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An Algebraic Approach to Strong Stabilizability of Linear
MIMO Systems

Zhiping Lin, Jiang Qian Ying, and Li Xu

Abstract—Although some necessary conditions for the strong stabiliz-
ability of linear multidimensional ( ) multiple-input–multiple-output
(MIMO) systems have been available recently, very little is known about
sufficient conditions for the same problem. This note presents two sufficient
conditions for strong stabilizability of some classes of linear MIMO
systems obtained using an algebraic approach. A simple necessary and suf-
ficient condition is also given for the strong stabilizability of a special class
of linear MIMO systems. An advantage of the proposed algebraic ap-
proach is that a stable stabilizing compensator can be constructed for an

plant satisfying the sufficient conditions for the strong stabilizability
presented in this note. Illustrative examples are given.

Index Terms—Algebraic approach, feedback stabilization, multidimen-
sional systems, strong stabilizability.

I. INTRODUCTION

Consider a linear multidimensional (nD; n � 2) multiple-input
–multiple-output (MIMO) system represented by annD rational ma-
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trix P (z) wherez
4

= (z1; . . . ; zn). P is said to be (output) feedback
stabilizable if there exists a compensatorC(z) such that each entry of
the following closed-loop transfer matrix is stable, i.e., it has no poles
in the closed unit polydiscU

n 4

= fz : jz1j � 1; . . . ; jznj � 1g (see,
e.g., [1] for more details)

(I + PC)�1 �P (I + CP )�1

C(I + PC)�1 (I + CP )�1
: (1)

If P is stabilizable by means of a stable compensatorC, we say
that P is strongly stabilizable [2]–[4]. There are several advantages
in introducing a stable compensator for a stabilizable system. One of
the advantages is that it does not introduce extra unstable zeros in the
closed-loop system [2]. Another advantage is that two unstable plants
can be simultaneously stabilized by a single compensator if a certain
other plant is strongly stabilizable [3].

Although the problems of strong stabilizability and stabilization of
linear one-dimensional systems have long been solved [5], theirnD

counterparts have attracted some attention only recently, due to their
complexity [3], [4], [6]–[8]. Strong stabilizability of linearnD single-
input–single-output (SISO) systems was investigated in [3]–[6]. Sev-
eral necessary conditions for the strong stabilizability of linearnD

MIMO systems were given in [7]. For the special classes of multiple-
input–single-output (MISO) and single-input–multiple-output (SIMO)
systems, necessary and sufficient conditions for the strong stabiliz-
ability have also been derived and presented in [7]. Investigation of
strong stabilizability of time-delay linear systems was considered in
[8]. However, although a sufficient condition for the strong stabiliz-
ability for a class of linearnD MIMO systems was presented in [7],
the approach was not constructive. Attacking the problem of strong sta-
bilizability and stabilization of a general linearnD MIMO system by
menas of an algebraic approach remains an open problem [7].

In this paper, we present two sufficient conditions for the strong sta-
bilizability of some classes of linearnD MIMO systems obtained using
an algebraic approach. The new sufficient conditions are given in the
next section. Furthermore, a necessary and sufficient condition for a
special class of linearnD MIMO systems is presented in Section III.
Three illustrative examples are given in Section IV. Section V then con-
cludes this note.

Throughout this note, denote byR(z) the set ofnD rational func-
tions with coefficients in the field of real numbersR; byR[z] the set of
nD polynomials overR; byRs(z) the set of stablenD rational func-
tions, i.e.,nD rational functions whose denominators have no zeros in
U
n

; byRm�l[z] the set ofm � l matrices with entries inR[z], etc.
Similarly, denote byC(z) the set ofnD rational functions over the
field of complex numbers,etc.Il denotes thel� l identity matrix and
(�)T the matrix transposition. For simplicity, arguments such asz are
omitted when their omission does not cause confusion.

II. SUFFICIENT CONDITIONS

Under the assumption thatP 2 Rm�l(z) admits a minor right co-
prime (MRC) [9] matrix fractional description, i.e.,P = ND

�1 with
D 2 Rl�l[z] andN 2 Rm�l[z] MRC, it has been shown [7] thatP is
strongly stabilizable if and only if there exists aC 2 Rs

l�m(z) such
that

det(D+ CN) 6= 0 in U
n

: (2)

For convenience of comparison, we recall a known necessary condi-
tion for the strong stabilizability ofnD systems.
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Proposition 1: [7] Let P = ND�1 2 Rm�l(z) withD 2 Rl�l[z]

andN 2 Rm�l[z] MRC. Let�1; . . . ; �M , with M
4
= m+l

m
, be the

l� l minors of [DT NT ] with �1 = detD. A necessary condition
forP to be strongly stabilizable is that there existe2; . . . ; eM 2 Rs(z)
such that

detD +

M

i=2

ei�i 6= 0 in U
n
: (3)

Although the aforementioned necessary condition has been shown
to be also sufficient for the strong stabilizability of linearnD MISO
and SIMO systems [7], its sufficiency for the strong stabilizability of a
general MIMOnD system is still unknown. In this section, we derive
two sufficient conditions for the strong stabilizability of some classes
of nD systems. It is assumed in the remainder of this notethat the plant
P is of dimensionm � l with m � l � 2.

Proposition 2: Let P = ND�1 2 Rm�l(z) with D 2 Rl�l[z]
andN 2 Rm�l[z]. Assume thatD is an upper or lower triangle ma-
trix with diagonal elements equal todi = dsid, i = 1; . . . ; l, where
ds1; . . . ; dsl are stablenD polynomials andd is an unstablenD poly-

nomial. Leta1; . . . ; a� denote thel� l minors ofN , where�
4
= m

l
.

A sufficient condition for the strong stabilizability ofP is that there
exist someh1; . . . ; h� 2 Rs(z) such that

d+

�

i=1

hiai 6= 0 in U
n
: (4)

Moreover, when the previous condition holds, a stable stabilizing com-
pensatorC 2 Rs

l�m(z) can be constructed.
Proof: Assume thatD is an upper triangle matrix having the fol-

lowing form:

ds1d U
. . .

0 dsld

(5)

whereU denotes the upper right triangular portion ofD with arbitrary
nD polynomial entries, while0 denote the lower left portion ofD with
zero entries. Assume that there exist someh1; . . . ; h� 2 Rs(z) such
that

s1
4
= d+

�

i=1

hiai 6= 0 in U
n
: (6)

Let �1
4
= �

i=1
hiai. We first construct aY 2 Rs

l�m(z) such that
Y N = �1Il. We adopt a technique similar to the one in [10]. Letnk
denote thekth row ofN (k = 1; . . . ; m),N1; . . . ; N� denote thel� l

submatrices ofN , i.e.,

Ni =

ni
...
ni

(7)

where1 � ii < � � � < il � m, for i = 1; . . . ; �. Let [gi � � � gil]
4
=

adj Ni, for i = 1; . . . ; �. The� submatrices ofN are ordered such that
ai = detNi, for i = 1; . . . ; �. An l�mmatrixBi is now constructed
as follows. In columnsi1; . . . ; il of Bi, we placegi ; . . . ; gi . The
remaining columns ofBi are filled with zeros. Note that, whenl = m,
we have just� = 1 andB1 = adjN . It can be easily verified that

BiN = aiIl: (8)

Next, let

Y
4
=

�

i=1

hiBi 2 Rs

l�m(z) (9)

we then have

Y N =

�

i=1

hiBi N =

�

i=1

hiBiN =

�

i=1

hiaiIl = �1Il: (10)

Now, letX = Il, D0 = diag fds1; . . . ; dslg, Y 0 = D0Y , andC =
X�1Y 0 = Y 0 2 Rs

l�m(z). We have

D + CN =D + Y
0
N

=

ds1d U
. . .

0 dsld

+

ds1�1 0
. . .

0 dsl�1

=

ds1s1 U
. . .

0 dsls1

:

Therefore,det(D+CN) = ds1 . . . dsls
l
1 6= 0 inU

n
, andC is a stable

stabilizing compensator. The case whereD is a lower triangle matrix
can be proven similarly.

Comparing Propositions 1 and 2, it can be seen that the two con-
ditions (3) and (4) are indeed different in the number of terms in the
sum. For example, assume thatm = l = 2, thenM = 4

2
= 6,

while � = 2

2
= 1. Hence, the number of terms in the sum in (3)

is 6 � 1 = 5, while that in (4) is just 1. It is then obvious that (4) is
more difficult to satisfy than (3). On the other hand, since both (3) and
(4) have the same form of expression, the technique of [7] for testing
the necessary condition (3) can be readily adopted here for testing the
sufficient condition (4).

The following corollary is an important special case of Proposition
2.

Corollary 1: Let P = ND�1 2 Rm�l(z) with D 2 Rl�l[z] and
N 2 Rm�l[z]. Assume thatD = dIl and leta1; . . . ; a� denote the
l � l minors ofN . A sufficient condition for the strong stabilizability
of P is that there exist someh1; . . . ; h� 2 Rs(z) such that

d+

�

i=1

hiai 6= 0 in U
n
: (11)

Moreover, when the aforementioned condition holds, a stable stabi-
lizing compensatorC 2 Rs

l�m(z) can be constructed.
So far, we have restrictedD to be an upper or lower triangle matrix.

Now, we consider a more general case without any restriction onD

and derive another sufficient condition for the strong stabilizability of
P = ND�1 as shown in the next proposition.

Proposition 3: Let P = ND�1 2 Rm�l(z) with D 2 Rl�l[z]
andN 2 Rm�l[z]. Let a1; . . . ; a� denote thel � l minors ofN . A
sufficient condition for the strong stabilizability ofP is thata1; . . . ; a�
have no common zeros inU

n
, or equivalently, there existh1; . . . ; h� 2

Rs(z) such that

�

k=1

hkak 6= 0 in U
n
: (12)

Moreover, when the aforementioned condition holds, a stable stabi-
lizing compensatorC 2 Rs

l�m(z) can be constructed.
Proof: Assume thata1; . . . ; a� have no common zeros inU

n
,

i.e., there existh1; . . . ; h� 2 Rs(z) such that (12) holds [11]. Let

s
4
= �

k=1
hkak ands0

4
= min

z2U
jsj > 0. In the same way as

in the proof of Proposition 2, we can construct aY 2 Rs

l�m(z)
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such thatY N = sIl. Let b1; . . . ; b� denote thel � l minors ofY
(note thatb1; . . . ; b� are in general not equal toh1; . . . ; h�). By the
Cauchy–Binet formula, we have

det(Y N) =

�

i=1

biai = det(sIl) = s
l
: (13)

Let c1; . . . ; cM denote thel � l minors of [Il Y ] , and arrange
the order ofc1; . . . ; cM in such a way thatc1 = det Il = 1 and
cM��+1 = b1; . . . ; cM = b� . Similarly, let�1; . . . ; �M denote the
l � l minors of [DT NT ] T , and arrange the order of�1; . . . ; �M
in such a way that�1 = detD and�M��+1 = a1; . . . ; �M = a� .
Let w be a positive number. We then have

f(z;w)
4

=det [Il wY ]
D

N

=�1 + w�2c2 + � � �+ w
l�1

�M��cM��

+ w
l

�

i=1

biai: (14)

As �1; �2c2; . . . ; �M��cM�� have bounded absolute values inU
n

,
andj �

i=1
biaij � sl0 > 0 8 z in U

n
, we havejf(z;w)j > 0, which

meansf(z;w) 6= 0; 8 z in U
n

, for a sufficiently largew. Therefore,
a stable stabilizing compensator for the given plantP is given byC =
wY 2 Rs

l�m(z).
Remark 1: It is worthwhile comparing Propositions 3 and 2. Al-

though there is no restriction onD in Proposition 3, the requirement of
a1; . . . ; a� having no common zeros inU

n
is stronger than condition

(4). Hence, Proposition 3 is in fact not a generalization of Proposition
2. It is also noted that both Propositions 2 and 3 are valid even whenP

admits a matrix fractional description that is not MRC.

III. N ECESSARY ANDSUFFICIENT CONDITION

The sufficient conditions for the strong stabilizability ofnD systems
presented in the previous section are not necessary conditions. In this
section, we present a simple necessary and sufficient condition for the
strong stabilizability of a special class of linearnD MIMO systems
over the complex number field. Throughout this section, it is assumed
that a system is represented by annD rational matrixP 2 Cm�l(z)
which admits an MRC matrix fractional descriptionP = ND�1, i.e.,
D 2 Cl�l[z] andN 2 Cm�l[z] with D andN MRC.

Lemma 1: Letd, a1; . . . ; a� 2 C[z]. The following two statements
are equivalent.

i) There existh1; . . . ; h� 2 Cs(z) such that

d+

�

i=1

hiai 6= 0 in U
n

(15)

ii) For a given positive integerl, there existh01; . . . ; h
0

� 2 Cs(z) such
that

d
l +

�

i=1

h
0

iai 6= 0 in U
n
: (16)

Proof: Clearly, statement i) implies statement ii). This implica-
tion follows immediately by expanding(d + �

i=1
hiai)

l and col-
lecting the appropriate terms.

Next, assume that statement ii) is true, i.e., there existh01; . . . ; h
0

� 2

Cs(z) such thatdl + �

i=1
h0iai 6= 0 in U

n
. By [7, Th. 2.1],dl has

a single-valued logarithm functionlog dl on V (I) \ U
n

, whereI is
the ideal generated bya1; . . . ; a� andV (I) is the variety ofI . Since
log dl = l log d, it follows immediately thatd has a single-valued
logarithm functionlog d on V (I) \ U

n
. By [7, Th. 2.1], there exist

h1; . . . ; h� 2 Cs(z) such thatd+ �

i=1
hiai 6= 0 in U

n
. Therefore,

statement ii) implies i), and the proof is completed.
However, if we require the coefficients to be inR, then statement ii)

does not imply i) in general, as it can be seen from [6, Ex. 3].
Proposition 4: Let P = ND�1 2 C

m�l(z) with D 2 C
l�l[z]

andN 2 C
m�l[z] being MRC. Assume thatD = dIl, and that the

ideal generated by thel�lminors of [DT NT ] , with the exception of
detD, is equal to the ideal generated by thel� l minors ofN , denoted
bya1; . . . ; a� . Then, a necessary and sufficient condition for the strong
stabilizability ofP is that there exist someh1; . . . ; h� 2 Cs(z) such
that

d+

�

i=1

hiai 6= 0 in U
n
: (17)

Proof: (Sufficiency) It follows from Corollary 1.
(Necessity) Let�1; . . . ; �M be thel� l minors of [DT NT ] with

�1 = detD. Suppose thatP is strongly stabilizable. By Proposition 1
(and also [7, Th. 3.1]), there existe2; . . . ; eM 2 Cs(z) such that

detD +

M

i=2

ei�i 6= 0 in U
n
: (18)

By assumption,D = dIl, and also the ideal generated by thel � l

minors of [DT NT ] , with the exception ofdetD, is equal to the
ideal generated by thel� l minors ofN . Thus, (18) implies that there
existh01; . . . ; h

0

� 2 Cs(z) such that

d
l +

�

i=1

h
0

iai 6= 0 in U
n
: (19)

By Lemma 1, (19) implies that there exist someh1; . . . ; h� 2 Cs(z)
such that

d+

�

i=1

hiai 6= 0 in U
n
: (20)

Remark 2: Admittedly, the class of linearnD MIMO systems dis-
cussed in Proposition 4 is rather special. However, to our best knowl-
edge, this is the only available necessary and sufficient condition for
the strong stabilizability of linearnD MIMO systems other than MISO
and SIMO systems. We can check whether two ideals are equal using
Gröbner bases [12]. It is also noted that Proposition 4 may not be ap-
plied to the case whereP does not admit an MRC matrix fractional
description. Nevertheless, a two-dimensional (2-D) system always ad-
mits an MRC matrix fractional description [9].

IV. EXAMPLES

Three examples are given in this section to illustrate the new results
presented in this note.

Example 1: Consider an unstable 2-D 2� 2 plant represented by

P (z1; z2) =
1

1 + z1 � z2

1 2z1
2z2 1

:

Let P = ND�1, where

D =
1 + z1 � z2 0

0 1 + z1 � z2
N =

1 2z1
2z2 1

:

SinceD = dI2 with d = 1 + z1 � z2, we can apply Corollary 1 or
Proposition 2 to test the strong stabilizability of the given systemP .
AsN is a square matrix, it has only one 2� 2 minor, which is equal to
a1 = 1� 4z1z2. A sufficient condition for the strong stabilizability of
P is the existence of someh 2 Rs(z1; z2) such thatd+ha1 6= 0 inU

2
.

This condition turns out to be equivalent to the strong stabilizability of
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a 2-D SISO system represented byp = a1=d, which was discussed in
[4]. In fact, from [4], we can findh = 1=(2(1 +

p
2)) 2 Rs(z1; z2)

such that

s1
4

= d+ ha1 =(1 + z1 � z2) +
1

2(1 +
p
2)

(1� 4z1z2)

=
4

2(1 +
p
2)

1 +
p
2

2
+ z1

1 +
p
2

2
� z2

6=0 in U
2

:

From the proof procedure of Proposition 2, we can also obtain a stabi-
lizing compensator as follows. Let

Y = h (adj N) =
1

2(1 +
p
2)

1 �2z1
�2z2 1

X = I2, andC = X�1Y = Y 2 Rs

2�2(z1; z2). It is easy to verify
thatdet(D + CN) = s21 6= 0 in U

2

. Hence,C is the required stable
stabilizing compensator.

Example 2: Consider an unstable 2-D 3� 2 plant represented by

P (z1; z2) =
1

z2

z1 0

0 1

1� z1z2 0

:

Let P = ND�1, where

D =
z2 0

0 z2
N =

z1 0

0 1

1� z1z2 0

:

The 2� 2 minors of [DT NT ] are

detD = z22 ; 0; z2; 0;�z1z2; 0; z2(z1z2 � 1); z1; 0; z1z2 � 1

and the 2� 2 minors ofN are

z1; 0; z1z2 � 1:

Because the ideal generated by the 2� 2 minors ofN contains the
unit 1 (z1 andz1z2 � 1 have no common zero inC2), it is obvious
that the ideal generated by the 2� 2 minors of [DT NT ] , with the
exception ofdetD, is equal to the ideal generated by the 2� 2 minors
of N . Moreover,D = z2I2. Hence, we can apply Proposition 4 to
this example to see whether the necessary and sufficient condition for
the strong stabilizability (17) is satisfied. Seta1

4

=z1, a2
4

= 0, and

a3
4

= z1z2 � 1, and leth1 = 2z2, h2 = 0, andh3 = �2. It is then
easy to verify that

s1
4

=d+

3

i=1

hiai = d+ h1a1 + h3a3

=z2 + 2z2(z1) + (�2)(z1z2 � 1)

=z2 + 2 6= 0 in U
n

: (21)

Therefore, by Proposition 4, the given 2-D plantP is strongly stabiliz-
able. To construct a stable stabilizing compensator, we can follow the
procedure presented in the proof of Proposition 2, just like we did in
Example 1. The details are omitted here but the required compensator
is given byC = X�1Y 2 Rs

2�3(z1; z2) whereX = I2 and

Y =
2z2 0 2

0 2 0
(22)

satisfiesY N = 2I2. It is now trivial to verify thatdet(D + CN) =

s21 6= 0 in U
2

, i.e., the closed-loop system is stable.
Example 3: Consider an unstable 2-D 3� 2 plant represented by

P = ND�1, whereD =
2z1 1

1 2z2
andN is the same as in Ex-

ample 2. It is known from Example 2 that the 2� 2 minors ofN have

no common zero inC2. By Proposition 3, the systemP is strongly
stabilizable. To obtain a stable stabilizing compensator, we first con-
truct the sameY as in (22) in Example 2, such thatY N = 2I2. Since
det(D + Y N) = 4z1z2 + 4(z1 + z2) + 3 has zeros inU

2

, e.g.,
(z1; z2) = (0;�3=4), the compensatorC = Y chosen in Example 2
cannot stabilize the system considered here. To construct a stable com-
pensator, we can follow the procedure presented in the proof of Propo-

sition 3. Letf(z1; z2;w)
4

= det [I2 wY ]
D

N
, wherew is a

positive number. Expandingf(z1; z2;w) and collecting terms gives

f(z1; z2;w) = (4z1z2 � 1) + 4(z1 + z2)w+ 4w2:

To ensure thatf(z1; z2;w) 6= 0 in U
2

, it suffices to choose a large
enoughw. In particular, for any positivew and8 (z1; z2) in U

2

, we
havej(4z1z2 � 1)+ 4(z1+ z2)wj � j4z1z2 � 1j+ 4wj(z1+ z2)j <
5 + 8w. Therefore, anyw which satisfiesw > 0 and4w2 � 5 + 8w,
or equivalently,w � 5=2 will guaranteejf(z1; z2;w)j > 0, which
impliesf(z1; z2;w) 6= 0, in U

2

. For example,w = 3 yields a stable
stabilizing compensatorC = X�13Y = 3Y 2 Rs

2�3(z1; z2) where
X = I2.

V. CONCLUSION

In this note, we have presented two sufficient conditions for the
strong stabilizability of some classes of linearnD MIMO systems, as
well as a simple necessary and sufficient condition for the strong stabi-
lizability of a special class of linearnD MIMO systems. The proposed
method is algebraic and a stable stabilizing compensator can always be
constructed when a givennD MIMO plant satisfies one of the suffi-
cient conditions presented in the paper.

Finally, it is worth pointing out that the proof of the necessity part of
the strong stabilizability of a generalnD MIMO system given in [7]
involves nonconstructive advanced mathematics. What still remain as
open problems are, first, to find a connection of the problem with con-
structive mathematical tools and to prove or disprove the sufficiency,
and second, to establish an algebraic constructive sufficient and neces-
sary condition for a generalnD MIMO system.
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Constantly Scaled Control Problems for Pseudofull
Information Problems

Toru Asai

Abstract—This note proposes a class of the constantly scaled control
problem, where the class is characterized by an assumption also proposed
in this note. In general, the scaled control problem leads to nonconvex
solvability conditions. On the other hand, for the problems in the proposed
class, we show that a convex but sufficient solvability condition can be given.
Moreover, the convexity of the state feedback and the full information prob-
lems can be regarded as the extreme cases of the sufficient condition. This
fact motivates us to call the assumption the pseudofull information condi-
tion.

Index Terms—Constantly scaled control problems, integrated
quadratic constraints (IQCs), linear matrix inequalities (LMIs), robust
control.

I. INTRODUCTION

For the past two decades, much effort has been devoted to devel-
oping analysis and synthesis methods for robust control systems. One
of the most important issues in robust control is conservatism of anal-
ysis and synthesis methods. In order to reduce the conservatism, scaled
small-gain conditions or passivity conditions with multipliers are often
employed [1]–[5]. Although those measures provide only sufficient
conditions, they provide efficient robustness analysis. In fact, many
analysis results can be examined efficiently by casting them as linear
matrix inequalities (LMIs) [6]–[8].

While analysis problems aim to find scalings, the corresponding
synthesis problems aim to find both scalings and controllers. Unfor-
tunately, the synthesis problems are nonconvex in general, even if scal-
ings are restricted to being constant, i.e., frequency independent. Con-
cerning the constantly scaledH1 control problem, several methods
have been proposed to find global solutions [9]–[11]. However, those
methods demand a large amount of computational effort.

Since the synthesis problems are nonconvex in general, much com-
putational effort is inherently required to find solutions. Furthermore,
there is no guarantee to obtain the global solution. On the other hand,
if a given problem is proven convex, we can find the global solution
without spending much time and effort. Hence, it is useful to know
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what kind of problems can be reduced to convex problems. Motivated
by these facts, several classes of problems have been revealed convex
so far. The most well-known classes are the state feedback (SF) and the
full information (FI) problems [12]. Furthermore, it has been clarified
that another class of problems such that the rank of uncertainty is one
can be reduced to convex problems [13].

Recently, we have reported that a class of problems which is larger
than the SF and the FI problems can be reduced to convex problems
[14]. In other words, there exist assumptions which are more relaxed
than the SF and the FI assumptions so as to make the problems convex.
However, even in the enlarged class, the problems are still restricted to
the special cases such thatD21 = 0 orDT21D21 > 0 holds, and it is
still open whether the problems can be reduced to convex problems for
generalD21. In addition, no formulas of controllers have been shown
in [14].

This note proposes a new class of problems such that neitherD21 =

0 norDT21D21 > 0 holds, and shows that a convexsufficientcondition
can be derived for that class of problems. The new class is characterized
by an assumption similar to [14]. Moreover, we show that the convex
solvability conditions for the SF and the FI problems can be regarded as
the extreme cases of the derived sufficient condition. It follows that the
sufficient condition gives necessity in the extreme cases. The sufficient
condition will be given based on two solvability conditions which also
are derived in this note. Moreover, an explicit formula of a possible
controller will be given.

This note is organized as follows. In Section II, we offer a robust sta-
bility criterion based on an integral quadratic constraint (IQC). Based
on this robust stability criterion, the corresponding synthesis problem
is formulated, and the assumption called a pseudofull information con-
dition is proposed in Section III. The main results of this note will be
shown in Section IV. The effectiveness of the proposed method will be
examined in Section V by using an example.

Notation in this note is fairly standard.MT andMy are the transpose
and the pseudoinverse of matrixM , respectively.M? is a full-row rank
matrix whose rows span the orthogonal complement of the range ofM .

II. ROBUST STABILITY ANALYSIS

This note deals with the constantly scaledH1 control problem pri-
marily based on robust stabilization problems. In order to formulate
the robust stabilization problem, we first introduce a robust stability
analysis result in this section. The analysis problem is dealt with for a
feedback system depicted in Fig. 1, where��� � R

m �p represents
uncertainty. We assume0 2 ��� without loss of generality.P(s) corre-
sponds to a closed-loop system constructed by a generalized plant and
a controller. We assume the following realization forP(s):

P(s) =
AB

CD
=: D + C(sI �A)�1B: (1)

Then, the robust stability analysis result is given by the following
proposition [1], [4], [15].

Proposition 1: Let��� � Rm �p be a given set, andA 2 Rn�n,
B 2 Rn�m , C 2 Rp �n andD 2 Rp �m be given matrices. Sup-
pose that there existX > 0 (X 2 Rn�n), Q = QT 2 Rm �m ,
R = RT 2 Rp �p andS 2 Rp �m such that the following in-
equalities hold:

I

�T

T
Q ST

S R

I

�T � 0 for all � 2���

(2)

AX + XAT XCT

CX 0
+

B 0

D I

Q ST

S R

B 0

D I

T

<0:

(3)
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