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Lin conjectured in [8] that a stabilizable system also has a DCF. VeryIn this section, the DCF problem is solved constructively for a class
recently, a new result is presented in [10] on the existence of DCFs fdrMIMO nD linear systems. Coprime MFD€); ' N, and N, D7 ',
a class of MIMO three-dimensional (3-D) systems, which leads to tlage first constructed faP, followed by a solution to the Bézout identity
parameterization odll stabilizing compensators. See [10] for a morg?2).
detailed discussion on feedback stabilization of MIMO nD systems. Theorem 1: Let P € R™*/(z) represent a feedback stabilizable
However, the method proposed in [10] has several limitationIIMO nD system, and leb,,...,bs denote the reduced minors of
Firstly, the method is valid for 3-D systems only. Secondly, th&(z). If there exists somé; (1 < .J < ) suchthaby # 0in U™,
method may not work if the content associated with a left or a riglthen P has coprime right and left MFDs.
MFDs of a given MIMO 3-D system has a multiple zero. Thirdly, the  Proof: Write P(z) asP = N/d whered is the least common
resultant DCFs may have complex coefficients even when the origimalltiplier of the denominators of all the entries Bf Decompose®
system transfer matrix has only real coefficients. Fourthly, it may beto a left and a right MFDsSP = (dI,,)'N =D~ 'N=ND"' =
computationally rather involved in solving a Bézout identity. N(dI;)™*.Letai,...,as denote théx ! minorsof F = [D* N*1%,
In this paper, we show that for a class of MIMO nD linear systems,dindas, . . ., as the m x m minors of ' = [—N f)]. By a result
is always possible to construct DCFs, thus it is one further step towad reduced minors [14], [17], we hawe = dob;, anda; = +dob;
proving the conjecture raised in [8] and solving the open problem posgd= 1....,3), wheredo,do € R]z], and the sign depends on the
in [2]. The proposed new method does not have any limitations mandex . The assumption thaP is feedback stabilizable implies that
tioned above for the class of nD systems under discussion. The méin. .., b; have no common zeros B" [7], [8]. If do # 0inT™,
result in the paper is to show how to construct a coprime (over the ritfgenas, . . . , a3 have no common zeros " It follows that F" is of
of stable rational functions) MFD of a given MIMO nD system with &ull rank in U™ and henceV D~ is a desirable coprime right MFD of
stable reduced minor. P. Similarly, if o # 0inTU", D~'N is a coprime left MFD ofP.
The organization of the paper is as follows. In the next section, aff€herefore,” has coprime MFDs wheify # 0 anddy # 0in U™,
reviewing some necessary notation and definition, the main results willAssume now that, (zo) = 0 for some(zo) in U™. ThenF(zo) is
be presented. An illustrative example will then be given in Section Ilhot of full rank and consequently D' is not a coprime right MFD
Section IV ends this paper with a conclusion. To save space, we redéd”. We show in the following how to obtain a coprime right MFD of
the reader to the cited references for some definitions and propertigsvhen there exists sonbg (1 < J < 8) suchthab; # 0in U™,
which require rather lengthy descriptions, such as reduced minors an@inceP = D~'N = ND~', we have
causality.

=¥ D[ 7] =0 ©)
II. MAIN RESULTS or
In the following, we shall denot®R the field of real numbers; FF =0, 4)
R(z) = R(z,...,2n) the set of rational functions in complex
variables z1, ..., z, with coefficients inR; R[z] the set of nD After some suitable row permutations &h we obtain a new polyno-

polynomials ovelR; R.(z) the subset of rational functions R(z) mial matrixF, = [D} Nj|", N, € R™*[z], D, € R"/[z] with
having no poles i7" ; R™*/[z] the set ofn x [ matrices with entries det D; = dob;. This is equivalent to finding a constant unimodular
in R[z], R*!(z) the set ofn x I matrices with entries iR (z), etc. matrix U, which is a product of a finite number of row permutation
Throughout this paper, an nD polynomial is called a stable polynomialatrices, such that

if it has no zeros if7™, otherwise it is called an unstable polynomial.

The argumentz) is omitted whenever its omission does not cause Uol" = Fy. ®)
confusion. - .
Since DCF is the main concern of this paper, the definition of DCEomblnlng (4) and (5) gives
is recalled. ’ FF=FU;'UF = F;F; =0,y (6)
Definition 1 [2], [10]: Let P € R™*!(z) represent an MIMO nD
system. TherP is said to have a DCF if: where F; = FUo_l- Partition F; asF; = [-N; Dy], N; €
1) there existD. € RI"*™(z),D. € R{'(z), andN,N, € R™*'[z], D; € R™*™[z]. It can be shown [14], [17] thatet D, =
R (z); +dob,. SinceF; is obtained by performing row permutations Bnit
2) there existX. € RX(z),X. € RI"*™(z), andY.,Y, € isclear[8]that the greatest common divisor (g.c.d.) ofitké minors
R (2); of F; is equal todq and the reduced minors &; have no common
3) D.,D., X,, X, are all nonsingular; zeros inU’". Similarly, the g.c.d. of thé x ! minors of F; is equal to
4) P = D7'N, = N.D7' and the following Bézout identity d, and the reduced minors &% have no common zeros Ii". From
holds: (6), we have
% Bl L ] - 21[3]
vz = ) R Il
—N, Ds| [N, X, Oy Im or e

—D7'N, = N, D!
Following conventional definition [2]P = N.D; " is said to be a Py=D; N;=N;D; C)

right coprime (oveR. (z)) MFD of P ifthere existX, € R.*/(z) and

V. € Réan(z) such thatX. D. + V. N, = I,. Obviously, V. D" is whereP; is a new rational matrix. From (8), we have

right coprime if and only if the associated matf®? N!] is of full P, =N,D7!

rank inU™. Analogous results hold for left MFDs. Also, for simplicity, N, adj(D.)

the phrase “(oveRs(z))” is omitted in the rest of the paper. = W
__Nyadj(Dy)

37, is thel x [ identity matrix and),,, ; denotes then x I zero matrix. - dob : 9)
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By the well-known Cramer’s rule [18], every entry §N; adj(D )} Theorem 2:Let P € R™*!(z) represent a caudalfeedback

is just somé x I minor of F; and is hence divisible by, . Therefore, stabilizable MIMO nD system. LetVD~' be a right MFD of

(9) reduces to P,andF = [D¥ NT]T. If there exists a unimodular matrix
U € Rm+0x(n+(5) such that a reduced minor of the polynomial

Py = N A (10) matrix F; = UF is devoid of any zeros i, thenP has a DCF.
’ by o Proof: We first construct coprime right and left MFDs fé¥(z),
and then solve the Bézout identity (2). Decompésiato a left MFD,
whereN), € R"*'[z], D', = b,I; € R"'[z]withdet D), =b, #0 P = D~'N,andletF = [-N D]. SinceP = D~'N = ND~',
inT™. Thus,F; = [D'F NF)T isoffullrank inT™. SinceP; =  we have
N,D', 7, we have
[-N D] {D} =[-N DU 'U {D} =0y (15)
DN, =Ny D, ! a N N
o . . ID _ . FiFy =0, (16)
[-N D] [d =P F; = FU;'F;

N whereF; = FU~! € R™*("*1[z]. Suppose that a reduced minor of
FFy =0m, (12)  the matrixF, = U F is devoid of any zeros i . Applying Algorithm

1, we can construck! € R(™+0*![z], with F! being of full rank in
whereF, = U; 1 F} € RU"D>/[g], Sincel/, is aunimodular matrix, U”, such that
F. is also of full rank inTU’" [8]. Partition F, asF, = [D! NI]*,

N, € R"*![z], D, € R'*'[z]. From (12), we have FyF{ =0 17
or
. - .. [D. T 2
FF, =[-N D] {V} = Ot (13) FU ' F = FF =0, (18)

i whereF, = U~' F{ € R("*0*![z]. Sincel is a unimodular matrix,
It can be shown [5], [17] thatet D, % 0 sincedet D # 0. We then  F, is also of full rank inU’™ [8]. Partition F, asF., = [D! NI,

have N, € R™*'[z], D, € R"™[z]. From (18), we have
[ s . . .. [D.
LR @ PR =¥ DI ] = 0 a9
Thus,N.D; ' is a coprime right MFD of”. It can be similarly argued ©" o
that P also admits a coprime left MFIP? = D! N, O P=D"'N=N,D" (20)

Itis seen from the above proof procedure that for the class of nD sys-
tems satisfying the condition stated in Theorem 1, DCFs can be cdiws,N, D' is a coprime right MFD ofP. It can be similarly argued
structed efficiently. In fact, it is not necessary to obtain the mdfgix that” also admits a coprime left MFIDP = DTN,
We summarize in the following an algorithm for constructing a coprime It remains to solve the Bézout identity (2). As demonstrated in [3]
right MFD of P. The algorithm can also be applied for obtaining a coand [10], the most critical part for solving the Bézout identity (2) is to

prime left MFD of P after minor modification. obtainX € R'*/[z], X € R™*™[z],Y.Y € R”™[z], such that
Algorithm 1: Let P(z) be given in Theorem 1. A coprime right ~ N
MFD of P can be constructed in three steps. XD, +YN, =5, (22)
Step 1: DecomposE into aleftand aright MFDsP = D™'N =  and
ry—1 n R T AT T T o \ r ~ ~
ND7". LetF = [D N ] y and F = [—ZV D] NY+D.X=5 (22)

Suppose thab ; is formed from rows/y, ..., J;of F (1 <
Si < < Jrsme D, withdet Dy = doby, by £ 0 for somes, € R[], S, € R™*™[z] with det Sy # 0, det Sz #
inU". Fori = 1,....1, swap rowi with row .J; of F. 0inT".

If J; = ¢ for somei, no swapping is required for such From the wayF"
i. After the swapping, we obtain a new polynomial matrix; ., D,
F; =[D7 NTI”.

Step 2: Introduce a new rational matdy = N, D" and obtain
a coprime right MFD of?; asP; = N, D', [see (9) and
(10)], whereD'; = b1,.

Step 3: LetF, = [D)f N,7]".Fori = 1,...,1, swap rowi
with row .J; of I}, where.J; is identical to.J; in Step 1. HF —D, 23)
Partitioning the resultant polynomial matri%, as F, = :

(DI NI1", D. € R™'[z], N. € R™*"[z], we finally ©F )
get a coprime right MFD of” asP = N,D, !, O HUU™'F;=HF. =D, (24)
Remark 1: The above algorithm is equivalent to constructing an N . L . e e it -
F, € R 4] such that), is of full rank inTU™ andF F, = 0,5, ;. Wl;lereH = HU. PartitonH asH = [X Y], X € R™[z],Y €
Theorem 1 is now generalized to a larger class of stabilizad® " [z]. Equation (24) becomes
MIMO nD systems that have coprime right and left MFDs. Moreover, . .
a very simple and computationally efficient method is also proposed XD:+YN.=Dj. (25)
for solving the Bézout identity (2).

is constructed by Algorithm 1, we know that
= b’J # 0inU", whereD is formed from rows/1, ..., J;

of F, (1 < J1 < -+ < J; < m +1). Now construct a constant
matrix H of sizel x (m + 1) by placing the'th column of the identity
matrix I; in the .J;th column of H, and zeros at other columns £f.

It is then easy to show that

4See [3] and [8] for the definition of causality of nD systems.
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Equation (22) can be solved similarly. Once (21) and (22) have beismot a coprime right MFD of”. Since the general nD polynomial

solved, it is easy to solve the Bézout identity matrix factorization problem is still open [15], [16], we do not know
L ) whether or not a right factor with determinant equaldio can be
‘\j Y Do =Yo| _ [ I Oum extracted fromF directly. The method proposed in [10] cannot be
= (26)
-N, Ds| [N, X, Om,i  Im applied here either sinek depends on bothy andz», andF is a 4-D

. . polynomial matrix. As none of the reduced minorslfis a stable
for someX, € R.*'(z), X, € R{"*™(z), andYs,Y, € RX™(2). polynomial, Theorem 1 cannot be directly applied. However, we
SinceP is causal by assumption, using a technique similar to the oBgserve that there exists a unimodular maffissuch that a reduced
in [5], we can findX.(z) and X.(z) such thatdet X:(0,....0) = minor of U F becomes a stable polynomial. In fact, using a result from
det X(0) # 0, anddet X,(0) # 0. This immediately |mp||es that [20], we have
X.(z) andX,(z) are nonsingular. The details can be worked out sim-

ilarly as in [5], [8], and [10], and are omitted here to save spacé.] 2 (1 + \/5) g+7f= 2(1 + \/5) (1421 —22)+1—4z12
Remark 2: For the 2-D case, several constructive methods have

been proposed for solving the 2-D version of (21) and (22) [3]-[6]. _ 4<1 +v2 n :41) <1 +v2 i 22) (29)

However, for the nD case, the only available method for solving (21) 2 2

and (22) is from [19], which is computationally rather involved. In M

fact, the authors of [19] did not tell how to construct a stable nD
polynomial that vanishes at the variety of the ideal generated by Wo
maximal order minors ofD! N!]" or[-N, D,]. As mentioned 10
in [9], the construction of such a stable nD polynomial is crucial for 0 1
solving (21) and (22). One of the contributions of this paper is the U=
development of a very simple and computationally efficient method
for solving (21) and (22) for the class of nD systems satisfying the
condition stated in Theorem 2. . -

Before ending this section, following [1]-[3], [10], we can give awheree = 2(1+ v2). Then
parameterization ddll stabilizing compensators for a stabilizable nD r1

systemP € R™*!(z) satisfying the condition stated in Theorem 2 0 1
UF =

eres is obviously a stable polynomial. ChooEeas

0
0
0
1

(30)

o = O O

o
a

o O

e ow

C= (% -0N) " (.+eD.):

Q € RY“"(z) anddet (X, - QN,) £0.  (27)
(31)

o
D
» O O o~ oo
’ =
[
w
or
i
~n

Ill. EXAMPLE -

Consider a causal unstal¥le 2 four-dimensional (4-D) system rep-
resented by The reduced minors of” are

P(Zl,...,~4) l |: g 0:| (28) g, 05 S, —¢, —Z3Za, S.
g lzza [

Sinces is stable, Algorithm 1 can be applied iJ.
Step 1: Consider th2x 2 matrix D ; formed from rows 1 and 4 of
F', withdet D; = dob; = gs. Swap row 2 with row 4 of

whereg = 1+ z1 — 22, f = 1 — 421 22. Decompose” into MFDs,
P =D"'N=ND"" where

DD |:g 0} N N— { g 0} F'. We obtain a new polynomial matrix
0 g zzza f
g 0
Let F = [DY NT]",F = [-N D], and leta,,...,as denote Fro= |7 % = {D'T} (32)
the2 x 2 minors of F'. We havea; = dob; fori = 1,...,6, where q 0 Ny
do = g =14 21 — 29, andby, ..., bs are the reduced minors &t 0 g
given by . ; .
Step 2: Introduce a new rational matd¥ and obtain a coprime
g 0, f. —g, —zsza, f. right MFD of P; as follows:
AT —1
The set of all the common zerosff. . . . . bg can be calculated as Py=N;D, !
_[g O g 0]
_1+\/§1—\/§.2200 1+V2 1_\/50240 _[0 g:| |:2334 J
2 72 T 2 2 1 s 0
_1+ﬁ1+‘/§.z300 —1+f\/§1+ﬁ0240 _E{—zm g}
2 2 TR 2 0y s  01Tls 01~
_ { ~ } [ } . (33)
where z30 and z4 are arbitrary complex numbers. It is clear that “ 9]0 s
bi,...,bs have no common zeros iti*. Hence,P(z1,...,z4) is N, D/,

feedback stabilizable [7], [8]. However, sindg has some zeros in
U", such as{0.5,0.5, 0, 0)F is not of full rank inT™". Thus,N D! Hence,N;D’;~'isa coprime right MFD ofP;.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 12, DECEMBER 2000 2423

Step 3: LetF; = [D;T  N;T]T. Obviously, F} is of full rank  where

in T*. Swap row 2 with row 4 ofF;. We obtain a new 1 0
polynomial matrix Sy = { }
0 Z324 S
S
/ 2z g Obviously,det So = s # 0in U™,
Fy = P 0 (34) Once (40) and (41) have been solved, it is routine to solve the Bézout
0 s identity. Choose
which is also of full rank inU’*. It is easy to check that X, = 1s 0 . Y, = 1il=-5 0
F'F = 0,,,, whereF’ = FU™". s 0 e s| 0 1
To obtain a coprime right MFD aP, we have to premultiply*; by X, = 1 52 0}
val’ i-e-: S _—623/’14(1—8) e
M1 0 0 0 s 0 and )
i |01 0 00 —mm g v. =1 s(1—s) ) 0}
o 010 s 0 s | —wmza(l—s) 1
0 —¢c 0 1 0 s It can be verified easily that
s 0 X, Y.|[D. -Y. L 0,
o = . 42
- s 0 (35) The derivation is just routine calculation and is omitted here to save
| ezsza f space. ObviouslyX ., X., Y., Y, € R2*%(z,..., ), and X, X,
ﬁr—’ are both nonsingular. Therefore, a DCH®(z, .. .., z4) has been ob-

. tained. Finallyall stabilizing compensators for the given unstable 4-D
It follows thatFFs = Om,l. Partitioninng asF, = [D;F J\TI]T, we systemp are parameterized by

have arrived at a coprime right MFD &f as . a1, .
) . C=(X;—QN, Y. D, }):
P(z1,...,24) =N.D;* ( @ ) ( +0 )

_ { 5 0} { s or 36) Q € R¥*(z,....2) and det(f(s - QM.) £0. (43)
T |exsza f —Z3Z4 4 '
Next, a coprime left MFD ofP can be easily obtained for this example IV. CONCLUSION

as
In this paper, we have solved the open problem of the existence of

—1
P(z,...,24)=D;'N, = [1 0} { L 0} . (37) DCEFs for a class of MIMO nD linear systems. A simple and efficient
0 9 #s24 f method has been proposed for the construction of DCFs when they
It remains to solve the Bézout identity (2), or equivalently, (21) angkxist. The main result of the paper is to show how to construct a coprime
(22). We observe from (34) thaet D, = s> # 0in U", whereD,  (over the ring of stable rational functions) matrix fraction description
is formed from rows 1 and 4 of the matdX . Construct  x 4 constant  of a given MIMO nD system with a stable reduced minor. A param-

matrix H as eterization of all stabilizing compensators has also been given for an
10 0 0 MIMO nD system in this class.
H= { 0 1} For the class of MIMO nD systems under discussion, the proposed
method has several advantages compared with the recent result of [10].
It is then easy to verify that Firstly, the new method is valid not only for 3-D systems, but also
HF =sI, (38) fornD (» > 3) systems. Secondly, it works even when an unstable
g.c.d. associated with an MFD of a given MIMO nD system has mul-
or . tiple zeros. Thirdly, the resultant DCFs always have real coefficients
HF, =sl, (39)  when the original system transfer matrix has only real coefficients.
where Fourthly, the proposed method is very simple and computationally ef-
ficient in solving the Bézout identity (2). An illustrative example has
H=HU = {1 00 0} . been worked out in details to support the new results presented in the
0 e 0 1 paper.
Obviously,det(sI) = s> # 0 in T°. Partition T as il — [X’ };], However, the new results presented in this paper are applicable only

to the class of MIMO nD linear systems whose reduced minors sat-

isfying the condition stated in Theorem 2. Thus, the problem of the

b {1 0} and 7 = {U 0} . existence of a DCF for a general stabilizable MIMO nD linear system
0 01 is still open. Further investigation is required.

where

Equation (39) becomes
XD, 4+ YN, =sh. (40)
Similarly, we can construct
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Il. THE LINEAR CIRCUIT

We begin by defining recursively a linear electrical ciradit, n =
1,2,.... The circuitC* [see Fig. 1(a)] consists of the parallel connec-
tion of a capacitor and a resistor with resistaite= 1€2. The circuit
C? [see Fig. 1(b)] is obtained by replacing the resisto€ihwith the
series connection of an inductor and & tesistor. For any. > 2, the
circuit C'"™ is defined recursively.

« If n is odd, thenC™ is the circuit obtained by replacing the re-
sistor inC"~! with the parallel connection of a capacitfk,
and a resistoRR = 1 (2, as shown in Fig. 1(c).
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