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A Robust Algorithm for Linearly Constrained
Adaptive Beamforming
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Abstract—A new approach to robust adaptive beamforming for
wideband array signals is proposed. General steering vector er-
rors, such as direction-of-arrival mismatch and array positional
error, are modeled by “time-delay errors” and compensated for
by self-adjusted interpolation filtering. The proposed method ef-
fectively overcomes the target–signal cancelation problem without
suffering from loss in the degree of freedom for interference rejec-
tion, as verified by simulations.

Index Terms—Broadband array, robust adaptive beamforming,
time-delay errors.

I. INTRODUCTION

ADAPTIVE array processing has received considerable at-
tention in the past decades due to its wide applications

in the fields of wireless communications, speech acquisition,
sonar, and so on [1], [2]. To achieve high interference suppres-
sion, an adaptive array is able to adjust its beampattern in real
time to introduce deep nulls in the directions of arrival (DOA) of
strong interferences. The presteered linearly constrained adap-
tive beamformer (see Fig. 1), also named the Frost processor,
which is used to enhance wideband wave signals, e.g., speech
signals impinging on a microphone array, has been extensively
studied in the literature [3], [4].

Using the conventional Frost algorithm, target–signal can-
celation can occur when there exist steering vector errors,
including DOA mismatch, positional error, etc. Several robust
beamforming techniques have been proposed to solve this
problem [5]–[9]. The constraint-based methods [5], [6] are
easy to implement, but the constraints introduced can reduce
the beamformer’s degree of freedom in interference rejec-
tion. Recently, a robust generalized sidelobe canceler based
on a blocking matrix using constrained adaptive filters was
presented [7]. This method is robust to steering vector errors
and exhibits quite good interference cancelation capability,
but control of the adaptive process of two adaptive modules is
difficult. Another type of robust beamformer is based on array
calibration [9]. It employs the beamformer output power as
an objective function to correct DOA mismatch. This method
causes no loss in the degree of freedom in interference rejection,
and its computation cost is low, since the calibration is required
only when there are detectable changes in signal scenarios, e.g.,
DOA mismatch. The proposed algorithm in this letter can be
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Fig. 1. Wideband beamformer with K sensors and J taps per sensor.

regarded as an extension of the work of [9] in two aspects. First,
wideband signals (as against narrowband signals discussed in
[9]) are treated here. Second, general steering errors (including
not only DOA mismatch but also positional errors, etc.) are
considered. The novelty of the proposed algorithm is that gen-
eral steering vector errors mentioned above are represented by
“time-delay errors” of array signals and subsequently corrected
by time-shift operations using the well-known interpolation
function. The adjustment using time-shift operations aims
to compensate for steering vector errors by maximizing the
beamformer output power locally, which can be done when the
target signal just appears or changes.

II. PROBLEM FORMULATION

Consider a presteered wideband beamformer with
sensors and taps per sensor (Fig. 1). The contin-
uous-time signal received by the th sensor is designated
by , which can be written as

where is the desired signal from the look direction,
denotes the propagation delay difference of the desired

signal at the th sensor, and represents the totality of
interference and noise observed at the th sensor. The front
end of a presteered linearly constrained adaptive beamformer
is either digital or analog time delays placed immediately after
each sensor, and its function is to steer the array response to
the direction of interest. These steering time delays aim to
align the desired signal component at each sensor
output exactly in phase. So, it is required that the time delay
added to each sensor output is able to completely compensate
for the actual delay difference . These additive time delays
are usually calculated based on the knowledge of the DOA
of the desired signal and the array steering vectors. However,
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due to practical imperfections such as steering vector errors,
the real delay differences are impossible to be perfectly
compensated for in this way. The misalignment of the desired
signal component at each sensor output will cause the desired
signal to be regarded as interference and then canceled by the
adaptive processor. After the steering delay compensation, the
signal at each sensor output becomes

where represents the residual delay difference of the desired
signal. It is clear from the above discussion that the desired
signal components are perfectly aligned only when

, are all equal. The digitalized signal at the th sensor
output is

(1)

where represents the sampling period. The vector of the array
signal at time is defined as in the first equation shown at the
bottom of the page. Following the time delay components in
Fig. 1 is a multichannel adaptive processor whose weights are
iteratively adjusted to minimize output noise/interference power
while maintaining a certain frequency response in the look di-
rection. When the steering delays in (1)
are all equal, the optimization problem of the Frost algorithm is
formulated as

subject to (2)

Here is the expected beamformer output power, and de-
notes matrix transpose. is the vector of tap weights, i.e.,

is the array correlation matrix. is
the constraint matrix and it is defined by

(3)

where

(4)

is a vector of size , which determines the frequency
response in the look direction.

With the method of Lagrange multipliers, the optimal weight
vector of (2) is given by

(5)

The optimal beamformer output power is given by

(6)

However, when there are steering vector errors, i.e., not
all equal, the constraint matrix given by (3) and (4) does not

match the true array scenario and can cause serious target–signal
cancelation. In Section III, the proposed algorithm aims to use
a slightly adjustable constraint matrix instead of the fixed
so that target–signal cancelation does not occur in the presence
of small steering vector errors.

III. PROPOSED ALGORITHM

Assume that is a signal vector received by the sensor
array when there exist steering vector errors. So, the desired
signal components in are not perfectly aligned in phase,
i.e., are not all equal in . Assume also that is the
signal vector related to by an accurate time-shift opera-
tion that is used to correct the misalignment in , i.e.,
is the corresponding signal vector of except that the de-
sired signal components in are ideally aligned. Then, the
optimal weight vector in (5) with given by (3) and (4)
corresponds only to but not to . The time-shift op-
eration between and can be approximately realized
through a linear transformation matrix , which is given by

(7)

Here, assuming for the moment that are
known, the matrix of size is defined as in (8),
shown at the bottom of the page, where

is the th row of . Each is a
row vector consisting of subrow vectors as

(9)

where is a row vector given by

(10)

in which the only possibly nonzero element of is at its th
position and denoted by . Here, are the interpo-
lation filter coefficients that shift a signal along the time axis by

, i.e.,

(11)

Since has infinite length, to compensate for the time delay,
completely would require to be infinite. Nevertheless, (8)

is still a good approximation in practice if is large enough,
since the magnitude of diminishes as fast as .

Minimizing the beamformer output power for gives

(12)

where and represent the weight vector and the output
power for , respectively. Using (7), (12) becomes

(13)

(8)
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Comparing (13) with (2), the correct constraint matrix for
is no longer ; instead it is given by

(14)

Therefore, the new optimization problem is

subject to (15)

In practice, however, since is unknown, cannot be di-
rectly computed using (8)–(11). It follows that cannot be
directly solved using (14). To overcome this difficulty, we as-
sume that is small so that the norm of , denoted by

, is also small, implying that lies in the neighbor-
hood of . Furthermore, when the selected satisfies the real
scenario of array signals with general steering vector errors, the
beamformer output retains the desired signal with minimal dis-
tortion. Otherwise, the desired signal is canceled more or less as
interference. So, it is clear that the optimal output power
should have a local maximum with respect to different selec-
tions of . Therefore, a method to find the desired is to per-
form a local search in the vicinity of to maximize the optimal
beamformer output . For example, if the target–signal can-
celation is caused by DOA mismatch, the search for is analo-
gous to a small but important readjustment to the look direction
of the presteered beamformer so that this look direction lies in
the true DOA of the desired signal [9]. Thus, the criterion for
this local search algorithm is given by

subject to (16)

where is a small positive real number used to control the
size of the feasible region around . The value of is exper-
imentally set based on the norm of steering vector errors. As

in view of (6), (16) is equiv-
alent to

subject to (17)

We choose to minimize the reciprocal of the beamformer output
power instead of maximizing the output power itself, since the
former method is numerically more stable than the latter when
using the gradient method. Since and is a function
matrix of , (17) can be rewritten as

subject to (18)

The problem of (18) is a multidimensional nonlinear opti-
mization problem. In this letter, the gradient method is used to
find the optimal . Let ; the partial
derivative of in (18) with respect to is given by

(19)

where

(20)

and

(21)

can be calculated using (8)–(11), and its computation
is essentially that of , which is given by

(22)

where
.

As the time delay differences are all relative quantities
compared to each other, it is required to fix one of them, say

, and adjust other to find the local
maximum of . The use of the gradient search method re-
quires that the iterative process is convergent. Extensive simu-
lations have shown that the proposed optimization process al-
ways converges when steering vector errors are small, although
a theoretical proof is not yet available.

The proposed algorithm is now summarized as follows.

Step 1) When new signal data is received, the corre-
lation matrix is updated by

where is the update coefficient and close to one.
Step 2) The partial derivatives of with respect to

are calculated using (19)–(22),
and then are updated as

where is a small positive number used to control
the convergence speed. is fixed as zero. The
initial values are set to be
zeros.

Step 3) The constraint matrix is updated by

where is computed according to (8)–(11) with
the new .

Step 4) Check whether . If this condition
is violated, it is known that the incoming signals are
all interferences and noises and, hence, needs to
be reset to . Otherwise, Steps 2)–4) are repeated
until converges to the desired constraint matrix

.
Step 5) The traditional iterative algorithm is employed to

find the optimal based on [3].

IV. SIMULATION RESULTS

In this section, the proposed algorithm is evaluated by com-
puter simulations. A four-element uniform linear microphone
array is used in this simulation. The spacing between micro-
phones is 0.04 cm, and the sampling rate is 8 kHz. Bandlimited
Gaussian signals (0.3–3.4 kHz) are used as source signals, and
the assumed look direction is 0 . The interferences are far from
0 , and 30-dB sensor noises are added. The length of tap line
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Fig. 2. Acceptance angle of adaptive beamformer.
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Fig. 3. Beampattern in the presence of array positional error.

for each sensor is . The look direction filter in (15)
is designed to be a lowpass filter with passband (0–3.0 kHz). In
the simulations, the step size is 10 s, and the allowed max-
imal iteration times is 200.

The first simulation shows the capability of the proposed al-
gorithm in widening the acceptance angle when there exists
DOA mismatch. The beampatterns of the proposed algorithm,
the conventional Frost algorithm, and the fixed beamformer are
plotted in Fig. 2. It is shown that the acceptance angle of the con-
ventional Frost algorithm is quite narrow, which is significantly
widened by the proposed algorithm. Note that the parameter
in (16) is set to control the range of acceptance angle. Here,

is used so that the acceptance angles are in the range
of . The fixed beamformer has a wider main lobe,
but its sidelobe level is much higher.

The second simulation demonstrates the performance of the
proposed beamformer when the actual positions of array sensors
slightly differ from the nominal ones. Assume that the four sen-
sors are placed randomly away from their presumed locations,

i.e., , , 0.04 m,
where is the unit vector along the axis, and is the po-
sitional error vector of the th sensor. In this simulation,
are generated as two-dimensional random Gaussian noises with
variance . Fig. 3 shows the beampattern of the proposed
algorithm in this case. The assumed and actual sensor loca-
tions are at (0.0000,0.0000), (0.0400, 0.0000), (0.0800,0.0000),
(0.1200, 0.0000), and (0.0045, ), (0.0367, ),
(0.0827,0.0087), (0.1235, ), respectively. It is shown
that the proposed algorithm is able to avoid target–signal can-
celation compared with the conventional Frost algorithm. The
proposed algorithm still maintains a certain range of acceptance
angle around 0 , although it is narrower than that in Fig. 2. This
is because we still use , which must now tolerate both
DOA mismatch and sensor positional error. We could also in-
crease to further widen the acceptance angle if required.

V. CONCLUSION

A new method has been proposed to improve the robustness
of a linearly constrained adaptive beamformer against general
steering vector errors such as DOA mismatch and sensor posi-
tional error. The novelty of this method is the modeling of the
constraint matrix by time-shift function so that it can be adap-
tively adjusted to avoid target–signal cancelation. As this model
does not require any knowledge of array manifold functions, it is
robust against various types of errors that cause the conventional
Frost algorithm to fail. Simulation results have shown that the
sensitivity of the adaptive beamformer to steering vector errors
can be significantly lowered by the proposed algorithm. With its
promising performance, we will further investigate the conver-
gence of the proposed adaptive algorithm and the relative issue
of the approximation effect in the interpolation function. In par-
ticular, fractional delay interpolation filters may be exploited to
improve the computational efficiency [10].
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