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Abstract

In this paper, we apply the theory of multivariate polynomial matrices to the study of
syzygy modules for a system of homogeneous linear equations with multivariate polynomial
coefficients. Several interesting structural properties of syzygy modules are presented and
illustrated with examples. © 1999 Elsevier Science Inc. All rights reserved.
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1. Introduction

A classical and important subject in commutative algebra is to obtain the set of
all polynomial solutions, called the syzygy module, for a system of homogeneous
linear equations with multivariate polynomials coefficients (see, e.g., [1-7] and ref-
erences therein). This subject has been studied for decades by mathematicians in
commutative algebra and various methods have been proposed for computing syzygy
modules [1-7]. However, the emphasis has so far mainly been on the computational
aspects, such as developing more efficient methods for obtaining syzygy modules
using Grobner bases, and finding polynomial solutions with lower degrees [1-7].

In this paper, we apply the theory of multivariate polynomial matrices developed
by researchers in linear multidimensionaD{ systems [8—18] to the study of syzygy
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modules. Using simple polynomial matrix manipulations, we are able to derive sev-
eral interesting structural properties of syzygy modules. Specifically, we will address
the following questions: Can we simplify a giveiD polynomial matriX before
computing its syzygy module? Does there exist an explicit relationship between a
given polynomial matrix and its syzygy module? Can we obtain a globally minimal
number of generators for the syzygy module? We show in this paper how to answer
these questions by exploiting relevant resultalinsystem theory.

The organization of the paper is as follows. In the next section, we review some
notation, definitions and known results, and also formulate the problems to be dis-
cussed mathematically. The main results are presented in Section 3. Three examples
are illustrated in Section 4.

2. Preliminaries and problem formulation

In the following, we shall denot€(z) = C(z1, ..., z,) the set of rational func-
tions in complex variables, . . ., z, with coefficients in the field of complex num-
bersC; C[z] the set of polynomials in complex variables . . ., z,, with coefficients
in C; C"*![z] the set ofn x | matrices with entries iS[z], etc. To be consistent with
notation in module theory [2], we simply wri@”*1[z] asC”[z]. Throughout this
paper, the argumeii) is omitted whenever its omission does not cause confusion.

Definition 1 [2]. Let f1,...,f; € C"[z]. A syzygy of them x| matrix F =
[f1---f;]isavectofhy --- k1" € C![z], where(-)T denotes transposition, such that

l
> hifi = O 1. 1)
i=1

The set of all such syzygies is called the syzygy modul& @ind is denoted by
Syz(f1, ..., f;) or by Sya F).

Itis easy to setthat Syz F) is a submodule of![z] and is finitely generated [2].
Lethy, ..., hy € Cl[z] be agenerating sebf Syz(F), i.e.,

Fhj=0,1, j=1...,s, (2)
and for anyt € Syz(F), there existws, ..., ws € C[z] such that
t =wih1 + -+ wyhy. (3

Ifweletfi =[fu- fuill G=1,....0,h; =[h1;---h;]" (j=1,...,5) and
t=1[rn---14]", (2) and (3) become

1 with slight abuse of notation, we use the ternD® to abbreviate “multivariate” or #-variate”. This
usage is common among researchensrsystem theory [8,17,18].

2 Denote Q,.; anm x I zero matrix and,, anm x m identity matrix.

3 Seeg, e.g., [2] for an introduction to modules and submodules.
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firo oo fu ||k - has
: : : : : | = Ons, (4)
for o f Ll
F H
and
hi11 his | | wi 1
: =l 5)
hi1 hys Wy 1
Since SyzF) is generated by the “column space” of the mattix= [hq, ..., hy],

we shall calH agenerating matribof Syz(F) in this paper. IfH; = H E1 for some
nD polynomial matrix E1, we shall say thaH generatesH;. Clearly, if Hy is a
generating matrix of Sy#') andH generateg{;, thenH is also a generating matrix
of Syz(F).

We can now formulate mathematically the problems to be discussed using the lan-
guage of matrix theory. Lef € C"*/[z]. Assume tha#{ € C'*%[z] is a generating
matrix of SyZ F). The following questions arise:

(i) Can we find anothemD polynomial matrixF7 that is simpler thaifr in some
sensé such that SygF1) = Syz(F)?

(ii) Does there exist an explicit relationship betwde(or F1) andH?

(iif) Can we find anH such that the dimension éf is globally minimal?

We say that the dimension Hffis globally minimal if sizeH) is equal to or smaller
than sizefip) for any generating matri¥lp of Syz(F). Because of the relationship
between a generating matrix and a generating set of Syobtaining a globally
minimal number of generators for Sy2) is equivalentto finding a generating matrix
whose dimension is globally minimal. It should be pointed out that a minimal gener-
ating set defined in [1-7] is in fact only locally minimal since a given generating set
is said to be minimal when no proper subset is a generating set of $j—7]. We
shall come back to this in more detail later.

To motivate the discussion, we first consider a simple example.

Example 1. Let

z[fn f12:|_|:d1b1 d1b2:| ©)
fa1 fa2 dyb1  doba |’

where d;,b; (i =1,2) are all nD polynomials, and gadi,d2) =1 and
gcd(b1, b2) = 1, where gcdds, d2) means the greatest common divisordafand
do. We first notice that rankF) = 1 if b1 andb, (d1 andd2) are not both identic-
ally zero. LetFy = [d1b1 dibo], F> = [b1 bol, andH = [h11 ho1]l" = [b2 — b1]".

4 By “simpler” we mean tha#, is a submatrix of- or F is a proper factor oF.
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It is easy to see that SyF) = Syz(F1) = Syz(F»), andH is a generating mat-
rix of Syz(F). There is also an explicit relationship betwdermandH, i.e., k11 =
f12/d1, h21 = — f11/d1. Furthermore, for this simple example, it is obvious that the
dimension o is globally minimal.

However, for a generabD polynomial matrix, it is not straightforward to answer
questions (i)—(iii). For example, in general there does not exist an explicit relation-
ship between entries &f andH. Hence, we need to review some useful definitions
and known results which have played a central roleDrsystem theory.

Definition 2 [9]. Let F € C"™*![z], with m < [. ThenF is said to be:
(i) zero left prime (ZLP) if there exists notuplez® € C* which is a zero ofll
them x m minors ofF;
(i) minor left prime (MLP) if thesen x m minors ofF are relatively prime;
(iii) factor left prime (FLP) if in any polynomial decompositiafl = F1 F> in
which F is squareF1 is a unimodular matrix, i.e., déy = ko € C*.°
Zero right prime (ZRP), minor right prime (MRP) and factor right prime (FRP)
can be similarly defined.

Proposition 1[9]. For n = 1, the three definitions of zerainor and factor prime-
ness are equivalente., ZLP = MLP = FLP; for n = 2, ZLP = MLP = FLP; for
n > 3,ZLP# MLP # FLP; foralln > 1,ZLP= MLP = FLP.

Remark 1. Because of the implication of FLP by MLP, we shall use the phrase
“strictly FLP” for an nD polynomial matrix that is FLP but not MLP

The following rather lengthy definition is necessary to establish an explicit rela-
tionship between anD polynomial matrix and its syzygy module.

Definition 3 [13,16]. Let F € C"*/[z] and H € C'*"[z] be of full rank with/ =
m+r andFH = 0, .. Consider first all then x m submatrices oF. If a submat-
MxF(1<i<B= (;ﬁ;)) is formed by selecting columns & iy < --- < i, <[
from F, we associatdé; with an mrtuple (i1, ..., i;;). Clearly, there exists a one
to one correspondence between all #hex m submatrices of and the collection
of all strictly increasingm-tuple (i1, ..., iy), where 1< i1 <--- <i, < [. By
enumerating the abowe-tuple (i1, ..., i) in the lexicographic order, the x m
submatrices oF are ordered accordingly. Let det=b; d, i = 1,..., 8, whered
is gcddetF, .. ., detFg). We call{by, .. ., bg} the reduced minors d¥.

Now consider the matri¥. If a submatrixH; is formed by selecting rows ¥

j1<---<jr <1 from H, we deletejs, ..., j, from the finite set of integers
{1, 2,...,1} and keep the remaining integers, denoted by, . .., i,,. Associating
the indexi with the orderedn-tuple(is, .. ., i,,) as we do folF, we can establish the

5 C* = C\{0}, the set of nonzero complex numbers.
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order for all ther x r submatrices ofl. LetdetH; = b;d, i =1, ..., 8, wheredis
gcddetHy, ..., detHg). We call{by, ..., bg} the complementary reduced minors
of H.

Proposition 2[13,16].Let P = D~1N = ND~1 € C"*"(z), whereD € C"*"[z],
D e C"™[z], N,N € C"*"[z], and letby, ..., bg denote the complementary re-
duced minors of DT NT]T, by, ..., bg the reduced minors ¢i-N D]. Then

b =4b;, i=1,...,58, 7

where the sign depends on the index i.

3. Some properties of syzygy modules

In this section, we answer the questions (i)—(iii) raised in the previous section one
by one. We shall begin with question (i) on how to obtaim@npolynomial matrix
F1, simpler than a given matrik, such that SyeF;) = Syz(F).

Proposition 3. Let F € C?*![z] be of rank m, wherex < min{q, [}. Let F1 be a
full row rankm x [ submatrix of F. ThelSyz(F) = Syz(F1).

Proof. SinceF; is a submatrix of, it is obvious that Sy@F1) D Syz(F). We next
show that SyeF) > Syz(Fy). Let H; € C'*¥[z] be a generating matrix of Sy&).

We haveF1 Hy = 0,, 5. Since bothF and F1 are of rankm and F is a submatrix of
F, all rows of F can be generated by linear combinations ofrtheows of F; over
C(2), i.e., there exist € C4*(z) such thatF = W F1. We then haveF H, =

WF1Hy =0, ,i.e., SyZF) D Sy F1). Therefore, SyeF) = Syz(F;). 0

Since F in the above proposition is a submatrix Bf it will be computation-
ally more efficient to compute Sy#1) than SyZF). The next result shows that
this kind of simplification can also be achieved if a given makiadmits certain
factorizations.

Proposition 4. LetF € C"*![z] be of rank m. IfF = E1F; for someE; € C"*"[z],
F1 € C"*l[z], thenSyz(F) = Syz(F1).

Proof. SinceF is of rankm, E; must also be of rankn. Hence,E1 is nonsingu-
lar. Let H € C'*5[z] be a generating matrix of Sy#). We haveF H = Om.s, OF

E1F1H =0y, or F1H = 0,, ; sinceE1 is nonsingular. Thus, Sy#1) D Syz(F).

On the other hand, leff; € C'*%[z] be a generating matrix of Sy#;). We have
F1H1 = 0y, 4. It then follows thatF H1 = E1F1H1 = Oy,.4, i.€., SYyZF) D Syz(F1).

Therefore, SyeF) = Syz(Fp). O
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Proposition 4 is very useful for obtaining a syzygy module for a given matrix
admitting certain prime factorizations, as will be demonstrated by an example in the
next section.

Because of Proposition 3, it suffices to consider a full row rank mafrix
C™*![z]. This required > m. If [ = m, then SyzF) =[0...0]". Therefore, we
shall only consider the nontrivial case whére m. In order to make good use of
relevant results imD system theory, we shall assume, without loss of generality, that
F = [—N D] with D being nonsingular. For convenience of exposition, we state the
following assumption which will be adopted in the remainder of the paper:

Assumption 1. Let F = [-N D] € C"*![z] be of rankm, with [ > m and D €
C™m>m[z] being nonsingular. We also let=1 — m > 0.

Before we answer question (ii), the following two lemmas are required.

Lemma 1. Let F be given as in Assumptidrand suppose

N
If H € C!*"[z]is of full rank andD e C"*"[z], thendetD = 0.

FH=54VDﬂD}=m”. ®)

Proof. We can view botlF andH as rational matrices. Sin¢eis of full row rank
andH is of full column rank, there exisk € C'*"(z) andG’ € C"*!(z) such that

FB = I, 9)
and

G'H =1,. (10)
Thus,

(G’ I, W

um=[r Y], a
whereW = G'B € C"*"(z). LetG = G’ — WF. Simple algebra on (11) gives

_G Ir Or,m

o[, %]
or

X Y][D Y I Opm

_§ 15} [N x} = [om,r In ] ’ 13)
[ — N —
14 U

whereX, Y and X, Y are submatrices of and B, respectively, with appropriate
dimension. According to a well-known result on matrix theory [19, p. 29], the fact
thatV andD are nonsingular implies th&t is also nonsingular, i.e., dé&t = 0. O
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Lemma 2. Let F be given as in AssumptidnThen there exists a generating matrix
H e C%[z] of Syz(F), with r < s < co. Moreoevey every generating matrix of
Syz(F) is of rankr.

Proof. Obvious 0O

We are now ready to establish an explicit relationship between a given matrix and
its syzygy module.

Proposition 5. Let F be given as in Assumptidrand H € C!**[z] be a generating
matrix of Syz(F). Let H1 be an arbitrary but fixed full rank x » submatrix of H.

Letby, ..., bg denote the complementary reduced minor&gfandby, . . ., 13/5 the
reduced minors of F. Then
b =4b;, i=1,...,8, (14)

where the sign depends on the index i.

Proof. By Lemma2,s > r. Hence, it is meaningful to talk about a full rahk
submatrix ofH. Let Hy = [D] NJ1T with D1 € C"™*"[z] and Ny, € C"*"[z]. Since
Hj is of full column rank by assumption, dBy = 0 by Lemma 1. We then have

FH =[-N D] [Zﬂ = 0., (15)
or

—NDy+ DNy =0,,, (16)
or

P =D"'N=nND;L, 17)
whereP € C"*"(z). By Proposition 2, we have

bi=+b;, i=1,...,8 (18)

where the sign depends on the index [J

A by-product of the above proposition is that the complementary reduced minors
of all full rank [ x r submatrices oH are identical. For this reason, we can simply
call by, ..., bg, as defined in Proposition 5, the complementary reduced minors of
H. Proposition 5 shows that for a general full rarik polynomial matrix, although
there does not exist an explicit relationship between entriésafd ofH that is a
generating matrix of Sy#), there does exist a simple relationship between the re-
duced minors oF and the complementary reduced minor$iofThis relationship is
also useful for answering question (iii), as will be discussed in detail in the following.

Consider again afr as given in Assumption 1. We know that K is over a
field, such asC(z), then we can always find anx » generating matrix ove€(z)
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for Syz(F). However, this is not the case wheéns over a ring, and the following
proposition gives a condition for the existence of such a generating matrix.

Proposition 6. Let F be given as in Assumptidn ThenSyz(F') has a generating
matrix of dimensiori x r if and only if there exists an MRP matriif € C'*"[z]
such thatF H = O, ,.

Proof. SufficiencyAssume that there exists an MRP matkxe C'*"[z] such that
FH =0, ,. By Lemma 2, there exists a generating mafiixe C'**[z] of Syz(F).
It suffices to show thaltl generatesfy. Let Hy = [H Hi] € C™*+9[z]. It is obvi-
ous thatF Ho = Oy, (-+s). Hence,Hp is also a generating matrix of Syz)(and is of
rankr by Lemma 2. Sincéd is MRP, by a result due to Youla and Gnavi [9], we
haveHg = [H Hi] = H|[I, E1] forsomeE, € C"*%[z], or HL = HE1. Thatis,H,
is generated b¥. It follows thatH is a generating matrix of Sygj.

NecessityLet H € C'*"[z] be a generating matrix of Sy&) i.e.

FH =0,,,. (19)

By Lemma 2,H is of rankr. We first show thatHH cannot have a nontrivial right
factor. Suppose th&t has a nontrivial right factoE, € C"*"[z], i.e.,

H = HoE> (20)

for someH; e C'*7[z], with detE, = 0 andE; not a unimodular matrix. Combining
(19) and (20) gives

FH = FHyE> =0, ;. (22)
Since deft> # 0, (21) leads to
FHy =0y, (22)

implying that each column off; belongs to Sy#). Clearly, from (20)H cannot
generatdd; sinceE; is not a unimodular matrix. Thus] is not a generating matrix
of Syz(), a contradiction. Thereforé{ cannot have a nontrivial right factor. By
Definition 2 and Remark l is either strictly FRP or MRP.

We next show thaH cannot be strictly FRP. Suppose, on the contrast,Hhiat
strictly FRP, i.e., the x r minors ofH have a nontrivial gcd/(z). PartitionF and
H conformably asF = [-N D] and H = [DT NT]T. The assumption dé? = 0
implies detD # 0 by Lemma 1. We then have

FH =[N D] [g] =0, (23)
or

—ND + DN =0, (24)
or

P=D1N=nND (25)
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whereP € C"*"(z). SinceH = [D" NT]T is strictly FRP,P has another right mat-
rix fraction description (MFD)P = N3D3*1 such thatD3 #+ DW3 and N3 = N W3
for any Wz € C"*"[z] (see [13]). This is equivalent to

D3 D
[NJ + M Ws (26)
for any W3 € C"*"[z]. This means that cannot generat&/z = [D] N3 |T. On the
other hand, fron? = DN = N3D3*, we have

[_N b] I:gi} = Om,rs (27)

implying that each column aff3 belongs to Sy#). Combining (26) and (27) leads
to a conclusion thatl cannot generate SyZ), another contradiction. Thereford,
cannot be strictly FRP either, and must be MR

The above proposition gives a characterization ofl anr generating matrix
of Syz(F) when such a generating matrix exists. An interesting question arises at
this point. Given an arbitrari{F as in Assumption 1, can we always find &g r
generating matrix for SyE)? The answer is positive for < 2, but negative for
n> 2.

Proposition 7. Let F be given as in Assumptidnexcept thatF € C"*/[z1, z2].
Then there exists a generating matri € C!*"[z1, z2] of Syz(F).

Proof. By Assumption 1,F = [—-N D] and detD = 0. Associate~ with a 2D ra-
tional matrix ? = D~1N. By a well-known result in 2D polynomial matrix theory
[8,11], P has a right MFD,P = ND~1 such thatd = [DT NT|T € C!*"[z1, z2] is
MRP. Clearly,? = D~IN = ND1 givesrise to

FH =[-N D] [2] — 0. 28)

By Proposition 6H is a generating matrix of SygJ. [

The existence of ahx r generating matrix of SyH) is due to the equivalence
of factor and minor primeness for 2D (including 1D) polynomial matrices [9] and
the availability of computational methods for the extraction of any nontrivial right
(or left) factors from a given 1D or 2D polynomial matrix [10,8,11]. Unfortunately,
factor primeness is no longer equivalent to minor primenessbai > 2) polyno-
mial matrices [9]. Moreover, it is still an open problem to extract a nontrivial right
(or left) factor from a givemD (rn > 2) polynomial matrix [9,17], although some
partial results in this direction are now available [14,15,18].

On the other hand, researchers in commutative algebra have developed methods
for the construction of generating matricesof $3)z[1,7]. However, these gener-
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ating matrices are not necessarily of size r. In fact, generating matrices for a
givennD polynomial matrixF may even be different in size, depending lonthe
method adopted and the ordering of terms and positions [1,7]. Another interesting
question then arises. Given aix s (s > r) generating matri¥{; of Syz(), can we
decide fromH1 whether or not there exists dnx r generating matrix of Sy#)?

The following proposition gives an answer to this question.

Proposition 8. Let F be given as in Assumptidrand H; € C'**[z] be a generating
matrix of Syz(F), with s > r. ThenSyz(F) has a generating matrix of dimension
I x r if and only if Hy can be factorized a#l; = H E for someH € C'*"[z], E €
C"*$[z] with H being MRP.

Proof. Sufficiency Suppose thati; can be factorized a1 = HE for someH €
C!*r[z], E € C"**[z] with H being MRP. Sincé; is a generating matrix for SygJ,
Hj is of rankr by Lemma 2. It follows immediately tha& must also be of rank
r.LetT = FH € C"*"[z]. From FHy = 0,, s, we haveFHE = 0,,, or TE =
Om.s, OFr TE, =0, WhereE, is a nonsingular x r submatrix ofE. Sincek, is
nonsingular, it is obvious thaf = 0,, .. Thus, FH = 0,,_,. SinceH is MRP by
assumptionH is an/ x r generating matrix of Sy#) by Proposition 6.

NecessitySuppose thall € C'*"[z] is a generating matrix of Sy&J. By Propos-
ition 6, H is MRP andF H = 0,, . SinceF H1 = 0,, 5, arguing similarly as in the
proof procedure for the sufficiency of Proposition 6, we halie= H E for some
E eC*[z]. O

Unfortunately, to the best knowledge of this author, in the case-oR, there still
does not exist an algebraic method for testing whether or not an arhibaryx s
(s > r) polynomial matrix of rank can be factorized al; = H E for someH €
C!*r[z], E € C"*%[z][9,17]. Nevertheless, there do exist several methods for testing
the factorizability and carrying out factorizations for some spedapolynomial
matrices [14,15,18]. Therefore, it is sometimes possible to derivexangenerating
matrix of Syzf) from anl x s (s > r) generating matrix. This will be demonstrated
by an example in the following section.

4. Examples

In this section, we present three examples to illustrate the new results derived in
the previous section. The examples are all taken from the literature and are chosen in
such a way that each example corresponds mainly to each question raised in Section
2. For consistency with the notation adopted in this paper, weuse, z3 for the
complex variables instead of the usualy, z commonly adopted in commutative
algebra.
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Example 2[2, p. 165]. Let
2 2
Fo [zz +22f4+721 z1—z22 5+ z1} _ (29)
22 22 22

Instead of directly applying the Grébner basis approach to obtainingFSyas was
done in [2], we first check wheth&ris FLP. The 2x 2 minors ofF are:

222(z1 +z22), z2(z1+22), —z2(z1+ 22), (30)

and the reduced minors &fare just 21, —1. Clearly,F is not FLP. Applying the
factorization methods proposed in [8,11], we can factdFizes
2
. _lzi—z2 zi+z||{-1 1 O
F—E1F1—|: 2 2 :||:2 o 1l (31)
It is straightforward to see thaf = [1 1 — 2] is a generating matrix of Sy#y).

By Proposition 4, Sy@F') = Syz(F1). Hence, we have obtained the same result as
the one in [2] without even applying Grobner bases.

The above example shows that the potential advantege of appRipglynomial
matrix factorization techniques have not yet been fully realized by researchers in
algebra.

Example 3[5, p. 140]. LetF = [z1 z2 z3]. A generating matrixd e C3*3[z3, z2,
z3] has been givenin [5]:

22 73 0
H=|-21 0 23 |- (32)
0 —71 —22

AlthoughH is of rank 2, it cannot be factorized as a product of two 3D polynomial
matrices of smaller size. Therefore, by Proposition 8, there does not exist-ay 3
generating matrix of Sy#"). Now let H1 be a 3x 2 submatrix formed from selecting
columns 1 and 2 of, i.e.,

22 <3
Hi=|-z1 0 |. (33)
0 —21

It is obvious that the reduced minors Bfare z1, z2, z3, and the complementary
reduced minors off; arezi, —z2, z3. Proposition 5 is therefore verified.

Finally, we present a nontrivial example which demonstrates the validity of Pro-
positions 6 and 8.

Example 4[1, p. 151]. Let
F=[fi1 fo f3 fa /[l (34)
where

f1=125— 2122+ 23,
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f2 =23 — 212023 + 7122 — 23,
f3 = 2323 + 25 — 2522 + 2123,
fa = 7125 + 2523 — 2323 + 23,

f5 = 212523 + 22125 — 23 + 2023+ 22.
Using Grébner bases, a generating matrix was obtained as follows [1]:

H =[hy hz hz hy hs hg]

z1z2+1 0 0 zZ2-22 uid+z zg +u
z3+1 21 0 0 0 71
=| -22 1 21 71 0 —23
0 -2 1 —z3 21 0
0 0 -z 0 —z3 0
It was claimed that the set @fy, .. ., hg is already a (locally) minimal generating

set for SyzF) with respect to the T-representation introduced in [1]. Since our main
interest is to obtain a generating matrix whose dimension is globally minimal, i.e., to
obtain a globally minimal generating set, we want to know whelthean be further
reduced.

We first observég = z1hy — z3ha + z2hg. Hence Hy = [h; - - - hs]is also a gen-
erating matrix of SygF), which is of smaller dimension than that bf. Direct
computation shows that none of the<54 submatrices o#; is MRP, and hence,
it is not possible to pick any 4 columns froHy as a globally minimal generating set
of Syz(F). (We omit the details for this argument to save space.) However, applying
the primitive factorization algorithm proposed previously by the author [14,15] to
the submatrixt, formed from the first 4 columns aff;, we are able to carry out a
primitive factorization forH, as H, = H3E3, where

[z122+1 0 0 H+z
z3+1 Z1 0 0
H3 = —22 1 71 —Z%
0 —z2 1  ziz3+z1
| 0 0 -z —273
and
1 0 0 72
Eg = 0 1 0 zizz+z1
0O 0 1 —23
0O 0 O 22

It is straightforward to test tha/z is MRP andF Hz = 01 4. By Proposition 6,H3
is a generating matrix of Sy#') and the dimension aff3 is now globally minimal.
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To convince the reader thafs is indeed a generating matrix of Sy2), we giveE4
explicitly in the following:

1 00 -2 -73
Eq— 0 1 0 zizz+u1 Z§z3 + zf

0 0 1 —z3 —2123

0 0 O 22 7122+ 1

It can then be easily verified that; = H3E4.

Finally, although the entries & and of H3 look very different from each other,
it is straightforward to test that there does exist a simple relationship between the
reduced minors of and the complementary reduced minorsHy as stated in
Proposition 5.

It is hoped that this paper will motivate more research in the investigatioB® of
polynomial matrices and related open problems.
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