proof. SinceF is of rankm, E1 must also be of rankm. Hence,E1 is nonsingu-
lar. LetH ∈ Cl×s [z] be a generating matrix of Syz(F ). We haveFH = 0m,s , or
E1F1H = 0m,s , or F1H = 0m,s sinceE1 is nonsingular. Thus, Syz(F1) ⊃ Syz(F ).
On the other hand, letH1 ∈ Cl×s [z] be a generating matrix of Syz(F1). We have
F1H1 = 0m,s . It then follows thatFH1 = E1F1H1 = 0m,s , i.e., Syz(F ) ⊃ Syz(F1).
Therefore, Syz(F ) = Syz(F1). �
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Proposition 4 is very useful for obtaining a syzygy module for a given matrix
admitting certain prime factorizations, as will be demonstrated by an example in the
next section.

Because of Proposition 3, it suffices to consider a full row rank matrixF ∈
Cm×l[z]. This requiresl > m. If l = m, then Syz(F ) = [0 . . .0]T. Therefore, we
shall only consider the nontrivial case wherel > m. In order to make good use of
relevant results innD system theory, we shall assume, without loss of generality, that
F = [−Ñ D̃] with D being nonsingular. For convenience of exposition, we state the
following assumption which will be adopted in the remainder of the paper:

Assumption 1. Let F = [−Ñ D̃] ∈ Cm×l [z] be of rankm, with l > m and D̃ ∈
Cm×m[z] being nonsingular. We also letr = l −m > 0.

Before we answer question (ii), the following two lemmas are required.

Lemma 1. Let F be given as in Assumption1 and suppose

FH = [−Ñ D̃]
[
D

N

]
= 0m,r . (8)

If H ∈ Cl×r [z] is of full rank andD ∈ Cr×r [z], thendetD /≡ 0.

Proof. We can view bothF andH as rational matrices. SinceF is of full row rank
andH is of full column rank, there existB ∈ Cl×m(z) andG′ ∈ Cr×l (z) such that

FB = Im (9)

and

G′H = Ir . (10)

Thus,[
G′
F

]
[H B] =

[
Ir W

0m,r Im

]
, (11)

whereW = G′B ∈ Cr×m(z). LetG = G′ −WF . Simple algebra on (11) gives[
G

F

]
[H B] =

[
Ir 0r,m

0m,r Im

]
(12)

or [
X Y

−Ñ D̃

]
︸ ︷︷ ︸

V

[
D Ỹ

N X̃

]
︸ ︷︷ ︸

U

=
[
Ir 0r,m

0m,r Im

]
, (13)

whereX,Y and X̃, Ỹ are submatrices ofG and B, respectively, with appropriate
dimension. According to a well-known result on matrix theory [19, p. 29], the fact
thatV andD̃ are nonsingular implies thatD is also nonsingular, i.e., detD /≡ 0. �
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Lemma 2. Let F be given as in Assumption1. Then there exists a generating matrix
H ∈ Cl×s [z] of Syz(F ), with r 6 s <∞. Moreoever, every generating matrix of
Syz(F ) is of rank r.

Proof. Obvious. �

We are now ready to establish an explicit relationship between a given matrix and
its syzygy module.

Proposition 5. Let F be given as in Assumption1 andH ∈ Cl×s [z] be a generating
matrix of Syz(F ). LetH1 be an arbitrary but fixed full rankl × r submatrix of H.
Letb1, . . . , bβ denote the complementary reduced minors ofH1, andb̃1, . . . , b̃β the
reduced minors of F. Then

bi = ±b̃i, i = 1, . . . , β, (14)

where the sign depends on the index i.

Proof. By Lemma 2,s > r. Hence, it is meaningful to talk about a full rankl × r
submatrix ofH. LetH1 = [DT

1 N
T
1 ]T with D1 ∈ Cr×r [z] andN1 ∈ Cm×r [z]. Since

H1 is of full column rank by assumption, detD1 /≡ 0 by Lemma 1. We then have

FH = [−Ñ D̃]
[
D1
N1

]
= 0m,r (15)

or

−ÑD1 + D̃N1 = 0m,r (16)

or

P = D̃−1Ñ = N1D
−1
1 , (17)

whereP ∈ Cm×r (z). By Proposition 2, we have

bi = ±b̃i, i = 1, . . . , β, (18)

where the sign depends on the indexi. �

A by-product of the above proposition is that the complementary reduced minors
of all full rank l × r submatrices ofH are identical. For this reason, we can simply
call b1, . . . , bβ , as defined in Proposition 5, the complementary reduced minors of
H. Proposition 5 shows that for a general full ranknD polynomial matrixF, although
there does not exist an explicit relationship between entries ofF and ofH that is a
generating matrix of Syz(F ), there does exist a simple relationship between the re-
duced minors ofF and the complementary reduced minors ofH. This relationship is
also useful for answering question (iii), as will be discussed in detail in the following.

Consider again anF as given in Assumption 1. We know that ifF is over a
field, such asC(z), then we can always find anl × r generating matrix overC(z)
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for Syz(F ). However, this is not the case whenF is over a ring, and the following
proposition gives a condition for the existence of such a generating matrix.

Proposition 6. Let F be given as in Assumption1. ThenSyz(F ) has a generating
matrix of dimensionl × r if and only if there exists an MRP matrixH ∈ Cl×r [z]
such thatFH = 0m,r .

Proof. Sufficiency: Assume that there exists an MRP matrixH ∈ Cl×r [z] such that
FH = 0m,r . By Lemma 2, there exists a generating matrixH1 ∈ Cl×s[z] of Syz(F).
It suffices to show thatH generatesH1. LetH0 = [H H1] ∈ Cl×(r+s)[z]. It is obvi-
ous thatFH0 = 0m,(r+s). Hence,H0 is also a generating matrix of Syz(F) and is of
rank r by Lemma 2. SinceH is MRP, by a result due to Youla and Gnavi [9], we
haveH0 = [H H1] = H [Ir E1] for someE1 ∈ Cr×s[z], orH1 = HE1. That is,H1
is generated byH. It follows thatH is a generating matrix of Syz(F).

Necessity: LetH ∈ Cl×r [z] be a generating matrix of Syz(F), i.e.

FH = 0m,r . (19)

By Lemma 2,H is of rank r. We first show thatH cannot have a nontrivial right
factor. Suppose thatH has a nontrivial right factorE2 ∈ Cr×r [z], i.e.,

H = H2E2 (20)

for someH2 ∈ Cl×r [z], with detE2 /≡ 0 andE2 not a unimodular matrix. Combining
(19) and (20) gives

FH = FH2E2 = 0m,r . (21)

Since detE2 /≡ 0, (21) leads to

FH2 = 0m,r , (22)

implying that each column ofH2 belongs to Syz(F). Clearly, from (20)H cannot
generateH2 sinceE2 is not a unimodular matrix. Thus,H is not a generating matrix
of Syz(F), a contradiction. Therefore,H cannot have a nontrivial right factor. By
Definition 2 and Remark 1,H is either strictly FRP or MRP.

We next show thatH cannot be strictly FRP. Suppose, on the contrast, thatH is
strictly FRP, i.e., ther × r minors ofH have a nontrivial gcdd(z). PartitionF and
H conformably asF = [−Ñ D̃] andH = [DT NT]T. The assumption det̃D /≡ 0
implies detD /≡ 0 by Lemma 1. We then have

FH = [−Ñ D̃]
[
D

N

]
= 0m,r (23)

or

−ÑD + D̃N = 0m,r (24)

or

P = D̃−1Ñ = ND−1, (25)
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whereP ∈ Cm×r (z). SinceH = [DT NT]T is strictly FRP,P has another right mat-
rix fraction description (MFD)P = N3D

−1
3 such thatD3 /= DW3 andN3 /= NW3

for anyW3 ∈ Cr×r [z] (see [13]). This is equivalent to[
D3
N3

]
/=
[
D

N

]
W3 (26)

for anyW3 ∈ Cr×r [z]. This means thatH cannot generateH3 = [DT
3 N

T
3 ]T. On the

other hand, fromP = D̃−1Ñ = N3D
−1
3 , we have

[−Ñ D̃]
[
D3
N3

]
= 0m,r, (27)

implying that each column ofH3 belongs to Syz(F). Combining (26) and (27) leads
to a conclusion thatH cannot generate Syz(F), another contradiction. Therefore,H
cannot be strictly FRP either, and must be MRP.�

The above proposition gives a characterization of anl × r generating matrix
of Syz(F) when such a generating matrix exists. An interesting question arises at
this point. Given an arbitraryF as in Assumption 1, can we always find anl × r
generating matrix for Syz(F)? The answer is positive forn 6 2, but negative for
n > 2.

Proposition 7. Let F be given as in Assumption1 except thatF ∈ Cm×l[z1, z2].
Then, there exists a generating matrixH ∈ Cl×r [z1, z2] of Syz(F ).

Proof. By Assumption 1,F = [−Ñ D̃] and detD̃ /≡ 0. AssociateF with a 2D ra-
tional matrixP = D̃−1Ñ . By a well-known result in 2D polynomial matrix theory
[8,11], P has a right MFD,P = ND−1 such thatH = [DT NT]T ∈ Cl×r [z1, z2] is
MRP. Clearly,P = D̃−1Ñ = ND−1 gives rise to

FH = [−Ñ D̃]
[
D

N

]
= 0m,r . (28)

By Proposition 6,H is a generating matrix of Syz(F). �

The existence of anl × r generating matrix of Syz(F) is due to the equivalence
of factor and minor primeness for 2D (including 1D) polynomial matrices [9] and
the availability of computational methods for the extraction of any nontrivial right
(or left) factors from a given 1D or 2D polynomial matrix [10,8,11]. Unfortunately,
factor primeness is no longer equivalent to minor primeness fornD (n > 2) polyno-
mial matrices [9]. Moreover, it is still an open problem to extract a nontrivial right
(or left) factor from a givennD (n > 2) polynomial matrix [9,17], although some
partial results in this direction are now available [14,15,18].

On the other hand, researchers in commutative algebra have developed methods
for the construction of generating matricesof Syz(F) [1,7]. However, these gener-
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ating matrices are not necessarily of sizel × r. In fact, generating matrices for a
givennD polynomial matrixF may even be different in size, depending onF, the
method adopted and the ordering of terms and positions [1,7]. Another interesting
question then arises. Given anl × s (s > r) generating matrixH1 of Syz(F), can we
decide fromH1 whether or not there exists anl × r generating matrix of Syz(F)?
The following proposition gives an answer to this question.

Proposition 8. Let F be given as in Assumption1 andH1 ∈ Cl×s [z] be a generating
matrix of Syz(F ), with s > r. ThenSyz(F ) has a generating matrix of dimension
l × r if and only ifH1 can be factorized asH1 = HE for someH ∈ Cl×r [z], E ∈
Cr×s[z] with H being MRP.

Proof. Sufficiency: Suppose thatH1 can be factorized asH1 = HE for someH ∈
Cl×r [z],E ∈ Cr×s [z]with H being MRP. SinceH1 is a generating matrix for Syz(F),
H1 is of rank r by Lemma 2. It follows immediately thatE must also be of rank
r. Let T = FH ∈ Cm×r [z]. FromFH1 = 0m,s , we haveFHE = 0m,s , or TE =
0m,s , or T Er = 0m,r whereEr is a nonsingularr × r submatrix ofE. SinceEr is
nonsingular, it is obvious thatT = 0m,r . Thus,FH = 0m,r . SinceH is MRP by
assumption,H is anl × r generating matrix of Syz(F) by Proposition 6.

Necessity:Suppose thatH ∈ Cl×r [z] is a generating matrix of Syz(F). By Propos-
ition 6, H is MRP andFH = 0m,r . SinceFH1 = 0m,s , arguing similarly as in the
proof procedure for the sufficiency of Proposition 6, we haveH1 = HE for some
E ∈ Cr×s[z]. �

Unfortunately, to the best knowledge of this author, in the case ofn > 2, there still
does not exist an algebraic method for testing whether or not an arbitrarynD l × s
(s > r) polynomial matrix of rankr can be factorized asH1 = HE for someH ∈
Cl×r [z],E ∈ Cr×s[z] [9,17]. Nevertheless, there do exist several methods for testing
the factorizability and carrying out factorizations for some specialnD polynomial
matrices [14,15,18]. Therefore, it is sometimes possible to derive anl × r generating
matrix of Syz(F) from anl × s (s > r) generating matrix. This will be demonstrated
by an example in the following section.

4. Examples

In this section, we present three examples to illustrate the new results derived in
the previous section. The examples are all taken from the literature and are chosen in
such a way that each example corresponds mainly to each question raised in Section
2. For consistency with the notation adopted in this paper, we usez1, z2, z3 for the
complex variables instead of the usualx, y, z commonly adopted in commutative
algebra.
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Example 2[2, p. 165]. Let

F =
[
z2+ 2z2

1+ z1 z1− z2 z2
1 + z1

z2 z2 z2

]
. (29)

Instead of directly applying the Gröbner basis approach to obtaining Syz(F ), as was
done in [2], we first check whetherF is FLP. The 2× 2 minors ofF are:

2z2(z1+ z2), z2(z1+ z2), −z2(z1+ z2), (30)

and the reduced minors ofF are just 2,1,−1. Clearly,F is not FLP. Applying the
factorization methods proposed in [8,11], we can factorizeF as

F = E1F1 =
[
z1− z2 z2

1+ z1
z2 z2

] [−1 1 0
2 0 1

]
. (31)

It is straightforward to see thatH = [1 1 − 2]T is a generating matrix of Syz(F1).
By Proposition 4, Syz(F ) = Syz(F1). Hence, we have obtained the same result as
the one in [2] without even applying Gröbner bases.

The above example shows that the potential advantege of applyingnD polynomial
matrix factorization techniques have not yet been fully realized by researchers in
algebra.

Example 3[5, p. 140]. LetF = [z1 z2 z3]. A generating matrixH ∈ C3×3[z1, z2,

z3] has been given in [5]:

H =
 z2 z3 0
−z1 0 z3

0 −z1 −z2

 . (32)

AlthoughH is of rank 2, it cannot be factorized as a product of two 3D polynomial
matrices of smaller size. Therefore, by Proposition 8, there does not exist any 3× 2
generating matrix of Syz(F ). Now letH1 be a 3× 2 submatrix formed from selecting
columns 1 and 2 ofH, i.e.,

H1 =
 z2 z3
−z1 0

0 −z1

 . (33)

It is obvious that the reduced minors ofF are z1, z2, z3, and the complementary
reduced minors ofH1 arez1,−z2, z3. Proposition 5 is therefore verified.

Finally, we present a nontrivial example which demonstrates the validity of Pro-
positions 6 and 8.

Example 4[1, p. 151]. Let

F = [f1 f2 f3 f4 f5], (34)

where

f1 = z2
3 − z1z2+ z3,
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f2 = z4
2 − z1z2z3+ z1z2− z3,

f3 = z3
2z3 + z3

2 − z2
1z2+ z1z3,

f4 = z1z
3
2 + z2

2z3 − z2
1z3 + z2

2,

f5 = z1z
2
2z3 + 2z1z

2
2 − z3

1 + z2z3+ z2.

Using Gröbner bases, a generating matrix was obtained as follows [1]:

H =[h1 h2 h3 h4 h5 h6]

=


z1z2+ 1 0 0 z2

2 − z2
1 z1z

2
2 + z2 z3

2+ z1
z3+ 1 z1 0 0 0 z1
−z2 1 z1 z1 0 −z3

0 −z2 1 −z3 z1 0
0 0 −z2 0 −z3 0

 .
It was claimed that the set ofh1, . . . ,h6 is already a (locally) minimal generating
set for Syz(F ) with respect to the T-representation introduced in [1]. Since our main
interest is to obtain a generating matrix whose dimension is globally minimal, i.e., to
obtain a globally minimal generating set, we want to know whetherH can be further
reduced.

We first observeh6 = z1h1− z3h2 + z2h4. Hence,H1 = [h1 · · · h5] is also a gen-
erating matrix of Syz(F ), which is of smaller dimension than that ofH. Direct
computation shows that none of the 5× 4 submatrices ofH1 is MRP, and hence,
it is not possible to pick any 4 columns fromH1 as a globally minimal generating set
of Syz(F ). (We omit the details for this argument to save space.) However, applying
the primitive factorization algorithm proposed previously by the author [14,15] to
the submatrixH2 formed from the first 4 columns ofH1, we are able to carry out a
primitive factorization forH2 asH2 = H3E3, where

H3 =


z1z2 + 1 0 0 z3

1 + z2
z3+ 1 z1 0 0
−z2 1 z1 −z2

1
0 −z2 1 z1z3+ z1
0 0 −z2 −z3


and

E3 =


1 0 0 −z2

1
0 1 0 z1z3+ z1
0 0 1 −z3
0 0 0 z2

 .
It is straightforward to test thatH3 is MRP andFH3 = 01,4. By Proposition 6,H3
is a generating matrix of Syz(F ) and the dimension ofH3 is now globally minimal.
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To convince the reader thatH3 is indeed a generating matrix of Syz(F ), we giveE4
explicitly in the following:

E4 =


1 0 0 −z2

1 −z3
1

0 1 0 z1z3+ z1 z2
1z3 + z2

1
0 0 1 −z3 −z1z3
0 0 0 z2 z1z2+ 1

 .
It can then be easily verified thatH1 = H3E4.

Finally, although the entries ofF and ofH3 look very different from each other,
it is straightforward to test that there does exist a simple relationship between the
reduced minors ofF and the complementary reduced minors ofH3 as stated in
Proposition 5.

It is hoped that this paper will motivate more research in the investigation ofnD
polynomial matrices and related open problems.

Acknowledgment

This work was done while the author was with DSO National Laboratories, Singa-
pore. The author would like to thank an anonymous reviewer for helpful comments.

References

[1] H.M. Möller, F. Mora, New constructive methods in classical ideal theory, J. Algebra 100 (1986)
138–178.

[2] W.W. Adams, P. Loustaunau, An Introduction to Gröbner Bases, Graduate Studies in Mathematics,
vol. 3, American Mathematical Society, 1994.

[3] B. Buchberger, Gröbner bases: an algorithmic method in polynomial ideal theory, in: N.K.
Bose (Ed.), Multidimensional Systems Theory: Progress, Directions and Open Problems, Reidel,
Dordrecht, 1985, p. 184.

[4] T. Becker, V. Weisfenning, Gröbner Bases, Springer, Berlin, 1993.
[5] R. Fröberg, An Introduction to Gröbner Bases, Wiley, New York, 1997.
[6] A. Capani, G. De Dominicis, G. Niesi, L. Robbiano, Computing minimal finite free resolutions, J.

Pure Appl. Algebra 117 & 118 (1997) 105–117.
[7] R. La Scala, M. Stillman, Strategies for computing minimal free resolutions, J. Symbolic Comput.

26 (1998) 409–431.
[8] M. Morf, B.C. Lévy and S.Y. Kung, New results in 2-D systems theory, Part I: 2-D polynomial

matrices, factorization and coprimeness, Proc. IEEE 65 (1977) 861–872.
[9] D.C. Youla, G. Gnavi, Notes onn-dimensional system theory, IEEE Trans. Circuits Syst. 26 (1979)

105–111.
[10] T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.
[11] J.P. Guiver and N.K. Bose, Polynomial matrix primitive factorization over arbitrary coefficient field

and related results, IEEE Trans. Circuits Syst. 29 (1982) 649–657.
[12] N.K. Bose, Applied Multidimensional Systems Theory, Van Nostrand Reinhold, New York, 1982.
[13] Z. Lin, On matrix fraction descriptions of multivariable linearn-D systems, IEEE Trans. Circuits

Syst. 35 (1988) 1317–1322.



86 Z. Lin / Linear Algebra and its Applications 298 (1999) 73–86

[14] Z. Lin, On primitive factorizations for 3-D polynomial matrices, IEEE Trans. Circuits Syst. 39 (1992)
1024–1027.

[15] Z. Lin, On primitive factorizations fornD polynomial matrices, in: Proceedings of the IEEE
Symposium Circuits and Systems, Chicago, IL, May 1993, pp. 595–598.

[16] V.R. Sule, Feedback stabilization over commutative rings: the matrix case, SIAM J. Contr. Optim.
32 (1994) pp. 1675–1695.

[17] E. Fornasini, M.E. Valcher,nD polynomial matrices with applications to multidimensional signal
analysis, Multidimensional Systems and Signal Processing 8 (1997) 387–408.

[18] N.K. Bose, C. Charoenlarpnopparut, Multivariate matrix factorization: new results, presented at
MTNS’98, Padova, Italy, July 1998.

[19] B. Noble, J.W. Daniel, Applied Linear Algebra, second edition, Prentice-Hall, Englewood Cliffs, NJ,
1977.


