
resistors of decreasing sensitivity would become unacceptable 
members of the first pass set. As we have seen before, the chosen 
resistors will depend on the magnitude of the orthogonal compo- 
nent of first pass sensitivity vectors, with respect to the span of 
the second pass sensitivity vectors. We know, however, that as 
long as the linear model is valid, the number of resistors in the 
second pass set, need grow no larger than the inherent rank of 
the total set of sensitivity vectors. Whether this rank can be 
determined directly from the circuit topology without reference 
to element values is an interesting question. 

In [4], Hocevar and Trick have dealt with the question of a 
minimum tuning resistor set. The difference in their work is that 
the approach of [4] is motivated by a desire to maintain numeri- 
cal stability in the calculation. This leads to a conclusion that a 
QR algorithm to determine the singular values of the matrix of 
sensitivity vectors is the best approach to selecting the tuning 
resistor set. This calculation of a spanning set is similar to our 
calculation of the second pass set. However, an explicit model of 
the effects of first pass trimming inaccuracy is not created. The 
inherent rank of the sensitivity vectors mentioned above is 
bounded by the number of coefficients in the transfer function. 
For our first example this bound would be 13 ( = 2* 7 - 1). 
Because adequate performance was obtained with just five resis- 
tors we see that here the desired number is dominated by the 
level of variation in the first pass resistors rather than the 
inherent rank limit. Further in [4], an assumption is made which 
is equivalent to saying that the resistors in the first pass set are 
set to their design values. Hence the first pass resistor set is not at 
all used to correct for capacitor errors. On line calculations and 
adjustments are made to tuning resistors only. The performance 
error due to the first pass set, now arises because of the devia- 
tions of optimum resistor values from nominal design values, as 
well as from trimming or post-trim random deviations. 

An interesting possibility of extension is to consider the prob- 
lem of tuning frequency selection as a dual to the problem of 
minimum resistor selection. In this case, one would calculate 
sensitivity vectors for a deliberately large number of frequencies. 
The algorithm given above can then be applied to the transpose 
matrix, (i.e. each one of its rows is a sensitivity vector h, 
considered before) to select a minimal frequency set. 
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On Matrix Fraction Descriptions of Multivariable 
Linear n-D Systems 

ZHIPING LIN 

Abstract -This paper examines the approach of matrix fraction descrip- 
tion to the study of multivariable linear n-D (n > 3) systems. By introduc- 
ing a new concept called “generating polynomials”, several interesting 
properties of n-D polynomial and rational matrices in connection with 
MFDs of n-D systems have been obtained. These properties do not occur 
in the 1-D and 2-D cases, and explain to some extent the difficulties 
encountered in the analysis of r-D systems. As an application of the 
generating polynomials, a stability test is presented for multivariable linear 
discrete n-D systems. 

I. INTRODUCTION 

During recent years, increasing attention has been directed to 
the development of n-D systems theory, which has applications 
in digital filtering, image processing, seismic data processing, 
some distributed-parameter systems and other areas (see, e.g., 
[l]-[3]). This paper is concerned with the matrix fraction descrip- 
tion (MFD) approach to the study of multiple-input multiple- 
output (multivariable) linear n-D (n > 3) systems,’ which may be 
represented by n-D rational matrices. In the 1-D case, the MFD 
approach has been extensively treated in the literature (see, e.g., 
[4]-[7]). For example, the MFD approach has led to a better 
understanding of various structural properties of 1-D systems [4], 
[7]. Moreover, the celebrated result giving a parametrization of 
the class of all stabilizing compensators for a given stabilizable 
plant was first derived by using the MFD approach [6], [8]. 

Morf et al. [9] are among the first researchers to generalize the 
MFD approach to the study of 2-D systems. The MFD approach 
has great potential in the analysis and synthesis of 2-D linear 
systems. For example, using the MFD approach, Kung et al. [lo] 
have studied the relationship between controllability, observabil- 
ity and minima&y of 2-D systems; Humes-Jury [ll], on the 
other hand, have obtained a stability test for multivariable 
2-D systems. Recently, the problem of feedback stabilization of 
multivariable 2-D systems has been investigated in detail in 
[2, chap. 31, [13]. 

The problem concerning the generalizations of the MFD ap- 
proach to the study of n-D systems has been suggested and 
considered by a number of researchers (see, e.g., [l], [ll], [14], 
[15]). However, due to the structural complexity of n-D poly- 
nomial matrices [15], [16], it seems that this problem has not yet 
been fully investigated in the past, and will be studied in some 
detail in this paper. By introducing a new concept called “gener- 
ating polynomials,” we obtain several interesting properties of 
n-D polynomial and rational matrices in connection with MFD’s 
of n-D systems. These properties do not occur in the 1-D and 
2-D cases, and explain to some extent the difficulties encountered 
in the analysis of n-D systems. The notion of generating poly- 
nomials appears to be useful in the investigation of n-D systems. 
For example, using the generating polynomials, we derive a 
stability test for multivariable linear discrete n-D systems. 
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II. PRELIMINARIESANDPROBLEMFORMULATION This is the transfer function matrix description of the n-D system 
(2.1). The state-space model of an n-D system considered in this 

paper is the generalized Roesser’s model given as follows [ll], 
[17]: 

4, 42 . . . A,, 
A 21 A,, ... A,, 

A,, Ai ... A,, J 

r1 4 
utk,,&,... , k,) (2.14 

y(k,,k,,...,k,) =[C,,C$,...,C,] 

+Du(k,k,,...,k,) (2.lb) 

k,, k,,. . ., k, integer-valued coordinates, 
xi(k,, k,; . a, k,) E lWniX1 ith (i =1,2;. ., n) state vector, 
u(k,, k,; . ., k,) E Iw”! input vector, 
y(kI,k2,...,k,)EIWmX’ output vector, 
AZj,Bi,C,(i,j=1,2,...,n) 
and D real matrices of appropriate sizes. 

We can define the n-D z-transform [14] of x(k,, k,; . ., k,): 

AE 5 
i,=O i,-0 

... i~~x(i’.i2,...,i”)z;‘zl ...zk. (2.2) 
” 

By applying the n-D z-transform to (2.1), and assuming zero 
initial conditions, we obtain 

3(q,z2,..., 4 =P(z~,z~,...,z,)~(z~~z~,...,z,) (2.3) 
where 

P(Zl,Z2,... ,z,) “P(z) =[C,,c2,*..,C,] 

(iii) factor right coprime (FRC) if in any polynomial decom- 
position F(Z) = F,(z)F,(z), the l X l matrix F(z) is a 
unimodular matrix, i.e., det F,(z) = k E !R*.2 

In a dual manner, b E IWmxm[z] and # E Rmx’[z] are said to be 
zero left coprime (ZLC) etc., if BT and fiT are ZRC, etc. q 

Theorem 2.1 [16]: For n =l, the three definitions of zero, 
minor and factor right coprimeness are equivalent, i.e., ZRC = 
MRC = FRC; for n = 2, ZRC f MRC = FRC; for n > 3, ZRC $ 
MRC f FRC; for all n > 1, ZRC - MRC 3 FRC. Cl 

Remark 2.1: Because of the above result, in this paper 
whenever we say that D, N are FRC, we mean that D, N are 
FRC but not MRC. q 

Now consider an n-D rational matrix P E lRmx’(z) having the 
following MFD’s: 

-1 

- 42 
. . . - 4, 

(G1+422) 
. . . - A,, 

- 42 ... (z,‘Z,,- A,,) i 

+ D. (2.4) 

2detA(r)PdetA(z),andR*PW\(d)- 

P(z) = b1(z)8(z) = N(z)D-‘(z) 

where b, i? are MLC, and D, N are FRC. 
The following questions arise: 

(i) If P(z) is decomposed into another right MFD, i.e. P(Z) 
= N,(z)D-‘(z), does there always exist a IV, ER’~‘[z], 
such that DI = D WI, NI = N WI? 

The input-output relation of the n-D system (2.1) can also be 
represented by a convolution equation [3]: 

ytk,,k,>...,k,,) 

*.. $ G(k, -iI,kl-i2;..,k,,--i,) 
i, = 0 i, = 0 i,-0 

eu(il,i2;..,in) (2.5) 

where G(k,, k,,. . ., k,) is the impulse response of the system. 
The concept of bounded-input bounded-output (BIBO) stabil- 

ity of n-D systems is defined as follows. 
Definition 2.1 (BIB0 stability): The n-D system (2.5) is said 

to be BIB0 stable provided that for every ri > 0, there exists 
some r2 > 0, such that, if Ilu(k,, k,;. ., k,)ll < r, for alI 
(4, k,; . ., k,), then IIy(k,, kz;**, k,)ll < r2 for all 
(4, k,,. * *t k,), where ]]u]] is the Euclidean norm of a vector u. c3 

In the study of n-D linear systems, it is convenient to intro- 
duce the notion of structural stability [14], which is slightly 
stronger than that of BIB0 stability. 

Definition 2.2 (Structural stability): A scalar n-D system p(z) 
= n(z)/d(z) is said to be structurally stable if and only if d(z) 
has no zeros in the region a” % {(z,,..., z,): ]zi] <l;-., 
Iz,] <l}, where d(z) and n(z) are factor coprime; A multivari- 
able n-D system P E lWmx’ (z) is said to be structurally stable if 
and only if every entry of P(Z) corresponds to a scalar system 
which is structurally stable. q 

Some definitions and results concerning the coprimeness of 
n-D (n > 1) polynomial matrices due to Youla-Gnavi are repro- 
duced here. 

Definition 2.3 [16]: Let D E W”‘[Z], N E WmX’[z], and F p 
[ DT Nr]r, where DT denotes the transposed matrix of D. Then 
D and N are said to be: 

0 zero right coprime (ZRC) if there exists no n-tuple z” E C” 
which is a common zero of the I X I minors of F(z); 

(ii) minor right coprime (MRC) if the above minors are factor 
coprime; 
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(ii) Does P(z) admit a minor right coprime MFD? 
(iii) Does there exist a k E R*, such that det b(z) = k. 

det D(z)? 
(iv) Is a zero of det D(z) necessarily a “pole”3 of P(z)? 

- The above questions are closely related to some problems in 
n-D systems theory such as stability test [l], [14]. To answer these 
questions properly, it is convenient to introduce a new concept 
called “generating polynomials.” This will be discussed in detail 
in the next section. 

111. h4AIN RESULTS 

First, some preliminaries regarding the ordering of the sub- 
matrices and minors of a matrix are required. Let 

F /i [ fl . . . j-*+,1’ E t+m+‘)X’[~] (3.1) 
and consider all the ! X 2 submatrices of F(z). The number of 
these submatrices is /.I p (,,,I). If a submatrix Fj(1 < i d p) is 
formed by selecting rows 1~ i, < . . . < i, < m + 1, we associate 4 
with an I-tuple (iI; * * , i,). It is easy to see that there exists a one 
to one correspondence between all the I X I submatrices of F and 
the collection of all strictly increasing I-tuples (ii,. . ., i,), where 
l<i,< ... < i, < m + 1. Now by enumerating the above I-tuples 
(iI; f. , i,) in the lexicographic order, the 1 x 1 submatrices of F 
are ordered accordingly. This ordering of the I x I submatrices of 
F will be assumed throughout this paper. Next, the 1 X 1 minors 
of the matrix F(z), denoted by a,; . . , apt will always be ordered 
inthesamewayas Fl;..,Fp,i.e., a,=detJ, i=1;..,/3. 

A new concept called “generating polynomials” is now intro- 
duced. 

Definition 3.1: Let FE R(mt’)x’[z] be of normal full ra.nk,4 
and let a,(z); . ., aa denote the 1 X 1 minors of F(z), where 

Extracting a greatest common divisor (g.c.d.) d(z) of 

minors of F,(z), denoted by a,,(z); . ., sop(z), may be taken as 
the generating polynomials of No DC ‘. q 

The term “generating polynomials” is justified by the folloW- 
ing theorem. 

Theorem 3.1: The generating polynomials are essentially 
unique for all the right MFD’s of P(z),E Wmx’(z), i.e., if 

P(z) = N,(z) D;‘(z) = N2( z) D,-‘(z) (3.4) 

h(z),* * *9 blp(z) are the generating polynomials of the right 
MFD YD;‘, and &i(z);.., b28(~) are the generating, poly- 
nomials of the right MFD N2 DT1, where @ A (m T ‘), then 

bzi(Z) =&i(z), i=1;‘.,/3 

for some k E Iw*. 
Proof: Decompose P(z) into a left MFD: 

P(z) =B-‘(z)E(z). (3.5) 
Let FI 9 [DT NTIT, F, p [D,’ NTIT, and E 2 [ - 15 B]. 
From (3.4) and (3.9, it follows that RF1 = 0 and FF2 = 0. Now 
consider the field of n-D rational functions W(z). Clearly, 

h~R~~(~+‘)(z); FI,F2~W(m+‘)x’(z). 

Since detd(z)fO and detD,(z)fO (q=1,2), f and F4 (q= 
1,2) are of normal full rank. So FI qualifies as a basis of the right 
null space of P with respect to R(z). Therefore 

F2 = FIG, (3.6) 
for some G, EIQ’X’(z). Let a,,(z),..., a&z) denote the 1 XI 

minors of F,(z), for q =1,2. By Definition 3.2 

a,i(z> =dq(z)bqi(z), i=l,... ,A q=1,2 

for some d, E aB[z]. From (3.6) 

+i(Z) =aii(z)-detGi(z) 

or 

d,(Z)&,(z) =detGl(z).dl(z)b,i(z), i=1;*.,/3. ai =d(z)bi(z), i=l;..,p. (3.2) . 
Next, det 4(z) f 0 implies d2(z) + 0. Thus Then, b,(z),. . ., b@(z) are called “generating polynomials” of 

F(z). q 
Remark 3.1: Since F(z) is of normal full rank and the order of 

a,(z),. . ., ap(z) is fixed, generating polynomials of F(z) are 
essentially unique (i.e., unique up to the multiplication by a 
nonzero constant). 0 

Definition 3.2: Let PERKS’ (z) and consider a right MFD of 
P(z): 

P(z) = N,(z)D,-‘(z) (3.3) 

where Do and No are not necessarily factor right coprime. Let 

60 [D,TN,T]~. 

Then the generating polynomials of F,, denoted by b,,(z), 
. . . , hop(z), are called the “MFD-minor’s generating polynomi- 
als,” or in short, the “generating polynomials” of the right MFD 
NOD,-‘. q 

Remark 3.2: Due to the way in which the I X 1 minors of 
F,(z) are ordered, it is clear that b,,(z) corresponds to det Do(z). 
Moreover, if D,(z) and N,(Z) in (3.3) are MRC, then the 2 x I 

‘z” is a “pole” of P(z) if z” is a zero of the denominator of some entry of 
P(z) [ll]. It should be noted that “poles” as defined here include both 
nonessential singularities of the first and second kinds. 

4A p X q matrix A(x) is of normal full rank if there exists an r X r minor of 
A(z) that is not identically zero, where r = min { p, q ). 

&i(Z) = 
detG,(z)*d,(z) 

d,(z) 
hi(Z) 

t (z) 
p-b,,(z), 

fd(Z) 
i=l;.-,/3 (3.7) 

where t,, td E R[z], with t, and t, being factor coprime. 
From (3.7) 

td(Z)bi(Z) =tn(z)hi(Z)* i=l;-.,/3. (3.8) 

The assumption that bql,. . ., bqp (q = 1,2) are factor coprime, 
together with the fact that R[z] is a unique factorization domain, 
implies that td(z), t,z) are nonzero constants, i.e., tn(z)/td(z) = 
k E W*, and (3.8) gives 

&i(Z) =kbli(~), i=1,*-.,/3. q 

So far only the generating po1ynomia.k of right MFD’s have 
been defined and discussed. The generating polynomials of left 
MFD’s can be defined and considered analogously. Let P E 
Wmx(m+‘)[~]. Suppose that Fir,. . ., $r are the ordered m X m 
submatrices of g’(z). Then pi,- . -, Fp are taken as the ordered 
m X m submatrices of Z$), where fi 6 ( “,’ I). The m X m minors 
of F(z) can be similarly ordered, and when &z(z) is of normal full 
rank, the generating polynomials of f(z) can be defined analo- 
gously as in Definition 3.1. For convenience of exposition, the 
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definition for the generating polynomials of a left MFD of an 
n-D rational matrix is given as follows. 

Definition 3.3: Let P E Rmx’ (z) and‘consider a left MFD of 
P(r): 

P(z) = am’& (3.9) 

where be(z) and &(z) are not necessarily factor left coprime. 
Let 

Then- the generating polynomials of 6(z), denoted by B,(Z), 
. . . ,boa(z), are called the generating polynomials of the left 

MFD 5; ‘&. cl 
Using the argument similar to the one given in the proof of 

Theorem 3.1, it can be shown that the generating polynom& are 
essentially unique for all the left MFD’s of a given n-D rational 
matrix P(z). Furthermore, the following theorem establishes a 
close relationship between the generating polynomi& of left and 
right MFD’s of P(z). 

Theorem 3.2: Let P E UZmx’(z) and decompose P(z) into the 
following MFD’s: 

P(z) =b-‘(z)%(z) =N(z)D-‘(z). 

Denote by &,(z); . . , &(z) the generating polynomials of b- ‘E, 
and by b,(z);.., bs (z) the generating polynomials of ND- ‘, 
respectively. Then 

b,(z) = f k&(z), i=1;..,/3 

for some k E I$*, where e(z); . ., &b(z) are obtained by reorder- 
ing &(z),.. . , bs(z) appropriately, with b;(z) = b,(z). 0 

T’he proof is rather involved and is given in the Appendix. 
Let us call the generating polynomials of all the right MFD’s 

of a given n-D rational matrix P(z) the generating polynomials 
of P(z). We are now in a position to answer the questions (i)-(iii) 
raised in Section III. 

Theorem 3.3: Suppose that P E Rmx’(z) has the following 
MFD’s: 

where 

0 

(ii) 
(iii) 

The 

P(Z) = k’(z)ti(z) = N(z)D-‘(z) 

6, % are MLC, and D, N are FRC. Then: 

(3.10) 

There exists a right MFD of P(z), P(z) = Nl(z)D;‘(z), 
such that Dl f DW, and Nl f NW, for any IV, ~ll@~‘[z]. 
There does not exist a minor right coprime MFD of P(z). 
detD(z)#k+detD(z)foranykEIW*. 0 

proof will be given after the following result due to 
Youla-Gnavi [16]. 

Lemma 3.1 [16]: Let A;,(z), A,,(z) and A,,(z) be n-D 
polynomial matrices of compatible sizes such that 
A21(~)A1;1(~)A12(~) is a polynomial matrix. Then, if A,,(z) and 
A,,(z) are minor right coprime, A1<l(~)AIZ(~) is a polynomial 
matrix. 0 

Proof of Theorem 3.3: Let b,(z); . ., $(z) denote the gener- 
ating, polynomials of P(z). Since d(z) and N(z) are MLC, 

applying Theorem 3.2 gives 

det h(z) = klbl(z) 

for some k, ER*. 
Next, let a,(z); . . , aa denote the I X 2 minors of 

[DT NTIT. Since D(z) and N(z) are FRC, applying Theorem 
3.1 yields 

aj(Z) =d(Z)bi(Z), i=l,. . . ,P 
for some nontrivial polynomial d(z) (i.e., d(z) is not a constant). 
Without loss of generality, it may be assumed that d(z) 
depends on zl. By considering P(z) as a matrix in 
qz,,.. ., zfl> mx’(zl), P(z) has a right MFD NiD;’ such that a 
g.c.d. d,(z) of the I X I minors of the matrix Fl 4 [D,’ NT]= is 
independent of the variable z1 (see, e.g., [7], and also the proof of 
Theorem 3.2 of this paper). Clearly, d(z) is not a divisor of 4(z), 
since by assumption d(z) depends on zl. Let a,,(z); . ., u18(z) 
denote the I x I minors of Fl. By Theorem 3.1 

Uli(Z> =4(z)&(z), i=1;..,/3. 

Now the foliowing properties can be readily shown. 

(9 

(3 

(iii) 

D,‘+ DW, and Nl f NW, for any W, l Iw”‘[z], since 
det D( = db,) is not a divisor of. det Dl( = d,b,). 
We show by contradiction that P(z) does not admit a 
minor right coprime MFD. Suppose that P(z) admits a 
MRC MFD, i.e., P = N,Di--‘, where DC, NC are MRC. 
Then N, DC- ’ = ND-‘, or N, DC- ‘D = N. Since DC and N, 
are MRC, by Lemma 3.1, W p Dce’D is a polynomial 
matrix. Hence D = D,W and N = N,W. The assumption 
that D and N are FRC implies that W is a unimodular 
matrix. This in turn implies that D and N are MRC, 
which is a contradiction. 
det b(z) f k det D(z) for any k E R*, since det b(z) = 
k,b,(i) and det D(z) = d(z)b,(z). 0 

Remark 3.3: Levy [15] has constructed a 3-D rational matrix 

P(z,, z2, zj), such that P = d-‘#= ND-‘, where b,, fi are MLC, 
and D,N are FRC, but detB#kdetD for any kElR*, and 
furthermore, shown that there does not exist a minor right 
coprime MFD for P. His example turns out to be a special case 
of parts (ii) and (iii) of Theorem 3.3. 0 

The remaining question (iv) is closely related to the so called 
“determinant test” for structural (or BIBO) stability of multivari- 
able linear shift-invariant (LSI) discrete causal n-D(n > 1) sys- 
tems [14]. This question can be answered by the following exam- 
ple. 

Example 3.1: Let 

z: + z3 + 0.25 1 

P(Zl,%,Z3) = 
(z2 +2)(z3 +2.5) (z2 +2)(z3 +4.5) 

z3 +0.5 1 
1 (z,+3)(z,+2.5) (zl+3)(z,+4.5) 1 

Clearly, P(z,, z2, zs) corresponds to a (structurally) stable LSI 
discrete causal 3-D system, since P(z,, z2, z3) has no poles in u3. 
Decompose P( z,, z2, z3) into a right MFD: 

P(z1t+,z3) PN(z,,z,,~~)D-1(zl,~~,~3) 

where 

D(z,,z,>z3) = 
(z2 +2)(z3 +2.5) -(zl +3)(z3 +2.5) 1 

-(z,+O.5)(2,+2)(2,+4.5) (Z3+0.5)2(zl+3)(z3+4.5)J 



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 35, NO. 10, OCTOBER 1988 1321 

and 

(z,+0.5)(z3-0.5) 0 
N(z,, z 2923) = 0 1 (z3 +0.5)(2, -0.5) . 

It can be checked [18] that D(z,,z,,z,) and N(z,,z,,z,) are 
FRC. But 

detD=(z3+O.5)(z3-O.5)(zl+3)(z,+2)(z3+2.5)(z3+4.5) 

which has zeros in the unstable region c3. 0 
The above example shows that the determinant test for struc- 

tural stability of 2-D systems due to Humes-Jury [ll] may not be 
extended to the n-D case when P(z) does not admit a MRC 
MFD. Nevertheless, a similar test for structural stability of 
multivariable LSI discrete causal n-D systems can be derived in 
terms of the generating polynomials. This will be discussed in the 
following two theorems. 

Theorem 3.4: Let b,(z),. . ., bs(z) denote the generating poly- 
nomials of P EIW “x’(z), where p ‘( m:‘). Then z” E C” is a 
pole of P(z) if and only if z” is a zero of b,(z). 

Proof (Necessity): Decompose P(z) into a right MFD: 

P(z) 9 N(z)D-‘(z). (3.11) 

Let F d [oT N~]~, and let u,(z);. ., ag(z) denote the IX Z 
minors of F. By Theorem 3.1, 

ui(Z) =d(Z)bl(Z)7 i=l;..,P (3.12) 

where d E tR[z] is a g.c.d. of u,(z);. ., up(z). From (3.11), 

P(z) = N(z)adjD(z)/detD(z). 

M(z) 

(3.13) 

Denote by m;,, the entry of M at the position (i, j). It can be 
seen by using Cramer’s rule that mi, j = det Di,,, where D,, j is 
the matrix D with the jth row replaced by the ith row of N. By 
appropriately permuting some of its rows, D,, j becomes an I X Z 
submatrix of F. Thus m,, , = + uk for some k E { 1, . . . . , /3 }. It is 
then clear from (3.12) that d(z) divides every entry of M(z), i.e., 

M(z) =d(z)N’(z) 

for some N’ E lRmX’[z]. But 

detD(z) =d(z)b,(z). 

Hence, after cancelling d(z) from M(z) and det D(z), (3.13) 
becomes 

P(z) = N’(z)/b,(z). (3.14) 

Therefore, if z” is a pole of P(z), it must be a zero of b,(z). 
Sufficiency: let d,(z) denote a least common multiple of 

the denominator of all the entries of P(z), i.e., P(z) = 
No(z){do(z)Z,}-l, where No E lRmx’[z]. Clearly, if z” is a zero of 
det(d,(z)Z,), then z” must be a pole of P(z). By Theorem 3.1, 
det(do(z)Z,) = d’(z)b,(z) for some d’E lR[z]. Therefore, if z” is 
a zero of b,(z),z’ is necessarily a zero of det(d,(z)Z,), and hence 
is a pole of P(z). 0 

As a direct consequence of Theorem 3.4, a test for structural 
stability of n-D systems is given as follows. 

Theorem 3.5: A LSI discrete causal-n-D system characterized 
by P(z) E R,“(z) is structurally stable if and only if b,(z) f 0 
in o”, where b,(z);. . , ha(z) are the generating polynomials of 
P(z). 0 

To conclude this paper, let us reconsider Example 3.1. 

Example 3.1 (continued): The 2 X 2 minors of [ DT NT] are 

a, = db, a2 = db, 

u3 = db, a4 = db, 

u5 = db, a6 = db, 

where d = ( z3 + 0.5)(z3 - 0.5) and b,; . . , b6 are the generating 
polynomials of P: 

bl=(zl+3)(z,+2)(z3+2.5)(z3+4.5) 

b,=(zl+3)(z3+2.5) 

b3=(z,+2)(z3+2.5) 

b,=-(z3+0.5)2(zl+3)(z3+4.5) 

b,=-(z3+0.5)(z,+2)(z3+4.5) 

b6 = (z3 +O.~)(Z, -0.5). 

Clearly, b,(z,, z2, z3) has no zeros in u3. By Theorem 3.5, the 
3-D system P(z,, z2, zs) is structurally stable, which agrees with 
the fact that P(z,, z2, z3) has no poles in 03. 0 

APPENDIX 

Proof of Theorem 3.2: The proof is divided into two steps. In 
Step I, we show that b, = kb, for some k E Iw*. It will then be 
proved in Step 2 that for each i ,E (2,. . . , /I }, there exists some 
t= {T..-,P} such that b, = 5 kb,, and when i ranges over the 
set (2;. ., /?},talsorangesovertheset(2;..,p}. 

Step 1: For convenience of exposition, let 

~q~~[Z1,...,Zq-l,Zq+l,...,Zn]; 

IF~~Iw(zl;~-,zq-l,zq+l,~~~,z,); q=1,2;..,n. 

Clearly, Iw, is a ring, while IF, is a field. Moreover, 

Wz] =R[zl;..,Zq-l,Zq,Zq+l,...,Z,] 

=R[zl,...,Zq-l,Zq+l,...,Z,][Zql =R,b,l 
R(z) =R(zl,~~~,Zq-l,Zq,Zq+l,~~~,Z,) 

=~(~l,~~~,~q-l,~q+l,~~~,~,)(~q~ =qz,). 

Thus, P(z) E ovX’(z) can also be considered as P(z) E 
lFmX’(z,), for q =1,2; . ., n. By using a well-known 1-D tech- 
mque (see, e.g., [7]), P(z) can be decomposed into coprime 
MFD’s in IF4[ z,], i.e. 

p = b;-$?; = N;D;-l (A.la) 

such that 

[I ;I[; ;]=[z ;-I, q=1,2 ;.., n 

(A.lb) 

where b;, I?;, .%i, %, D;, N;, Xi, and Y; are matrices of 
appropriate sizes with entries in IF4[z4]. In view of the notation 
for F,, f E IF4[ z4] implies that f(z) is in R(z) with a denominator 
independent of the variable zq. Simple manipulation of (A.l) 
gives the following MFDs of P(z): 

(A.2a) 
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such that that 

fq qq [ I[ D4 Y4 

- fiq fiq Nq Xq or 

det S+ odet Dqi = det E;det iqi 

(A.2b) _ 
det,!&.b,d,=&detE;$Jq, q=1,2;..,n. 

where 1)4, fiq, 2 4’ yq, Dq, N4, X4, Y4, &, and E4 are matrices 
of appropriate sizes with entries in W,[z,] = R[z]. Moreover, 
det & det S4 and det T4 are independent of the variable zq. From 
64.2), 

q=1,2,*..,n. 

Thus 

det $.det D4 = det E;det z$, q=1,2,...,n. (A.3) 

By Theorem 3.1, det D4 = d,b,, where d, is a g.c.d. of the I X 1 
minors of the matrix [e,’ N,T]r. In view of (A.2b), d, must be 
independent of zq. Sinularly, det ii4 ; iqbl, where iq. is a g.c.d. 
of the m x m minors of the matrix [ D4 N,], and d4 is indepen- 
dent of zq. Hence, (A.3) becomes 

detSb.dsbl=detE;d-,~,, q=1,2;..,n (A.4 

or 

4 det Eg- Jq 

c = det $. d4 
EEq, q=1,2;..,n. 

Thus b, /8, is independent of zq (q = 1,2, * . . , n), and must be a 
non-zero constant k E R*. 

Step 2: Denote by uql; . ., a,8 the I X I_mincrs of [DTNq?jT, 
and by d,,. . +, a”,B the m X m minors of [ D4 N,]. By Theorem 
3.1, 

uqi = d,b,; c?,~ = d&, i=l;..,/I 

Let “ii,. . . , a& denote the m X m .minors of [ - Nq hq]. It is 
easy to see that a’ = Z$, and for each t E { 2,. . . , B }, there exists 
jE {1;..,/3--l}, suchthat 

aqr 
= + 5’ 

- 4J’ 

Moreover, when t ranges over the set (2,. . . , 
over the set (l;.., j3 - 1) N t for each i e:$ j also ranges’ . ex, ,. . .,/3}, there 
exists a row permutation matrix Qi (det Qi = & 1) such that 

q=1,2;..,n 

with det Dqi = uqi = bid,. Recalling (A.2b) gives 

(A.61 

Let SqiAQiSq, SqiASqQ,T’,and[--Nqi bqi]‘[-Nq hq]Q;‘. 
Then det Dqi = ~74~ for some j E (1; . .,/3_-- l}. Recalling (A.?), 
there exists t E (2,. . . , /3}, such that det Dqi = + iiq,, or, det Dqi 
= f &Jq, for q =1,2,. . a, n. Rewrite (A.6) as 

sqisqi = T, , q=1,2;-.,n. 

By using an argument similar to the one used in Step I, it follows 

Thus 

b; = -r- 
det E;d:, I 

det Sqi + d, b’ 

det Eq.Jq _ 

=’ detSq.dq b, 

since det Sq, = det Sq det Q; ’ = f det Sq. 
It can be easily seen that when i ranges over (2,. . . 

ranges over {l;..,p-l}, and thus t ranges over (2 . iy.]’ j 
Therefore, by appropriately reordering b,(z), . : :, ii(z) as 

b;(z),:. ., b;(z), with b,(z) = b{(z), we have 

b,(z) = f kb:(z), i=2;.-,/3. 0 
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