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Feedback Stabilization of MIMO nD Linear Systems

Zhiping Lin

Abstract—The open problem of the existence of double coprime factor-
izations (DCFs) for multi-input/multi-output (MIMO) multidimensional
(nD) linear systems is considered in this paper. It is shown that DCFs exist
for a class of MIMO nD linear systems. A simple and efficient method
is proposed for the construction of DCFs. The main result of the paper
is to show how to construct a coprime (over the ring of stable rational
functions) matrix fraction description of a given MIMO nD system with a
stable reduced minor. A parameterization of all stabilizing compensators
is given for a MIMO nD system in this class. An example is illustrated.

Index Terms—Feedback stabilization, multidimensional systems, param-
eterization, reduced minors.

I. INTRODUCTION

The problem of (output) feedback stabilization of multi-input/multi-
output (MIMO) linear systems has drawn much attention in the past
years because of its importance in control and systems (see [1]–[10]
and the references therein). Consider a standard feedback system with
P representing a plant andC a compensator. Let

Heu =
(I + PC)�1 �P (I + CP )�1

C(I + PC)�1 (I + CP )�1
: (1)

P is said to be feedback stabilizable if and only if there exists a com-
pensatorC such that the feedback systemHeu is stable, i.e., each entry
of Heu has no poles in the unstable region [2]. For linear discrete mul-
tidimensional (nD) systems, the feedback system is structurally stable1

if and only if each entry ofHeu has no poles in the closed unit polydisc
Un = f(z1; . . . ; zn): jz1j � 1; . . . ; jznj � 1g [11], [12].

The problem of feedback stabilization of MIMO two-dimensional
(2-D) systems using the matrix fraction description (MFD) approach
has been investigated by a number of researchers (see, e.g., [3]–[6] and
the references therein). Constructive algorithms for the feedback sta-
bilizability and stabilization problem have been presented for MIMO
2-D systems [3]–[6]. Furthermore, the parameterization ofall stabi-
lizing compensators for a given stabilizable 2-D system has been given
in [3], which is a generalization of the celebrated result on the parame-
terization ofall stabilizing compensators for a given one-dimensional
(1-D) system [1], [2].

Due to some fundamental differences between 2-D and nD (n � 3)2

polynomial matrices [13]–[16], results on stabilization of MIMO 2-D
systems cannot be directly generalized to their nD counterparts. Al-
though a necessary and sufficient condition for the feedback stabiliz-
ability of MIMO nD systems has recently been derived using the con-
cept of reduced minors [7], [8], it is still unknown whether or not there
exists a double coprime factorization (DCF) for a general stabilizable
MIMO nD linear system. In fact, this problem is a special case of a more
general problem on the existence of DCFs for linear systems over rings
posed by Vidyasagaret al. in 1982 [2]. For MIMO nD linear systems,
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Lin conjectured in [8] that a stabilizable system also has a DCF. Very
recently, a new result is presented in [10] on the existence of DCFs for
a class of MIMO three-dimensional (3-D) systems, which leads to the
parameterization ofall stabilizing compensators. See [10] for a more
detailed discussion on feedback stabilization of MIMO nD systems.

However, the method proposed in [10] has several limitations.
Firstly, the method is valid for 3-D systems only. Secondly, the
method may not work if the content associated with a left or a right
MFDs of a given MIMO 3-D system has a multiple zero. Thirdly, the
resultant DCFs may have complex coefficients even when the original
system transfer matrix has only real coefficients. Fourthly, it may be
computationally rather involved in solving a Bézout identity.

In this paper, we show that for a class of MIMO nD linear systems, it
is always possible to construct DCFs, thus it is one further step toward
proving the conjecture raised in [8] and solving the open problem posed
in [2]. The proposed new method does not have any limitations men-
tioned above for the class of nD systems under discussion. The main
result in the paper is to show how to construct a coprime (over the ring
of stable rational functions) MFD of a given MIMO nD system with a
stable reduced minor.

The organization of the paper is as follows. In the next section, after
reviewing some necessary notation and definition, the main results will
be presented. An illustrative example will then be given in Section III.
Section IV ends this paper with a conclusion. To save space, we refer
the reader to the cited references for some definitions and properties
which require rather lengthy descriptions, such as reduced minors and
causality.

II. M AIN RESULTS

In the following, we shall denoteR the field of real numbers;
R(z) = R(z1; . . . ; zn) the set of rational functions in complex
variables z1; . . . ; zn with coefficients inR; R[z] the set of nD
polynomials overR; Rs(z) the subset of rational functions inR(z)
having no poles inUn;Rm�l[z] the set ofm� l matrices with entries
inR[z];Rm�l

s
(z) the set ofm� l matrices with entries inRs(z), etc.

Throughout this paper, an nD polynomial is called a stable polynomial
if it has no zeros inUn, otherwise it is called an unstable polynomial.
The argument(z) is omitted whenever its omission does not cause
confusion.

Since DCF is the main concern of this paper, the definition of DCF
is recalled.

Definition 1 [2], [10]: Let P 2 R
m�l(z) represent an MIMO nD

system. ThenP is said to have a DCF if:

1) there exist~Ds 2 R
m�m
s

(z);Ds 2 R
l�l
s

(z), and ~NsNs 2

R
m�l
s

(z);
2) there exist ~Xs 2 R

l�l
s

(z);Xs 2 R
m�m
s

(z), and ~Ys; Ys 2
R

l�m
s

(z);
3) ~Ds;Ds; ~Xs;Xs are all nonsingular;
4) P = ~D�1s ~Ns = NsD

�1

s and the following Bézout identity
holds3 :

~Xs
~Ys

� ~Ns
~Ds

Ds �Ys

Ns Xs

=
Il 0l;m

0m;l Im
: (2)

Following conventional definition [2],P = NsD
�1

s is said to be a
right coprime (overRs(z)) MFD ofP if there exist~Xs 2 R

l�l
s

(z) and
~Ys 2 R

l�m
s

(z) such that~XsDs + ~YsNs = Il. Obviously,NsD
�1

s is
right coprime if and only if the associated matrix[DT

s NT
s ] is of full

rank inUn. Analogous results hold for left MFDs. Also, for simplicity,
the phrase “(overRs(z))” is omitted in the rest of the paper.

3I is thel � l identity matrix and0 denotes them� l zero matrix.

In this section, the DCF problem is solved constructively for a class
of MIMO nD linear systems. Coprime MFDs,~D�1s

~Ns andNsD
�1

s ,
are first constructed forP , followed by a solution to the Bézout identity
(2).

Theorem 1: Let P 2 Rm�l(z) represent a feedback stabilizable
MIMO nD system, and letb1; . . . ; b� denote the reduced minors of
P (z). If there exists somebJ (1 � J � �) such thatbJ 6= 0 in Un,
thenP has coprime right and left MFDs.

Proof: Write P (z) asP = N=d whered is the least common
multiplier of the denominators of all the entries ofP . DecomposeP
into a left and a right MFDs,P = (dIm)�1N = ~D�1 ~N = ND�1 =
N(dIl)

�1. Leta1; . . . ; a� denote thel�l minors ofF = [DT NT ]T ,
and~a1; . . . ; ~a� them � m minors of ~F = [� ~N ~D]. By a result
on reduced minors [14], [17], we haveai = d0bi, and~ai = � ~d0bi
(i = 1; . . . ; �), whered0; ~d0 2 R[z], and the sign depends on the
index i. The assumption thatP is feedback stabilizable implies that
b1; . . . ; b� have no common zeros inUn [7], [8]. If d0 6= 0 in Un,
thena1; . . . ; a� have no common zeros inUn. It follows thatF is of
full rank inUn and henceND�1 is a desirable coprime right MFD of
P . Similarly, if ~d0 6= 0 in Un, ~D�1 ~N is a coprime left MFD ofP .
Therefore,P has coprime MFDs whend0 6= 0 and ~d0 6= 0 in Un.

Assume now thatd0(z0) = 0 for some(z0) in Un. ThenF (z0) is
not of full rank and consequently,ND�1 is not a coprime right MFD
of P . We show in the following how to obtain a coprime right MFD of
P when there exists somebJ (1 � J � �) such thatbJ 6= 0 in Un.

SinceP = ~D�1 ~N = ND�1, we have

[� ~N ~D]
D

N
=0m;l (3)

or
~FF =0m;l: (4)

After some suitable row permutations onF , we obtain a new polyno-
mial matrixFJ = [DT

J NT
J ]T , NJ 2 R

m�l[z], DJ 2 R
l�l[z] with

detDJ = d0bJ . This is equivalent to finding a constant unimodular
matrixU0, which is a product of a finite number of row permutation
matrices, such that

U0F = FJ : (5)

Combining (4) and (5) gives

~FF = ~FU�10 U0F = ~FJFJ = 0m;l (6)

where ~FJ = ~FU�1
0

. Partition ~FJ as ~FJ = [� ~NJ
~DJ ], ~NJ 2

R
m�l[z], ~DJ 2 R

m�m[z]. It can be shown [14], [17] thatdet ~DJ =
� ~d0bJ . SinceFJ is obtained by performing row permutations onF , it
is clear [8] that the greatest common divisor (g.c.d.) of thel� l minors
of FJ is equal tod0 and the reduced minors ofFJ have no common
zeros inUn. Similarly, the g.c.d. of thel � l minors of ~FJ is equal to
~d0 and the reduced minors of~FJ have no common zeros inUn. From
(6), we have

[� ~NJ
~DJ ]

DJ

NJ

=0m;l (7)

or

PJ = ~D�1J
~NJ = NJD

�1

J (8)

wherePJ is a new rational matrix. From (8), we have

PJ =NJD
�1

J

=
NJ adj(DJ)

det DJ

=
NJ adj(DJ)

d0bJ
: (9)
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By the well-known Cramer’s rule [18], every entry offNJ adj(DJ)g
is just somel� l minor ofFJ and is hence divisible byd0. Therefore,
(9) reduces to

PJ =
N 0

J

bJ
= N

0

JD
0

J
0�1 (10)

whereN 0

J 2 R
m�l[z],D0

J = bJIl 2 R
l�l[z] withdet D0

J = blJ 6= 0
in Un. Thus,F 0

J = [D0T
J N 0T

J ]T is of full rank inUn. SincePJ =
N 0

JD
0

J
�1, we have

~D�1
J

~NJ =N
0

JD
0

J
�1 (11)

or

[� ~NJ
~DJ ]

D0

J

N 0

J

= ~FJF
0

J = ~FU�1
0 F

0

J

= ~FFs = 0m;l (12)

whereFs = U�1
0 F 0

J 2 R
(m+l)�l[z]. SinceU0 is a unimodular matrix,

Fs is also of full rank inUn [8]. PartitionFs asFs = [DT
s NT

s ]T ,
Ns 2 R

m�l[z], Ds 2 R
l�l[z]. From (12), we have

~FFs = [� ~N ~D]
Ds

Ns

= 0m;l: (13)

It can be shown [5], [17] thatdet Ds 6� 0 sincedet ~D 6� 0. We then
have

P = ~D�1 ~N = NsD
�1
s : (14)

Thus,NsD
�1
s is a coprime right MFD ofP . It can be similarly argued

thatP also admits a coprime left MFDP = ~D�1
s

~Ns.
It is seen from the above proof procedure that for the class of nD sys-

tems satisfying the condition stated in Theorem 1, DCFs can be con-
structed efficiently. In fact, it is not necessary to obtain the matrixU0.
We summarize in the following an algorithm for constructing a coprime
right MFD ofP . The algorithm can also be applied for obtaining a co-
prime left MFD ofP after minor modification.

Algorithm 1: Let P (z) be given in Theorem 1. A coprime right
MFD of P can be constructed in three steps.

Step 1: DecomposeP into a left and a right MFDs,P = ~D�1 ~N =
ND�1. Let F = [DT NT ]T , and ~F = [� ~N ~D].
Suppose thatDJ is formed from rowsJ1; . . . ; Jl ofF (1 �
J1 < . . . < Jl � m+ l), with det DJ = d0bJ , bJ 6= 0
in Un. For i = 1; . . . ; l, swap rowi with row Ji of F .
If Ji = i for somei, no swapping is required for such
i. After the swapping, we obtain a new polynomial matrix
FJ = [DT

J NT
J ]T .

Step 2: Introduce a new rational matrixPJ = NJD
�1
J and obtain

a coprime right MFD ofPJ asPJ = N 0

JD
0

J
�1 [see (9) and

(10)], whereD0

J = bJIl.
Step 3: LetF 0

J = [D0T
J N 0

J
T ]T . For i = 1; . . . ; l, swap rowi

with row Ji of F 0

J , whereJi is identical toJi in Step 1.
Partitioning the resultant polynomial matrixFs asFs =
[DT

s NT
s ]T , Ds 2 R

l�l[z], Ns 2 R
m�l[z], we finally

get a coprime right MFD ofP asP = NsDs
�1.

Remark 1: The above algorithm is equivalent to constructing an
Fs 2 R

(m+l)�l[z] such thatFs is of full rank inUn and ~FFs = 0m;l.
Theorem 1 is now generalized to a larger class of stabilizable

MIMO nD systems that have coprime right and left MFDs. Moreover,
a very simple and computationally efficient method is also proposed
for solving the Bézout identity (2).

Theorem 2: Let P 2 R
m�l(z) represent a causal4 feedback

stabilizable MIMO nD system. LetND�1 be a right MFD of
P , and F = [DT NT ]T . If there exists a unimodular matrix
U 2 R

(m+l)�(m+l)[z] such that a reduced minor of the polynomial
matrixF1 = UF is devoid of any zeros inUn, thenP has a DCF.

Proof: We first construct coprime right and left MFDs forP (z),
and then solve the Bézout identity (2). DecomposeP into a left MFD,
P = ~D�1 ~N , and let ~F = [� ~N ~D]. SinceP = ~D�1 ~N = ND�1,
we have

[� ~N ~D]
D

N
= [� ~N ~D]U�1

U
D

N
= 0m;l (15)

or
~F1F1 =0m;l (16)

where~F1 = ~FU�1 2 Rm�(m+l)[z]. Suppose that a reduced minor of
the matrixF1 = UF is devoid of any zeros inUn. Applying Algorithm
1, we can constructF 0

s 2 R
(m+l)�l[z], with F 0

s being of full rank in
Un, such that

~F1F
0

s =0m;l (17)

or
~FU�1

F
0

s = ~FFs = 0m;l (18)

whereFs = U�1F 0s 2 R
(m+l)�l[z]. SinceU is a unimodular matrix,

Fs is also of full rank inUn [8]. PartitionFs asFs = [DT
s NT

s ]T ,
Ns 2 R

m�l[z], Ds 2 R
l�l[z]. From (18), we have

~FFs = [� ~N ~D]
Ds

Ns

= 0m;l (19)

or

P = ~D�1 ~N = NsD
�1
s : (20)

Thus,NsD
�1
s is a coprime right MFD ofP . It can be similarly argued

thatP also admits a coprime left MFDP = ~D�1
s

~Ns.
It remains to solve the Bézout identity (2). As demonstrated in [3]

and [10], the most critical part for solving the Bézout identity (2) is to
obtain ~X 2 Rl�l[z], X 2 Rm�m[z], ~Y ; Y 2 Rl�m[z], such that

~XDs + ~Y Ns =S1 (21)

and
~NsY + ~DsX =S2 (22)

for someS1 2 Rl�l[z], S2 2 Rm�m[z] with det S1 6= 0, det S2 6=
0 in Un.

From the wayF 0

s is constructed by Algorithm 1, we know that
det DJ = blJ 6= 0 in Un, whereDJ is formed from rowsJ1; . . . ; Jl
of F 0

s (1 � J1 < � � � < Jl � m + l). Now construct a constant
matrixH of sizel� (m+ l) by placing theith column of the identity
matrix Il in theJith column ofH , and zeros at other columns ofH .
It is then easy to show that

HF
0

s =DJ (23)

or

HUU
�1
F
0

s = ~HFs = DJ (24)

where ~H = HU . Partition ~H as ~H = [ ~X ~Y ], ~X 2 R
l�l[z], ~Y 2

R
l�m[z]. Equation (24) becomes

~XDs + ~Y Ns = DJ : (25)

4See [3] and [8] for the definition of causality of nD systems.
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Equation (22) can be solved similarly. Once (21) and (22) have been
solved, it is easy to solve the Bézout identity

~Xs
~Ys

�

~Ns
~Ds

Ds �Ys

Ns Xs

=
Il 0l;m

0m;l Im
(26)

for some ~Xs 2 Rl�l
s

(z), Xs 2 R
m�m
s

(z), and ~Ys; Ys 2 R
l�m
s

(z).
SinceP is causal by assumption, using a technique similar to the one
in [5], we can findXs(z) and ~Xs(z) such thatdet Xs(0; . . . ; 0) =
detXs(0) 6= 0, anddet ~Xs(0) 6= 0. This immediately implies that
Xs(z) and ~Xs(z) are nonsingular. The details can be worked out sim-
ilarly as in [5], [8], and [10], and are omitted here to save space.

Remark 2: For the 2-D case, several constructive methods have
been proposed for solving the 2-D version of (21) and (22) [3]–[6].
However, for the nD case, the only available method for solving (21)
and (22) is from [19], which is computationally rather involved. In
fact, the authors of [19] did not tell how to construct a stable nD
polynomial that vanishes at the variety of the ideal generated by the
maximal order minors of[DT

s NT
s ]T or [� ~Ns

~Ds]. As mentioned
in [9], the construction of such a stable nD polynomial is crucial for
solving (21) and (22). One of the contributions of this paper is the
development of a very simple and computationally efficient method
for solving (21) and (22) for the class of nD systems satisfying the
condition stated in Theorem 2.

Before ending this section, following [1]–[3], [10], we can give a
parameterization ofall stabilizing compensators for a stabilizable nD
systemP 2 Rm�l(z) satisfying the condition stated in Theorem 2

C = ~Xs �Q ~Ns

�1

~Ys +Q ~Ds :

Q 2 Rl�m
s

(z) and det ~Xs �Q ~Ns 6� 0: (27)

III. EXAMPLE

Consider a causal unstable2�2 four-dimensional (4-D) system rep-
resented by

P (z1; . . . ; z4) =
1

g

g 0

z3z4 f
(28)

whereg = 1 + z1 � z2, f = 1 � 4z1z2. DecomposeP into MFDs,
P = ~D�1 ~N = ND�1, where

D = ~D =
g 0

0 g
; N = ~N =

g 0

z3z4 f
:

Let F = [DT NT ]T , ~F = [� ~N ~D], and leta1; . . . ; a6 denote
the2 � 2 minors ofF . We have,ai = d0bi for i = 1; . . . ; 6, where
d0 = g = 1 + z1 � z2, andb1; . . . ; b6 are the reduced minors ofF
given by

g; 0; f; �g; �z3z4; f:

The set of all the common zeros ofb1; . . . ; b6 can be calculated as

�1 +
p
2

2
;
1�p2

2
; z30; 0 ; �1 +

p
2

2
;
1�p2

2
; 0; z40

�1 +
p
2

2
;
1 +

p
2

2
; z30; 0 ;

�1 +
p
2

2
;
1 +

p
2

2
; 0; z40

where z30 and z40 are arbitrary complex numbers. It is clear that
b1; . . . ; b6 have no common zeros inU4. Hence,P (z1; . . . ; z4) is
feedback stabilizable [7], [8]. However, sinced0 has some zeros in
U4, such as (�0.5, 0.5, 0, 0),F is not of full rank inU4. Thus,ND�1

is not a coprime right MFD ofP . Since the general nD polynomial
matrix factorization problem is still open [15], [16], we do not know
whether or not a right factor with determinant equal tod0 can be
extracted fromF directly. The method proposed in [10] cannot be
applied here either sinced0 depends on bothz1 andz2, andF is a 4-D
polynomial matrix. As none of the reduced minors ofP is a stable
polynomial, Theorem 1 cannot be directly applied. However, we
observe that there exists a unimodular matrixU such that a reduced
minor ofUF becomes a stable polynomial. In fact, using a result from
[20], we have

2 1 +
p
2 g + f =2 1 +

p
2 (1 + z1 � z2) + 1� 4z1z2

= 4
1 +

p
2

2
+ z1

1 +
p
2

2
+ z2

s

(29)

wheres is obviously a stable polynomial. ChooseU as

U =

1 0 0 0

0 1 0 0

0 0 1 0

0 e 0 1

(30)

wheree = 2(1 +
p
2). Then

UF =

1 0 0 0

0 1 0 0

0 0 1 0

0 e 0 1

g 0

0 g

g 0

z3z4 f

=

g 0

0 g

g 0

z3z4 s

F

: (31)

The reduced minors ofF 0 are

g; 0; s; �g; �z3z4; s:

Sinces is stable, Algorithm 1 can be applied toF 0.

Step 1: Consider the2�2 matrixDJ formed from rows 1 and 4 of
F 0, with det DJ = d0bJ = gs. Swap row 2 with row 4 of
F 0. We obtain a new polynomial matrix

FJ =

g 0

z3z4 s

g 0

0 g

=
DJ

NJ

: (32)

Step 2: Introduce a new rational matrixPJ and obtain a coprime
right MFD of PJ as follows:

PJ =NJD
�1

J

=
g 0

0 g

g 0

z3z4 s

�1

=
1

s

s 0

�z3z4 g

=
s 0

�z3z4 g

N

s 0

0 s

D

�1

: (33)

Hence,N 0

JD
0

J
�1 is a coprime right MFD ofPJ .
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Step 3: LetF 0

J = [D0

J
T N 0

J
T ]T . Obviously,F 0

J is of full rank
in U4. Swap row 2 with row 4 ofF 0

J . We obtain a new
polynomial matrix

F
0

s =

s 0

�z3z4 g

s 0

0 s

(34)

which is also of full rank inU4. It is easy to check that
~F 0F 0

s = 0m;l, where ~F 0 = ~FU�1.
To obtain a coprime right MFD ofP , we have to premultiplyF 0s by

U�1, i.e.,

U
�1
F
0

s =

1 0 0 0

0 1 0 0

0 0 1 0

0 �e 0 1

s 0

�z3z4 g

s 0

0 s

=

s 0

�z3z4 g

s 0

ez3z4 f

F

: (35)

It follows that ~FFs = 0m;l. PartitioningFs asFs = [DT
s NT

s ]T , we
have arrived at a coprime right MFD ofP as

P (z1; . . . ; z4) =NsD
�1

s

=
s 0

ez3z4 f

s 0

�z3z4 g

�1

: (36)

Next, a coprime left MFD ofP can be easily obtained for this example
as

P (z1; . . . ; z4) = ~D�1

s
~Ns =

1 0

0 g

�1
1 0

z3z4 f
: (37)

It remains to solve the Bézout identity (2), or equivalently, (21) and
(22). We observe from (34) thatdet D0

J = s2 6= 0 in Un, whereD0

J

is formed from rows 1 and 4 of the matrixF 0s. Construct a2�4 constant
matrixH as

H =
1 0 0 0

0 0 0 1
:

It is then easy to verify that

HF
0

s = sI2 (38)

or
~HFs = sI2 (39)

where

~H = HU =
1 0 0 0

0 e 0 1
:

Obviously,det(sI2) = s2 6= 0 in U4. Partition ~H as ~H = [ ~X ~Y ],
where

~X =
1 0

0 e
and ~Y =

0 0

0 1
:

Equation (39) becomes

~XDs + ~Y Ns = sI2: (40)

Similarly, we can construct

X =
s2 0

�ez3z4(1� s) e
; Y =

s(1� s) 0

�z3z4(1� s) 1

such that

~NsY + ~DsX = S2 (41)

where

S2 =
1 0

z3z4 s
:

Obviously,det S2 = s 6= 0 in U4.
Once (40) and (41) have been solved, it is routine to solve the Bézout

identity. Choose

~Xs =
1

s

s 0

0 e
; ~Ys =

1

s

1� s 0

0 1

Xs =
1

s

s2 0

�ez3z4(1� s) e

and

Ys =
1

s

s(1� s) 0

�z3z4(1� s) 1
:

It can be verified easily that
~Xs

~Ys
� ~Ns

~Ds

Ds �Ys

Ns Xs

=
I2 02
02 I2

: (42)

The derivation is just routine calculation and is omitted here to save
space. Obviously,~Xs;Xs; ~Ys; Ys 2 R

2�2

s (z1; . . . ; z4), andXs, ~Xs

are both nonsingular. Therefore, a DCF ofP (z1; . . . ; z4) has been ob-
tained. Finally,all stabilizing compensators for the given unstable 4-D
systemP are parameterized by

C = ~Xs �Q ~Ns

�1

~Ys +Q ~Ds :

Q 2 R
2�2

s (z1; . . . ; z4) and det ~Xs �Q ~Ns 6� 0: (43)

IV. CONCLUSION

In this paper, we have solved the open problem of the existence of
DCFs for a class of MIMO nD linear systems. A simple and efficient
method has been proposed for the construction of DCFs when they
exist. The main result of the paper is to show how to construct a coprime
(over the ring of stable rational functions) matrix fraction description
of a given MIMO nD system with a stable reduced minor. A param-
eterization of all stabilizing compensators has also been given for an
MIMO nD system in this class.

For the class of MIMO nD systems under discussion, the proposed
method has several advantages compared with the recent result of [10].
Firstly, the new method is valid not only for 3-D systems, but also
for nD (n > 3) systems. Secondly, it works even when an unstable
g.c.d. associated with an MFD of a given MIMO nD system has mul-
tiple zeros. Thirdly, the resultant DCFs always have real coefficients
when the original system transfer matrix has only real coefficients.
Fourthly, the proposed method is very simple and computationally ef-
ficient in solving the Bézout identity (2). An illustrative example has
been worked out in details to support the new results presented in the
paper.

However, the new results presented in this paper are applicable only
to the class of MIMO nD linear systems whose reduced minors sat-
isfying the condition stated in Theorem 2. Thus, the problem of the
existence of a DCF for a general stabilizable MIMO nD linear system
is still open. Further investigation is required.
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The Routh–Hurwitz Array and Realization of
Characteristic Polynomials

Michael Margaliot and Gideon Langholz

Abstract—In this paper we show that the Routh–Hurwitz array of a
given characteristic polynomial provides all the information required to
realize the polynomial using an electrical circuit. This new interpretation
also leads to an intuitive proof of the Routh–Hurwitz stability criterion.

Index Terms—Realization theory, Routh–Hurwitz criterion, stability.

I. INTRODUCTION

Stability of dynamical systems is of fundamental importance in con-
trol theory. Because of that, the Routh–Hurwitz (RH) stability criterion,
which is very-well known and widely used, is often revisited in the lit-
erature [1], [3], and [5]. To quote the most recent paper on this subject
[1]: “The importance of the topic and the complexity of the mathemat-
ical tools required in most of the proofs motivate the continued interest
in the subject.”

In this paper we provide a new perspective of the RH array, which
also leads to a very intuitive proof of the RH stability criterion, by re-
lating it to physical entities rather than using mathematical abstractions.
We do so by considering the following problem [4]: Given a character-
istic polynomialD(s) of ordern, realize it as an electrical circuit. We
construct the circuit recursively for anyn and show that the values of
its components are just the entries in the first column of the RH array
of D(s).

If the components’ values are all positive, they are passive and the
energy stored in the circuit can never increase. On the other hand, if
there is a sign change among the components, then at least one compo-
nent will gain energy so that the total energy of the circuit will increase.
Hence, to determine stability we must examine sign changes among the
components’ values which, as we just noted, are exactly the entries in
the first column of the RH array.

The remainder of the paper is organized as follows. In Section II we
construct a linear electrical circuit recursively, analyze its properties,
and show how it can be used to realizeD(s). In Section III we use the
energy stored in the circuit to derive a simple proof of the RH stability
test. Section IV discusses singular cases and the final section summa-
rizes.

II. THE LINEAR CIRCUIT

We begin by defining recursively a linear electrical circuitCn, n =
1; 2; . . .. The circuitC1 [see Fig. 1(a)] consists of the parallel connec-
tion of a capacitor and a resistor with resistanceR = 1
. The circuit
C2 [see Fig. 1(b)] is obtained by replacing the resistor inC1 with the
series connection of an inductor and a 1
 resistor. For anyn > 2, the
circuit Cn is defined recursively.

• If n is odd, thenCn is the circuit obtained by replacing the re-
sistor inCn�1 with the parallel connection of a capacitor1=Kn

and a resistorR = 1 
, as shown in Fig. 1(c).
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