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in a natural manner to the case when they are functions oft, whereF (t)
and�(t) must satisfy (18) for allt.

V. CONCLUSIONS

Differential linear repetitive processes are a distinct class of 2-D con-
tinuous-discrete linear systems of both applications and systems theo-
retic interest. In applications, they arise in ILC schemes and in solution
algorithms for nonlinear dynamic optimal control algorithms based on
the maximum principle. Repetitive processes cannot be analyzed/con-
trolled by direct application of existing systems theory and currently
there is only a very limited literature on the specification and design of
control schemes for them and essentially none on the class of processes
considered in this paper.

The most significant new contribution in this paper is that an LMI
formulation of stability along the pass (the stronger form of the two
distinct stability concepts for these processes which will most often
be required in applications) can be immediately used to design a pow-
erful class of control laws for these processes which, crucially, have a
well defined physical interpretation for applications areas such as ILC.
These features are missing from alternative stability characterizations
where the most that can be achieved is to test the resulting conditions
using 1-D linear systems stability tests.

It is important to place the results of this paper in context; essentially,
they represent the first systematic procedure for stability analysis and
onward controller design, as opposed to just stability analysis only, for
a very important and distinct class of 2-D linear systems using con-
trol laws which are well grounded in terms of the underlying process
dynamics. One key area for which no results are currently available
is the stability and control of differential linear repetitive processes in
the presence of uncertainty in the model structure. Here, it has been
shown that the LMI setting immediately allows significant progress to
be made.

One counter argument here may be that the uncertainty structures
used here are well known in the 1-D linear systems area. This is, in
fact, true, but only in terms of some of the matrices in the defining
repetitive process state–space model but, given the facts that: 1) no
previous work has been done in this area and 2) these processes do
have certain structural similarities with 1-D differential and discrete
linear systems, this is not an unreasonable place to begin work. The
most important conclusion to be drawn is, we argue, that it is indeed
possible to control these processes in the presence of uncertainty in
the defining model structure and that the results so obtained provide a
useful benchmark for further work. Also, the numerics associated with
the resulting conditions may not always be well behaved and this area
also merits further attention.
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Comments on “Stability Tests of -Dimensional Discrete
Time Systems Using Polynomial Arrays”

Li Xu, Jiangqian Ying, Zhiping Lin, and Osami Saito

Abstract—In this brief, we wish to point out that the author of the above
paper overlooked a mistake in the stability test procedure forN -dimen-
sional (N -D,N > 2) systems proposed in the above paper, which made the
polynomial array approach not general. It is shown that Hu’s test proce-
dure applies only to a very restricted class ofN -D stability test problems,
and for a general case, instead of necessary and sufficient conditions it pro-
vides only sufficient conditions. A counterexample is also given.

Index Terms—Multidimensional systems, polynomial array, stability
test.

I. INTRODUCTION AND PROBLEM DESCRIPTION

The purpose of this brief is to show that the author of [1] overlooked a
mistake in the stability test procedure forN -dimensional (N -D, N >

2) systems proposed in [1], so that this procedure does not generally
serve as a necessary and sufficient condition forN -D stability tests
except for certain very restricted cases. As the usage of some notations
in [1] is a little confusing, we first rephrase the related results of [1]
here in a slightly different way.

Consider anN -D discrete system described by the transfer function

G(z1; . . . ; zN) =
P (z1; . . . ; zN)

F (z1; . . . ; zN)
(1)

with P (z1; . . . ; zN) andF (z1; . . . ; zN) beingN -D factor coprime
polynomials, and assume thatG(z1; . . . ; zN) possesses no nonessen-
tial singularities of the second kind.

The necessary and sufficient condition forN -D system (1) to be
BIBO stable is thatF (zzzN) F (z1; . . . ; zN) is devoid of zeros in
the closed-unit polydisk, i.e.,

F (zzzN) 6= 0; for
N

p=1

jzpj � 1: (2)

Further, it is well known that this condition is equivalent to a set of
tests given by

F (zzzm) F (z1; . . . ; zm) 6= 0;

for
m�1

p=1

jzpj = 1; jzmj � 1; m = 1; 2; . . . ; N (3)

whereF (zzzm) is obtained by settingzi = 0 in F (zzzN) for i > m.
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TABLE I
POLYNOMIAL ARRAY FORFzzz ON

N�1
i=1 jzij = 1

For the tests of (3), it obviously suffices to consider only the case for
m = N , i.e.,

F (zzzN) 6= 0; for
N�1

p=1

jzpj = 1; jzN j � 1 (4)

as the others can be done similarly.
RegardF (zzzN) as a one-dimensional (1-D) polynomial inzN having

coefficients of polynomials inz1; . . . ; zN�1, i.e.,

F (zzzN) =

n

k =0

� � �

n

k =0

fk ;...;k zk1 � � � z
k
N

=

n

k =0

Fk (zzzN�1)z
k
N : (5)

Then, applying the well-known 1-D Marden–Jury table to (5) and
noting that�zi = 1=zi, i = 1; . . . ; N � 1 on N�1

p=1 jzpj = 1, the
polynomial array in Table I can be obtained [1] where

F 0;j(zzzN�1) = Fj(zzzN�1); j = 0; 1; . . . ; nN (6)

F i;j(zzzN�1)

=
F i�1;0(zzzN�1) F i�1;n �i+1

F i�1;n �i+1(zzzN�1) F i�1;j(zzzN�1)

=

m

k =�m

� � �

m

k =�m

f i;jk ;...;k zk1 � � � z
k

N�1 ;

i = 1; 2; . . . ; nN ; j = 0; 1; . . . ; nN � i (7)

mi;p = np2
i�1; i = 1; . . . ; nN ; p = 1; 2; . . . ; N � 1 (8)

and F i�1;j(zzzN�1) denotes the conjugate polynomial of
F i�1;j(zzzN�1), etc.

It is shown in [1] that condition (4) holds if and only if

F i;0(zzzN�1) > 0 on
N�1

p=1

jzpj = 1; i = 1; 2; . . . ; nN (9)

and further, condition (9) is equivalent to

F i;0(1) = F i;0(1; . . . ; 1) > 0 (10)

and

F i;0(zzzN�1) 6= 0 on
N�1

p=1

jzpj = 1; i = 1; 2; . . . ; nN : (11)

SinceF i;0(zzzN�1) is self-inversive inzN�1, F i;0(zzzN�1) 6= 0
on N�1

p=1 jzpj = 1 if and only if F i;0(zzzN�1) has half of its zero
clusters (or zeros) located insidejzN�1j < 1 for all (points on)
N�2
p=1 jzpj = 1, which can be tested again by using the Marden–Jury

table. To avoid the singular case in the table due to the self-inversive

property ofF i;0(zzzN�1), an auxiliary polynomialHi;0(zzzN�1) has to
be constructed first, as follows:

Hi;0(zzzN�1)

= z
l �1

N�1

@ z
l =2
1 � � � z

l =2

N�1 F i;0(zzzN�1)

@zN�1
z

(12)

where lp = 2mi;p = 2inp, p = 1; . . . ; N � 1. The problem is
now reduced to verifying ifHi;0(zzzN�1) haslN�1=2 zero clusters in
jzN�1j < 1 for all N�2

p=1 jzpj = 1.
LetF i;0

H (zzzN�2)be the entries of the first column in the Marden–Jury
table forHi;0(zzzN�1) and define

Pr(zzzN�2) =

r

i=1

F i;0
H (zzzN�2) on

N�2

p=1

jzpj = 1;

r = 1; 2; . . . ; lN�1 � 1: (13)

Then, the number of zero clusters ofF i;0
H (zzzN�2) located injzN�1j <

1 for all N�2
p=1 jzpj = 1 is equal to the number of products having

negative sign in (13) [1].
Note that in [1], instead ofF i;0(zzzN�1), Hi;0(zzzN�1), and

F i;0
H (zzzN�2), the notations ofF i;0(zzzN), Hi;0(zzzN), andF i;0(zzzN�1)

are used, which may cause a confusion with theF i;0(zzzN�1) used in
(9).

It is claimed in [1] that, in order to determine the sign of (13), each of
the factorsF i;0

H (zzzN�2) should have the same sign for allN�2p=1 jzpj =

1, i.e.,F i;0
H (zzzN�2) 6= 0 for N�2

p=1 jzpj = 1. Failure in this condition
would indicate thatHi;0(zzzN�1) = 0 and, thus,F i;0(zzzN�1) = 0
at some point on N�1

p=1 jzpj = 1 which violates the main stability
condition (4), implying that the system under test is unstable.

It is based on this claim that the following conclusion was given
in [1]: the zero distribution problem of (13) could be reduced to
a subproblem of verifying the zero distribution ofHi;0(zzzN�1)
on zN�1-plane for just a fixed point on N�2

p=1 jzpj = 1, say,
(z1; z2; . . . ; zN�2) = (1; 1; . . . ; 1), and another subproblem of testing
thatF i;0

H (zzzN�2) 6= 0 on N�2
p=1 jzpj = 1 for i = 1; 2; . . . ; lN�1 � 1.

To be more precise, this conclusion can be summarized as the
following proposition.

Proposition 1: LetF i;0
H (zzzN�2)andPr(zzzN�2)be defined as in (12)

and (13), respectively. Then, condition (11) holds true, which is equiv-
alent to thatF i;0(zzzN�1), orHi;0(zzzN�1), haslN�1=2 zero clusters in
jzN�1j < 1 for all N�2

p=1 jzpj = 1, if and only if

1) vp(1) = lN�1=2, where vp(1) is the number of
Pr(1) =

r
i=1 F

i;0
H (1) < 0, r = 1; 2; . . . ; lN�1 � 1;

2) F i;0
H (zzzN�2) 6= 0, for N�2

p=1 jzpj = 1, i = 1; 2; . . . ; lN�1 � 1.
Condition 1) is easy to test, while condition 2) could be considered in

the same argument used for condition (11). Repeating this process until
the involved entries are reduced to 1-D polynomials, theN -D stability
test problem could finally be reduced to just some 1-D positivity tests.
Based on these arguments, anN -D stability test procedure is given in
[1].

However, the above claim and further, the conclusion, i.e., the results
stated in Proposition 1, are in fact not correct, and consequently, instead
of necessary and sufficient conditions the approach from [1] provides in
general only sufficient conditions. Detailed discussions on this problem
and a counterexample are given in Section II.

II. DISCUSSIONS ANDCOUNTEREXAMPLE

For a given 1-D polynomialf(z) = a0+a1z+ � � �+anz
n, letai;j ,

i = 0; 1; . . . ; n, j = 0; 1; . . . ; n� i, be the entries of its Marden–Jury
table. In view of Theorems (44,1), (45,1), and (45,2) of [2], it can be
seen thatai;0 = 0, for somei � n, either in the case where only
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ai;0 = 0 or in the case whereai;j = 0 for j = 0; 1; . . . ; m, 1 � m �
n� i, does not necessarily imply thatf(z) has zeros onjzj = 1. That
is, f(z) may have no zeros onjzj = 1 even if a singular case occurs
in its Marden–Jury table. In other words,ai;0 6= 0 is not necessary for
f(z) 6= 0 on jzj = 1. One can simply verify this property by using,
for example, an arbitrary self-inversive polynomial having no zeros on
jzj = 1.

Applying the above property to the Marden–Jury table for an
(N � 1)-D polynomialHi;0(zzzN�1) by viewing it as a 1-D poly-
nomial having coefficients of(N � 2)-D polynomials, as stated in
Section I, one can readily conclude that the necessity of condition
2) in Proposition 1, i.e.,F i;0

H (zzzN�2) 6= 0 on N�2

p=1
jzpj = 1 is

necessary forHi;0(zzzN�1) 6= 0, or equivalently,F i;0(zzzN�1) 6= 0,
on N�1

p=1
jzpj = 1, does not hold. Therefore, the claim of [1] is not

correct and the procedure given there can only serve as a sufficient
N -D stability test in general. The failure of a test by this procedure
does not necessarily mean that the tested system is unstable.

Further analysis reveals that the necessity of the test of [1] only
holds for certain very restricted cases. In particular, whenN = 3,
n3 = 1, n2 = 1, i.e.,F (zzz3) is linear inz3 andz2, one will have
in the corresponding Marden–Jury table only one entryF 1;0(z1; z2)
with m1;2 = n22

1�1 = 1. Then, the degree ofH1;0(z1; z2) in z2 is
l2 � 1 = 2m1;2 � 1 = 1, whereH1;0(z1; z2) is constructed from
F 1;0(z1; z2) in the way of (12). Again, only one entryF 1;0

H (z1; z2)
will occur in the Marden–Jury table forH1;0(z1; z2), and to ensure that
H1;0(z1; z2) has one zero cluster injz2j < 1 for jz1j = 1, F 1;0

H (z1)
must be negative, i.e.,F 1;0

H (z1) < 0, for all jz1j = 1. This in turn is
equivalent to the conditions thatP1(z1) = F 1;0

H (z1) < 0 at z1 = 1
andF 1;0

H (z1) 6= 0 for all jz1j = 1, which can be tested by verifying the
number of the zeros ofF 1;0

H (z1) in jz1j < 1. It means that, in this case,
the stability test procedure of [1] is sufficient and necessary. In fact,
this case has been investigated through numerical examples in [3].

Whenn2 > 1 in the above case, the degree ofH1;0(z1; z2) in
z2 will be larger than 1 and the Marden–Jury table for it will have
more than one polynomial entry in the first column, i.e.,F i;0

H (z1) with
i > 1. More importantly, the conditionF i;0

H (z1) 6= 0 is no longer
necessary, as discussed previously, and we have to consider in gen-
eral a sign variation problem for the set of 1-D polynomialsF i;0

H (z1),
i = 1; 2; . . . ; l2 � 1, which is usually a more complicated problem
and needs a careful treatment of the possible singular cases. Never-
theless, asF i;0

H (z1) are 1-D polynomials, many available computer
software programs such as Maple, MATLAB, etc., can be utilized to
solve this problem, as shown in the counterexample below. Also, due
to the self-inversive property, one can convertF i;0

H (z1) to polynomials
~F i;0

H (x1) in real variablex1 = z1 + z�1
1

=2, and investigate the zero
distribution of ~F i;0

H (x1) on�1 � x � 1 by any of the available 1-D
methods [4].

To determine the stability ofN -D systems withN > 3, tests for
positivity on a set of polynomials of three or more variables are neces-
sary. This in turn requires the investigation of sign variation of a set of
polynomials of two or more variables for all values onm

i=1
jzij = 1,

m � 2 [3], [4]. Obviously, the test procedure of [1] does not provide a
solution to such a general case as pointed out in the above. Therefore,
the main difficulties for the generalN -D stability test problem still re-
main to be challenged.

In the following, we present a counterexample to the test procedure
of [1].

Counterexample:Test the stability of the 3-D system given by

G(zzz3) =
1

F (zzz3)
=

1

(z2
1
+ z2

2
+ 4)(z1 + z2 + z3 + 5)

:

Sincejz21+z22 j � jz21 j+ jz
2

2 j = jz1j
2+ jz2j

2 � 2 andjz1+z2+z3j �
jz1j + jz2j + jz3j � 3 on\3i=1jzij � 1, it is obvious thatF (zzz3) 6= 0
on\3i=1jzij � 1, i.e., the systemG(zzz3) is stable.

It is easy to see thatF (z1) = (z21 + 4)(z1 + 5) andF (zzz2) =
(z21 + z22 +4)(z1+ z2+5) satisfy condition (3) and the Marden–Jury
table forF (zzz3) on jz1j = 1; jz2j = 1 has, due to (7), only the entry

F 1;0(zzz2) = z21 + z22 + 4
1

z2
1

+
1

z2
2

+ 4

� (z1 + z2 + 5)
1

z1
+

1

z2
+ 5 � 1 :

AsF 1;0(1;1) = 62(72� 1) > 0, all we need to do to test the stability
of G(zzz3) is to verify whether condition (11) is true, i.e.,F 1;0(zzz2) 6= 0
on jz1j = 1; jz2j = 1. The auxiliary polynomialH1;0(zzz2) corre-
sponding toF 1;0(zzz2) is calculated based on (12) as follows:

H1;0(zzz2) = z52
@fz31z

3

2F
1;0(zzz2)g

@z2 z

= a5(z1)z
5

2 + a4(z1)z
4

2 + a3(z1)z
3

2

+ a2(z1)z
2

2 + a1(z1)z2 + a0(z1)

where

a5(z1) = 5z61 + 26z51 + 25z41 + 104z31 + 20z21

a4(z1) = 8z61 + 50z51 + 38z41 + 220z31 + 16z21 + 40z1

a3(z1) = 60z61 + 312z51 + 330z41 + 1404z31 + 330z21

+ 312z1 + 60

a2(z1) = 80z51 + 32z41 + 440z31 + 76z21 + 100z1 + 16

a1(z1) = 100z41 + 520z31 + 125z21 + 130z1 + 25

a0(z1) = 120z31 + 24z21 + 30z1 + 6:

It can be confirmed by, e.g., Maple that the polynomial entries in
the first column of the Marden–Jury table forH1;0(zzz2) have zeros on
jz1j = 1, i.e.,

F 1;0

H (z1) = 0; for z1 = z1a

F 2;0

H (z1) = 0; for z1 = z1b; �z1b

F 3;0

H (z1) = 0; for z1 = z1a

F 4;0

H (z1) = 0; for z1 = z1a; z1b; �z1b

F 5;0

H (z1) = 0; for z1 = z1a; z1b; �z1b

where

z1a =1

z1b; �z1b = � 0:955254� 0:295786I (with jz1bj = j�z1bj = 1)

and

F 1;0

H (z1) = � 100 z41 + z�41 � 320 z31 + z�31

+ 415 z21 + z�21 � 1680 z1 + z�11 + 3370

F 2;0

H (z1) = 225600 z81 + z�81 + 812160 z71 + z�71

� 8 406192 z61 + z�61 � 53891040 z51 + z�51

� 178449024 z41 + z�41 � 550027200 z31 + z�31

� 1 021440912 z21 + z�21

� 1 669789920 z1 + z�11 � 2 070668544:

F 3;0

H (z1) � F 5;0

H (z1) are omitted as they are too long to be included
and it suffices, for our purpose here, to just have, e.g.,F 1;0

H (z1) = 0
for somejz1j = 1.
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Fig. 1. Regions onjz j = 1 partitioned byz , z and�z .

Due to the test given in [1], it would be concluded that the system
G(zzz3) was not stable at this point asF i;0

H (z1) has zeros onjz1j = 1.
However, further investigation shows thatH1;0(zzz2) has three zeros in
jz2j < 1 whenz1 = z1a, z1 = z1b, andz1 = �z1b, i.e.,

H1;0(z1a; z2) = 180z52 + 372z42 + 2808z32 + 744z22 + 900z2 + 180

=0

at the points:fz2a = �0:916 662 + 3:742114I , z2b = �z2a, z2c =
�0:208366, z2d = �0:012489 + 0:568474I, z2e = �z2dg with
jz2aj = jz2bj > 1, jz2cj < 1, jz2dj = jz2ej < 1, and

H1;0(z1b; z2) = � (41:993102 + 67:976986I)z52

� (153:187792 + 181:8951I)z42

� (753:734031 + 951:456737I)z32

� (284:029541 + 381:492500I)z22

� (282:820099 + 282:170289I)z2

� 77:371705� 89:372696I

=0

at the points:fz2a = �1:441362�3:266240I, z2b = �1:146045+
3:724524I, z2c = �0:322843� 0:025447I, z2d = �0:051896�
0:570818I, z2e = 0:017809� 0:572627Ig with jz2aj > 1, jz2bj >
1, jz2cj < 1, jz2dj < 1, andjz2ej < 1. The case forH1;0(�z1b; z2) is
similar toH1;0(z1b; z2). Therefore, it is concluded thatF 1;0(z1; z2) 6=
0 on jz2j = 1 at least forz1 = z1a; z1b and�z1b. This can be verified
in a more direct way by substitutingz1a; z1b, �z1b into F 1;0(z1; z2)
and finding their zeros, respectively. Also, one can convertF i;0

H (z1)
to ~F i;0

H (x1) by usingx1 = (z1 + z�1
1

)=2 and verify that they have
the zeros ofx1 = 1, x1 = �0:955254 in �1 � x1 � 1 which
correspond toz1a andz1b, �z1b, respectively. However, all these detailed
elaborations are omitted here for brevity.

To determine whetherF 1;0(z1; z2) 6= 0 on jz2j = 1 for the other
points onjz1j = 1, we have to investigate the sign variation ofF i;0

H (z1)
andP i;0

r (z1) =
r

i=1
F i;0

H (z1), r = 1; . . . ; 5, on each region ofjz1j =
1 partitioned byz1a, z1b and �z1b as shown in Fig. 1. AsF i;0

H (z1),
i = 1; . . . ; 5, are 1-D polynomials and have, respectively, the same sign

TABLE II
SIGN VARIATIONS OFP (z ) ON jz j = 1

on each region, it is not difficult to obtain the results shown in Table II.
From the results we see that, though different sign variations occur for
different regions onjz1j = 1, the numbers of negative signs for these
regions are all the same, i.e., are all 3, which means thatH1;0(z1; z2)
has three zeros injz2j < 1 for jz1j = 1, i.e.,H1;0(z1; z2) 6= 0 and
F 1;0(z1; z2) 6= 0 on jz1j = 1, jz2j = 1. Further, combining with
the fact thatF 1;0(1;1) > 0, we see thatF (zzz3) satisfies condition (4),
thusG(zzz3) is stable. It should be noted that if we use~F i;0

H (x1) instead
of F i;0

H (z1), the sign variation of~F i;0

H (x1) on�1 � x1 � 1 can be
verified more easily.

III. CONCLUDING REMARKS

It has been shown that the author of [1] overlooked a mistake in the
N -D (N > 2) stability test procedure given in [1], which made the
polynomial array approach not general. It has been pointed out in this
brief that the test procedure of [1] in fact applies only to a very restricted
class ofN -D stability test problems. As a result, for the stability test of
a generalN -D system, the polynomial array approach proposed in [1]
provides only sufficient conditions instead of necessary and sufficient
conditions.

A numerical counterexample has also been given to support our
arguments, which has reinforced that singular cases must be treated
carefully when applying a table (or polynomial array) approach to
the N -D stability testing problem. Therefore, we believe that there
are still many difficulties at the present stage for generally reducing
a complicated zero distribution problem of anN -D polynomial to
a comparatively simple positivity test problem for 1-D polynomials.
Finding an effective and efficient method forN -D (N > 2) stability
test remains challenging.
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