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an algebraic approach. The new sufficient conditions are given in the

Abstract—Although some necessary conditions for the strong stabiliz- next section. Furthermore, a necessary and sufficient condition for a
ability of linear multidimensional ( ~.D) multiple-input-multiple-output  special class of lineatD MIMO systems is presented in Section IlI.

(MIMO) systems have been available recently, very little is known about 1, ¢e jllustrative examples are given in Section IV. Section V then con-
sufficient conditions for the same problem. This note presents two sufficient cludes this note

conditions for strong stabilizability of some classes of linearn.D MIMO
systems obtained using an algebraic approach. A simple necessary and suf-  Throughout this note, denote B(z) the set ofnD rational func-
ficient condition is also given for the strong stabilizability of a special class  tions with coefficients in the field of real numbdRs by R|[z] the set of
of "”eﬁr_ ’zftM'MtobTYStterEﬁ; An advantage ?f the pfgposed f"getb:ja]? ap- D polynomials ovelR; by R, (z) the set of stable D rational func-
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E)v.D plant satisfying the sufficier?t con(?itions for the strong stabilizability t'_f’n”S’ "e""D, rational functions Whose_ deno.mlnatOIjs hgve no zeros in
presented in this note. lllustrative examples are given. U"; by R™*'[z] the set ofm x I matrices with entries ilR[z], etc.
Similarly, denote byC(z) the set ofrn D rational functions over the
field of complex numberstc.I; denotes thé x [ identity matrix and
()7 the matrix transposition. For simplicity, arguments suck ase

omitted when their omission does not cause confusion.

Index Terms—Algebraic approach, feedback stabilization, multidimen-
sional systems, strong stabilizability.

|. INTRODUCTION

Consider a linear multidimensionah D, » > 2) multiple-input Il. SUFFICIENT CONDITIONS
—multiple-output (MIMO) system represented by:ab rational ma-  ynder the assumption th#& € R™*!(z) admits a minor right co-
prime (MRC) [9] matrix fractional description, i.el; = ND~" with
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Proposition 1: [7]LetP = ND~* € R™*!(z)withD € R'*'[z]  Next, let

and N € R™*'[z] MRC. Letay, ..., a, with M = ("*), be the 5

I x I minors of [DT NT] with a; = det D. A necessary condition y 2 3" hiBi € R (2) ©)

for P to be strongly stabilizable is that there exist. . ., ear € Rs(z)
such that

=1

we then have

B 3 3
@ yvN= <Z h,iBL) N =3 hBN=>3 hal =\ (10)
=1 i=1 i=1

,dy},Y' = D'Y,andC =

M
det D + Zeiay #0in U,

=2

Although the aforementioned necessary condition has been shoWew, letX = I;, D' = diag {d.i,...
to be also sufficient for the strong stabilizability of lineab MISO X 'Y’ =Y’ € R,'*™(z). We have
and SIMO systems [7], its sufficiency for the strong stabilizability of a D4+ CN=D+Y'N
general MIMOn D system is still unknown. In this section, we derive ) .

two sufficient conditions for the strong stabilizability of some classes derd U darda 0

of n.D systems. Itis assumed in the remainder of this notethat the plant = +

P is of dimensionm x [ withm > 1 > 2. 0 dgeid 0 da)
Proposition 2: Let P = ND~' € R™*!(z) with D € R"*[z] Mo sy U

andN € R™*'[z]. Assume thaiD is an upper or lower triangle ma- .

trix with diagonal elements equal th = d.;d,i = 1,...,1, where - :

ds1,. .., ds are stableeD polynomials and! is an unstable D poly- L O dsis

nomial. Letay, ..., as denote thé x I minors of NV, wherej = (). Thereforedet(D+CN) = d ...dust #0inT",andC is a stable

A sufficient condition for the strong stabilizability d? is that there stabilizing compensator. The case whérés a lower triangle matrix

exist somehy, ..., hs € Rs(z) such that can be proven similarly. 0

3
d+Y hiai £0inT". (4)
i=1

Comparing Propositions 1 and 2, it can be seen that the two con-
ditions (3) and (4) are indeed different in the number of terms in the
sum. For example, assume that= 1 = 2, thenM = () = 6,

while 3 = () = 1. Hence, the number of terms in the sum in (3)

Moreover, when the previous condition holds, a stable stabilizing coig-6 — 1 = 5, while that in (4) is just 1. It is then obvious that (4) is

pensatolC' € R/*X™ (z) can be constructed.

more difficult to satisfy than (3). On the other hand, since both (3) and

Proof: Assume thaD is an upper triangle matrix having the fol- (4) have the same form of expression, the technique of [7] for testing

lowing form:

ds1d U

) (5)
0 deid

whereU denotes the upper right triangular portion/ofwith arbitrary
n.D polynomial entries, whil® denote the lower left portion d with
zero entries. Assume that there exist sdme. .., hs € Rs(z) such
that

B
s1Ed+ > hiai #0inT".

=1

(6)

Let), 2 S°7_ | hia;. We first construct & € Rs'*™(z) such that
YN = A\ I;. We adopt a technique similar to the one in [10]. ket
denote théthrow of N (k = 1,....m), N1,..., Nz denote thé x [

submatrices ofV, i.e.,

the necessary condition (3) can be readily adopted here for testing the
sufficient condition (4).

The following corollary is an important special case of Proposition
2.

Corollary 1: Let P = ND~! € R™*!(z) with D € R"*![z] and
N € R™*![z]. Assume thaD = dI; and letas,...,as denote the
1 x I minors of V. A sufficient condition for the strong stabilizability
of P is that there exist sonve,, .. ., hs € Rs(z) such that

B
d+ Z hia;
=1

Moreover, when the aforementioned condition holds, a stable stabi-
lizing compensato€' € R.'*™(z) can be constructed.

So far, we have restrictel to be an upper or lower triangle matrix.
Now, we consider a more general case without any restrictio®on
and derive another sufficient condition for the strong stabilizability of
P = ND™! as shown in the next proposition.

Proposition 3: Let P = ND~' € R"™*!(z) with D € R'¥'[z]
andN € R"*'[z]. Letai,...,as denote thd x I minors of N. A
sufficient condition for the strong stabilizability éf is thatay, ..., az

F=n

£0inT". (11)

nil Fn . .
N o— %) have no common zeroslh ™, or equivalently, there exiét; , ..., hy €
o R.(z) such that
nil
,19
hrar #0inT". 12
wherel < i; < -+ < iy < m,fori = 1,...,3. Let[g;, -+ gil] 2 ;”“"7& (12)
adj N;,fori = 1,..., 3. Thes submatrices oN are ordered such that
a; = det N;, fori = 1,..., 3. Anl x m matrix B; is now constructed Moreover, when the aforementioned condition holds, a stable stabi-
as follows. In columnsi,....i of B;, we placeg;,.....g:. The lizing compensato€’ € Rs'*™(z) can be constructed.

Proof: Assume thati,...,az have no common zeros [T
i.e., there existii,...,hg € R,(z) such that (12) holds [11]. Let
5 2 S0_, hrax andso = min, = [s| > 0. In the same way as
in the proof of Proposition 2, we can constructa € R.'*"(z)

remaining columns oB; are filled with zeros. Note that, whén= m,
we have juspp = 1 andB; = adjN. It can be easily verified that

BN = a,1,. 8)
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such that’ N = sI,. Letby,...,bs denote thd x [ minors ofY  hq,...,hg € Cs(z) such thatl + Zf:l hiai £ 0inT". Therefore,

(note thathy,...,bs are in general not equal foy, ..., hg). By the statementii) implies i), and the proof is completed. |
Cauchy-Binet formula, we have However, if we require the coefficients to beRy then statement ii)
4 does not imply i) in general, as it1 can be s’een frqm [6, Ex. :?].’
det(Y'N) = Zbia; = det(s)) = 5. 13) Proposntlonlel: Let}_P = ND™' € C€"*!(z) with D € C"™'[2]
= andN € C™*'[z] being MRC. Assume thab = dI;, and that the
) ) ideal generated by thex! minors of[DT  NT], with the exception of
Let c1,...,cy denote thel x I minors of [[; Y], and arrange i p is equalto the ideal generated by thel minors of V', denoted
the order ofci, ... cu in such a way that, = detl; = land ., 4. Then,anecessaryand sufficient condition for the strong
em—pt1 = bu,....cu = bg. Similarly, letay, ..., anr denote the  giapilizapility of P is that there exist somiey ,. . ., hs € Cs(z) such
I x I minors of [D*  N"]", and arrange the order ofi,....au  hat
in such away thaty = det D andaar—g41 = a1, ..., arm = ag. ,
Let w be a positive number. We then have i+ Z hiai £ 0inT". 17)
f(z;w) £ det <[I/ wY) |:D,:|> =
N Proof: (Sufficiency) It follows from Corollary 1.
=ay 4+ wases + -4+ w' T anr_genr—g (Necessity) Letyy, ..., oy bethe x I minors of[D” N7 with
B8 ay = det D. Suppose thaP is strongly stabilizable. By Proposition 1
+ o Zb,;a,;. (14) (and also [7, Th. 3.1]), there exist, . .., e € C.(z) such that
=1 M
AS ai, asca, ..., an—ser—s have bounded absolute valuesTin, det D4+ eja; £0inT". (18)
and| 7 bia;| > sh > 0VzinT", we have|f(z; w)| > 0, which i=2
meansf(z; w) # 0, Yz in U ", for a sufficiently largew. Therefore, By assumptionD = dI;, and also the ideal generated by the !
a stable stabilizing compensator for the given pl&ris given byC' =  minors of [DT  N7T], with the exception oflet D, is equal to the
wY € RX™(z). O ideal generated by tHex I minors of N. Thus, (18) implies that there
Remark 1: It is worthwhile comparing Propositions 3 and 2. Al-existh!, ..., hj € Cs(z) such that
though there is no restriction dn in Proposition 3, the requirement of s
ai,...,as having no common zeros i is stronger than condition a4 Z Bai £ 0inT". (19)

(4). Hence, Proposition 3 is in fact not a generalization of Proposition
2. Itis also noted that both Propositions 2 and 3 are valid even whe
admits a matrix fractional description that is not MRC.

=1

r’By Lemma 1, (19) implies that there exist somg ..., hz € Cq(z)

such that
IIl. N ECESSARY ANDSUFFICIENT CONDITION 5 e
d+ Y hia; #0inT". (20)
The sufficient conditions for the strong stabilizability:ab systems p—
presented in the previous section are not necessary conditions. In this O

section, we present a simple necessary and sufficient condition for th?eemark 2: Admittedly, the class of linearD MIMO systems dis-

strong stabilizability of a special class of lineaD MIMO systems . o . :
; . Lo cussed in Proposition 4 is rather special. However, to our best knowl-
over the complex number field. Throughout this section, it is assumea

that a system is represented byraR rational matrixP € C™*/(z) edge, this is th_e_ onl_y_ avallgble necessary and sufficient condition for
- . . . P the strong stabilizability of linearD MIMO systems other than MISO
which admits an MRC matrix fractional descriptiégh= ND™ -, i.e., . .
Ix1 o~ ol ; . and SIMO systems. We can check whether two ideals are equal using
D € €™zl and € C™'[z] with D and ¥ MRC. Grobner bases [12]. It is also noted that Proposition 4 may not b
Lemmal: Letd, ay,...,as € Clz]. The following two statements robner bases [12]. Itis also note at Froposition = may not be ap
. plied to the case wher® does not admit an MRC matrix fractional
are equivalent. S . .
. . description. Nevertheless, a two-dimensional (2-D) system always ad-
i) There existis,....hs € Cs(z) such that mits an MRC matrix fractional description [9].

B
d+ > hia; #0inT" (15) IV. EXAMPLES
= Three examples are given in this section to illustrate the new results
ii) Foragiven positive integel there exish, ... hj; € Cs(z) such presented in this note.
that Example 1: Consider an unstable 2-Dx22 plant represented by
8 . 1 1 2z
d'+ Y hai £ 0inT" (16) Pzl == {2 1 }

=1
o . ~ LetP = ND' where
Proof: Clearly, statement i) implies statement ii). This implica-

tion follows immediately by expanding? + 37, h;a;)" and col- p_|1Tai—= 0 } N = { L 2z } )
lecting the appropriate terms. 0 1+21 = 2 2z 1

Next, assume that statement ii) is true, i.e., there éXist.. . b}y € SinceD = dI, withd = 1 + z; — 22, we can apply Corollary 1 or
Cs(z) such thad' + 3°7  hia; # 0inT". By [7, Th. 2.1],d' has Proposition 2 to test the strong stabilizability of the given sysfém
a single-valued logarithm functidiog d' on V(1) N TU", wherel is As N is a square matrix, it has only onex22 minor, which is equal to
the ideal generated by, . ..,as andV (1) is the variety ofl. Since a1 = 1 — 4z z2. A sufficient condition for the strong stabilizabilitéy of
logd' = llogd, it follows immediately that! has a single-valued P is the existence of somec R (z1, z2) suchthatl+ha, # 0inT .
logarithm functionlog d on V(1) N T". By [7, Th. 2.1], there exist This condition turns out to be equivalent to the strong stabilizability of



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 9, SEPTEMBER 2002

a 2-D SISO system representediby= a1 /d, which was discussed in
[4]. In fact, from [4], we can findh = 1/(2(1 + v2)) € Ra(z1, 22)
such that

1

A

st =d+hay =(1+z1 —22) + m(l—“luzz)
4 1+f\/§+7 1+v2
e () (557 =)
£0inT".

1513

no common zero irC?. By Proposition 3, the systerR® is strongly
stabilizable. To obtain a stable stabilizing compensator, we first con-
truct the sam@” as in (22) in Example 2, such thatV = ZIq Since
det(D + YN) = 4z,z; + 4(z1 + 22) + 3 has zeros i, e. g.
(z1,22) = (0,—3/4), the compensatdt’ = Y chosen in Example 2
cannot stabilize the system considered here. To construct a stable com-
pensator, we can follow the procedure presented in the proof of Propo-

o D
sition 3. Letf(z1, z2;w) 2 det <[IQ wY] N’}
positive number. Expanding)( z1, z2; w) and collecting terms gives

, Wherew is a

From the proof procedure of Proposition 2, we can also obtain a stabi-

lizing compensator as follows. Let

i . 1 1 -2z
Y=~h(adj N T E———
R ] {—222 1 }
X =D5,andC = X7'Y =Y € R>*?(z1, 20). Itis easy to verify
thatdet(D + CN) = 57 # 01in (i Hence (' is the required stable
stabilizing compensator.
Example 2: Consider an unstable 2-Dx32 plant represented by

1 zZ1 0
P(Z’] . /‘.’2) = ~_ 0 1
“2 1- Z1 %22 O
LetP = ND~!, where
Z1 0
D:hz 0} N = 0 1
2 1-— Z1%Z2 0
The 2x 2 minors of[DT  N7T] are
det D =23, 0, 29, 0,—z122, 0, z2(z120 — 1), 21, 0, 2122 — 1
and the 2< 2 minors of N are
Z1, 0, Z1Z2 — 1.

Because the ideal generated by the 2 minors of N contains the
unit 1 (z1 andz; z — 1 have no common zero i€?), it is obvious
that the ideal generated by the<2 minors of[DY N7, with the
exception oflet D, is equal to the ideal generated by the 2 minors

fz,z05w) = (42120 — 1)+ 4(z1 + z2)w + 4w,

To ensure thaff (z1, zo;w) # 01in Fz, it suffices to choose a large
enoughw. In particular, for any positivev andV (z1, z2) in Uz, we
have|(4z1zo — 1)+ 4(z1 + z2)w| < [4z122 — 1| + 4w|(z1 + 22)| <

5 + 8w. Therefore, any which satisfiesv > 0 and4w? > 5 + 8w,

or equivalentlyw > 5/2 will guarantee|f(k1 zoyw)| > 0, which
implies f(z1, zo;w) # 0, in . For examplew = 3 yields a stable
stabilizing compensataf = X ~'3Y = 3Y € Rs?**(z1, 22) where
X =DL.

V. CONCLUSION

In this note, we have presented two sufficient conditions for the
strong stabilizability of some classes of linead MIMO systems, as
well as a simple necessary and sufficient condition for the strong stabi-
lizability of a special class of linearD MIMO systems. The proposed
method is algebraic and a stable stabilizing compensator can always be
constructed when a givenD MIMO plant satisfies one of the suffi-
cient conditions presented in the paper.

Finally, it is worth pointing out that the proof of the necessity part of
the strong stabilizability of a generalD MIMO system given in [7]
involves nonconstructive advanced mathematics. What still remain as
open problems are, first, to find a connection of the problem with con-
structive mathematical tools and to prove or disprove the sufficiency,
and second, to establish an algebraic constructive sufficient and neces-
sary condition for a generalD MIMO system.

of N. Moreover,D = z.I,. Hence, we can apply Proposition 4 to

this example to see whether the necessary and sufficient condition for

the strong stabilizability (17) is satisfied. SeltA:zl, az £ 0, and
as 2 2z — 1,and lethy = 2z2, ho = 0, andhs = —2. Itis then
easy to verify that

3

éd + Zh,;a,; =d+ hiay + hyas
i=1

=z2 4+ 222(21) + (—=2) (2122 — 1)

=% +2#£0inT".

S1

(21)
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However, even in the enlarged class, the problems are still restricted to

the special cases such thag, = 0 or DI, D2, > 0 holds, and it is

still open whether the problems can be reduced to convex problems for

generalD5; . In addition, no formulas of controllers have been shown

in [14].

This note proposes a new class of problems such that néithes=

0 nor DI, D1 > 0 holds, and shows that a convexfficientcondition

can be derived for that class of problems. The new class is characterized

by an assumption similar to [14]. Moreover, we show that the convex

solvability conditions for the SF and the FI problems can be regarded as

the extreme cases of the derived sufficient condition. It follows that the
Abstract—This note proposes a class of the constantly scaléd .. control suffic_ignt co_nditior_l gives necessity in the ex.tTeme cases. The_sufﬁcient

problem, where the class is characterized by an assumption also proposed condition will be given based on two solvability conditions which also

in this note. In general, the scaledH .., control problem leads to nonconvex are derived in this note. Moreover, an explicit formula of a possible

solvability conditions. On the other hand, for the problems in the proposed controller will be given.

class, we show that a convex but sufficient solvability condition canbe given.  This note is organized as follows. In Section II, we offer a robust sta-

l"é'r?qrsZZir’égergog:’deé‘étégftLh: es)t(ft’:g;eeeggggls‘ 2;‘31?‘;J‘%‘égﬁ{?ﬁggggog}“sbiIity criterion based on an integral quadratic constraint (IQC). Based

fact motivates 35 to call the assumption the pseudofull information condi- on this robust stability Crlterlon_, the corresponding Sy_ntheS'S F"Ob'em
tion. is formulated, and the assumption called a pseudofull information con-
. dition is proposed in Section Ill. The main results of this note will be
Index Terms—Constantly scaled H.. control problems, integrated — gpq\n in Section IV, The effectiveness of the proposed method will be
quadratic constraints (IQCs), linear matrix inequalities (LMIs), robust ] - . .
control. examlngd in Se_ctlon V by using an example. i
Notation in this note is fairly standardi/* andM ' are the transpose
and the pseudoinverse of matfix, respectivelyM* is a full-row rank
|. INTRODUCTION matrix whose rows span the orthogonal complement of the rangg of

Constantly ScaledH ., Control Problems for Pseudofull
Information Problems

Toru Asai

For the past two decades, much effort has been devoted to devel-
oping analysis and synthesis methods for robust control systems. One II. ROBUST STABILITY ANALYSIS
of the most important issues in robust control is conservatism of anal-Thjs note deals with the constantly scaléd. control problem pri-

ysis and _syntheg,i_s methods. I_n_orderto_ r_educe_ the consgrvatism, SCﬁ{ﬁﬁhy based on robust stabilization problems. In order to formulate
small-gain conditions or passivity conditions with multipliers are oftefhe ropyst stabilization problem, we first introduce a robust stability
employed [1]-[5]. Although those measures provide only sufficienf,a)ysis result in this section. The analysis problem is dealt with for a
conditions, they provide efficient robustness analysis. In fact, magy, jpack system depicted in Fig. 1, wheteC R’ ¥ represents

analysis results can be examined efficiently by casting them as "n?ﬁ{certainty. We assuntee A without loss of generalityP(s) corre-

matrlx_ |nequallt|_es (LMIs) [6]_.[8]' ) . . sponds to a closed-loop system constructed by a generalized plant and
While analysis problems aim to find scalings, the correspondlrﬁ . o -
controller. We assume the following realization fofs):

synthesis problems aim to find both scalings and controllers. Unfor-
tunately, the synthesis problems are nonconvex in general, even if scal-

ings are restricted to being constant, i.e., frequency independent. Con- P(s) =
cerning the constantly scaldd.., control problem, several methods

have been proposed to find global solutions [9]-[11]. However, thoseThen, the robust stability analysis result is given by the following
methods demand a large amount of computational effort. proposition [1], [4], [15].

Since the synthesis problems are nonconvex in general, much comProposition 1: Let A C R™t*?! be a given set, and € R"*",
putational effort is inherently required to find solutions. Furthermordd € R**™1,C € RP1*™ andD € R"**™' be given matrices. Sup-
there is no guarantee to obtain the global solution. On the other hapdse that there exist > 0 (¥ € R"*"),Q = Q7 € R™*™1,
if a given problem is proven convex, we can find the global solutioR = R? € RP1*Pt andS € RPL1*™! such that the following in-
without spending much time and effort. Hence, it is useful to knowqualities hold:

1" ST 1
{AT} {2 R}[AT}ZO forallA €A
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