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in a natural manner to the case when they are functiohanferef'(¢) [7] E. Rogers and D. H. Owenstability Analysis for Linear Repetitive
andA(¢) must satisfy (18) for alt. Processes Berlin, Germany: Springer-Verlag, 1992, vol. 175, Lecture
Notes in Control And Information Sciences Series.

V. CONCLUSIONS

Differential linear repetitive processes are a distinct class of 2-D con-
tinuous-discrete linear systems of both applications and systems theo-
retic interest. In applications, they arise in ILC schemes and in solution » . . .
algorithms for nonlinear dynamic optimal control algorithms based offomments on “Stability Tests of V-Dimensional Discrete

the maximum principle. Repetitive processes cannot be analyzed/con- Time Systems Using Polynomial Arrays”
trolled by direct application of existing systems theory and currently ) . ] . o ) o
there is only a very limited literature on the specification and design of Li Xu, Jianggian Ying, Zhiping Lin, and Osami Saito

control schemes for them and essentially none on the class of processes

conﬁldered |n_th|_sf_paper. ibution in thi is th Abstract—In this brief, we wish to point out that the author of the above
The most significant new contribution in this paper is that an L aper overlooked a mistake in the stability test procedure forN-dimen-

formulation of stability along the pass (the stronger form of the tW&lonal (v-D, NV > 2) systems proposed in the above paper, which made the
distinct stability concepts for these processes which will most oftglynomial array approach not general. It is shown that Hu's test proce-
be required in applications) can be immediately used to design a palire applies only to a very restricted class ofV-D stability test problems,
erful class of control laws for these processes which, crucially, havé?f for a general case, instead of necessary and sufficient conditions it pro-
well defined physical interpretation for applications areas such as [Resasd only sufficient conditions. A counterexample is also given.

These features are missing from alternative stability characterizationfidex Terms—Multidimensional systems, polynomial array, stability
where the most that can be achieved is to test the resulting conditiét
using 1-D linear systems stability tests.

Itis important to place the results of this paper in context; essentially,
they represent the first systematic procedure for stability analysis and
onward controller design, as opposed to just stability analysis only, for The purpose of this brief is to show that the author of [1] overlooked a
a very important and distinct class of 2-D linear systems using comstake in the stability test procedure ®rdimensional {V-D, N >
trol laws which are well grounded in terms of the underlying procegd systems proposed in [1], so that this procedure does not generally
dynamics. One key area for which no results are currently availatierve as a necessary and sufficient condition/¥eD stability tests
is the stability and control of differential linear repetitive processes Bxcept for certain very restricted cases. As the usage of some notations
the presence of uncertainty in the model structure. Here, it has bé@nhl] is a little confusing, we first rephrase the related results of [1]
shown that the LMI setting immediately allows significant progress taere in a slightly different way.

. INTRODUCTION AND PROBLEM DESCRIPTION

be made. Consider anV-D discrete system described by the transfer function
One counter argument here may be that the uncertainty structures P(z1,....2n)
used here are well known in the 1-D linear systems area. This is, in G(z1,...,2n) = o N 1)
. . . L F(zi,..., ZN)
fact, true, but only in terms of some of the matrices in the defining _ _
repetitive process state-space model but, given the facts that: 1)) P(z1,...,2nv) and F(z1,. .., 2n) being N-D factor coprime
previous work has been done in this area and 2) these processef@gnomials, and assume thatz, ..., zx) possesses no nonessen-

have certain structural similarities with 1-D differential and discretial singularities of the second kind.

linear systems, this is not an unreasonable place to begin work. Thdhe necessary and sufficient condition @D system (1) to be
most important conclusion to be drawn is, we argue, that it is inde84BO stable is that'(zx) = F(z1,...,zx) is devoid of zeros in
possible to control these processes in the presence of uncertaintjh closed-unit polydisk, i.e.,

the defining model structure and that the results so obtained provide a N
useful benchmark for further work. Also, the numerics associated with F(zn) £ 0, for ﬂ |zp] < 1. )
the resulting conditions may not always be well behaved and this area p=1

also merits further attention. Further, it is well known that this condition is equivalent to a set of

tests given by
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TABLE | property of F*"°(zx_1), an auxiliary polynomial°(zx_1) has to
POLYNOMIAL ARRAY FOR Fzy ON (1,1 [zi| = 1 be constructed first, as follows:
Row(i) & zk S R H"(25-1)
{ l 2
0 FO’O(ZN_l) FO’I(ZN—I) FU,nN—l(zN_l) FD‘"N(ZN_l) I 6{411/2 . N 1/ FT 0( Nfl)}
1 F'0(2n_1) FLl(zy_1) <o FUrNTl(zyog) T AN-1 8/7]\r'—1 (12)
7‘;/171
_ ny—1,0 ny—1,1 .
av—l Frii(en) F (zN-1) wherel, = 2m;, = 2'n,,p = 1....,N — 1. The problem is
ny Frvf(zn-1) now reduced to verifying i * “(zv 1) hasix—1/2 zero clusters in

len—a| < forall )57 |2] = 1.
LetF}; 1 (2v—2) be the entries of the first column in the Marden—Jury
For the tests of (3), it obviously suffices to consider only the case fgiple for H* %(zn—_1) and define

m = N, ie.,

—2

No1 Pr(znv=2) = [[ Fi;°(zxv=2) on () |z] =1,
zpl =1, |an| <1 4) H ﬂ

p=1 r=1,2,....In_1 — 1. (13)

as the others can be done similarly.
RegardF'(zx ) as a one-dimensional (1-D) polynomialig having

F(ZN) # 0, for

Then, the number of zero clustersiof’ (zx—») located in|zn—1| <

coefficients of polynomials in1, ..., 2y—_1,i.€., igggtiller;@r: |n7):13)_[11] Is equal to the number of products having
1 "N Note that in [1], instead ofF"°(zy_1), H" (zw,l) and
Fzx) = Z Z Fopo kit kN F};°(zn—2), the notations oF**(zx), H"°(zn), and F** (zx_1)
k=0  ky=0 are used, which may cause a confusion wnhfhé)(m —1) usedin
nN 9).
Z Fiy(zn ,1)~\, . (5) Itis claimed in [1] that, in order to determine the sign of (13) each of
kn=0 the factorsF};° (zv—=) should havethe same S|gnf0rﬁ1f\ |zp| =

. ie.,F; 0 for zp| = 1. Failure in this condition
Then, applying the well-known 1-D Marden—Jury table to (5) an\(/jvould Indlr(;ZtNe tzrl)a;étH’ O(ZO )1 ol p(l and, thus. (1) = 0
noting thatz; = 1/z,i = 1,...,N — lon()_' N1 ! ‘ ZN-1) =

- . at some point orf},_," |z»| = 1 which violates the main stability
polynomial array in Table I can be obtained [1] where condition (4), |mply|ng that the system under test is unstable.

0,j o . o It is based on this claim that the following conclusion was given
Fi‘j(,zN 1) =Filen-), j=01, : © i [1]: the zero distribution problem of (13) could be reduced to
! (ZN*I)Y ] ] a subproblem of verifying the zero distribution AT (zn_1)

_ Fmh0%zn0) Frobna—itt on zx_i-plane for just a fixed point o))" |z,| = 1, say,
Fimlen—itl(zn_ 1) Fi=hi(zy_1) (21.22,...,28=2) = (1,1,..../ 1), andanothersubproblemoftesting
mg 1 mi N -1 . thatF (Z\r 2) # 0 on ﬂp 1 |zp| =1fori=1,2,....1n-1 — 1.
= Z Z i 14{‘1-- f{,N T To be more precise, this conclusion can be summarized as the

ki=—m; ) ky_1=—m; N1 following proposition.
i=1,2,...,nn,j=0,1,....,nn — i 7) Proposition 1: Let F};% (zx—2) andP, (2 —2) be defined asin (12)

and (13), respectively. Then, condition (11) holds true, which is equiv-
alentto thatF"° (zx—1), or H*®(zx—1), haslx—1 /2 zero clusters in
n—1] < Lforall (2% |2, = 1, if and only if

mipy = np2i71,i =1,....n5y, p=12,....N -1 (8)

and Fi~1J(zy—;) denotes the conjugate polynomial of|

Fi~Vi(zy_1), etc. 1) v,(1) = In-1/2, where v,(1) is the number of
It is shown in [1] that condition (4) holds if and only if P, (1) [, Fi’ (1) <0,r =1, 2, v =
2) F ZN )) 75 0 fOI’ﬂN 2 o1 — 1.
. N1 Conditlon 1)iseasyto test wh|Ie condltlon 2) could be considered in
F*%zy_1)>0 on m |zp| =1, i=12,....nyv (9) thesame argument used for condition (11). Repeating this process until
p=1 the involved entries are reduced to 1-D polynomials,th® stability

test problem could finally be reduced to just some 1-D positivity tests.

and further, condition (9) is equivalent to Based on these arguments, 8iRD stability test procedure is given in

7, 7, 1]
Fo)=F°1,...,1) >0 10) | . L
(1) (Loos ) > (10) However, the above claim and further, the conclusion, i.e., the results

stated in Proposition 1, are in fact not correct, and consequently, instead

and - L o
of necessary and sufficient conditions the approach from [1] provides in
o N—1 general only sufficient conditions. Detailed discussions on this problem
F'%zn-1)#0 on () |5 =1, i=12....,nxy. (11) and a counterexample are given in Section Il.

p=1

. i . . L ; 1. DISCUSSIONS ANDCOUNTEREXAMPLE
Since F**%(zn—1) is self-inversive inzx—1, F*%(zxy—1) # 0

on ﬂN Yz,] = 1if and only if F*°(zx_,) has half of its zero  Foragiven 1-D polynomiaf () = ag+aiz+---+a, ", leta",
clusters (or zeros) located insidex—1| < 1 for all (points on) i=0,1,...,n,7=0,1,..., n — ¢, be the entries of its Marden—Jury
ﬂ;\ ~?|z,| = 1, which can be tested again by using the Marden—Jutgble. In V|ew of Theorems (44,1), (45,1), and (45,2) of [2], it can be
table To avoid the singular case in the table due to the self-inversseen that™® = 0, for somei < n, either in the case where only
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a*® = 0 orinthe case where’ = 0forj =0,1,...,m,1 < m < It is easy to see thaF(z;) = (¥ + 4)(z1 + 5) and F(z2) =

n — i, does not necessarily imply thftz) has zeros ofe| = 1. That (27 + 22 +4)(z1 + 22 + 5) satisfy condition (3) and the Marden—Jury
is, f(z) may have no zeros or| = 1 even if a singular case occurstable forF(z3) on|z:| = 1, |z2| = 1 has, due to (7), only the entry

in its Marden—Jury table. In other wordg;® # 0 is not necessary for

f(2) # 0 on|z| = 1. One can simply verify this property by using, .1 o (2424 1 1 4
for example, an arbitrary self-inversive polynomial having no zeros on (z2) = (”‘ T+ ) E + 2 +
2] = 1. 11
Applying the above property to the Marden—Jury table for an X {(n + 224+ 5) <Z + > + 5) - 1} .

(N — 1)-D polynomial H*°(zx_,) by viewing it as a 1-D poly-

. . - N : . . -
nomial having coefficients of N 2)-D polynomials, as stated in AsF'0(1,1) = 62(72 — 1) > 0, all we need to do to test the stability

Section |, one can readily conclude that the necessity of conditiof -, . . i, ) L0
2) in Proposition 1, i.e.F1%(zx—s) # 0 on ﬂ;?;f =] = 1is O?G(ze,) is to verify whether condition (11) is true, i.€, " (z2) # 0

f i - on|zi| = 1,|z2| = 1. The auxiliary polynomialH'-°(z2) corre-
necessary foff " (zn—1) # 0, or equivalently,F""(zx—1) # 0, yonding toP10 (2, is calculated based on (12) as follows:
on"" " |z,| = 1, does not hold. Therefore, the claim of [1] is not P g (22) (12) '

p=1
correlct and the procedure given there can only serve as a sufficient L TO{3 28 10 (20))
N-D stability test in general. The failure of a test by this procedure H"(2y) =z | 2 2200
does not necessarily mean that the tested system is unstable. 0z 7t
Further analysis reveals that the necessity of the test of [1] only = (1‘5(;1)@” + a4(;1);§ +as(z1)z

holds for certain very restricted cases. In particular, whéen= 3,
ng = 1,ne = 1, i.e., F(z3) is linear inz3 and z, one will have
in the corresponding Marden—Jury table only one e®hy (2, z2)
with m1 2 = 122"~ = 1. Then, the degree df ''°(z1,2z2) in 23 is
Is =1 = 2my2 — 1 = 1, whereH"®(z, z0) is constructed from
F'0(z(,2) in the way of (12). Again, only one entr};"(z1, z)

+ ag(;/l):ZQZ + a1(z1)z2 + ao(z1)
where

as(z1) =52y + 2627 + 2527 + 104z) + 2027

will occur in the Marden—Jury table fdf *-°( z,, 22 ), and to ensure that aq(z1) =827 4 5027 + 3827 + 2202) + 1627 + 402
; 1,0 = :

H'""(z1,22) has one zero cluster ;| < 1for =] = 1, Fy"(z1) as(z1) =605 + 31227 + 3302 + 140427 4 33022
must be negative, i.eE}; (z1) < 0, for all |z1] = 1. This in turn is 43192, 460
equivalent to the conditions th& (z,) = F;°(z1) < Oatz, = 1 ot ‘ _

1,0/, ol — i . az(z1) =80%7 + 3227 4 44027 4 7625 + 100z, + 16
andFy,"(z1) # 0forall|z;| = 1, which can be tested by verifying the 2(21 1 1 1 1 1
number of the zeros dﬁ,’o(zl) in |z1] < 1. It means that, in this case, ar(z) = 100z} 4 52027 + 12527 + 1302, + 25

the stability test procedure of [1] is sufficient and necessary. In fact, ao(z1) = 1208 + 2427 + 3021 + 6.
this case has been investigated through numerical examples in [3].
Whenn, > 1 in the above case, the degree Bf°(z;,z») in
zo Will be larger than 1 and the Marden-Jury table for it will hav

more than one polynomial entry in the first column, iE;;’ (21 ) with
i > 1. More importantly, the conditiorfgo(zl) # 0 is no longer
necessary, as discussed previously, and we have to consider in gen-

It can be confirmed by, e.g., Maple that the polynomial entries in
?he first column of the Marden—Jury table Hi'°( 2z, ) have zeros on
|z1] = 1,i.e.,

: ~1,0 _ o .
eral a sign variation problem for the set of 1-D polynomi&ls’ (1), F{jo(“‘ )=0 for z1 = 21
i = 1,2,...,12 — 1, which is usually a more complicated problem Fi7(z1) =0, for z1 = z1p, Z16
and needs a é:areful treatment of thc_a possible sing_ular cases. Never- F?,’“(zl) =0, for z; = 214
theless, ag’;; (z1) are 1-D polynomials, many available computer FA0(2) =0 for 21 = 21 211 3
software programs such as Maple, MATLAB, etc., can be utilized to o ’ SLT ste sl
solve this problem, as shown in the counterexample below. Also, due Fr(z1) =0, forzi = zia, 210, 210
to the self-inversive property, one can con\EltIt”(;:l) to polynomials
F}°(x1) inreal variabler; = (z1 + 2 ") /2, and investigate the zero Where
distribution of ;" (1) on—1 < & < 1 by any of the available 1-D
methods [4]. z1a =1
To determine the stability oV-D systems withV' > 3, tests for ., =, = — 0.955254 £ 0.295 7861 (with |z15| = |Z1s]| = 1)
positivity on a set of polynomials of three or more variables are neces-
sary. This in turn requires the investigation of sign variation of a set gf,
polynomials of two or more variables for all values Oy’ , |z:| = 1,
m > 2 [3], [4]. Obviously, the test procedure of [1] does not provide a 10y = — 100 (24 n ~74) — 390 (~3 4 ;s)
solution to such a general case as pointed out in the above. Thereforé] "~/ — S .
the main difficulties for the genera¥ -D stability test problem still re- + 415 (21 4+ 27 ) = 1680 (=1 + 21 ) 4+ 3370
main to be challenged. Fi°(21) =225600 (21 + 2, °) + 812160 (2 + 2 ')
o I[nl]the following, we present a counterexample to the test procedure 8406192 (le n Zl_a) — 53891040 (Zf n 21_5)
Counterexample:Test the stability of the 3-D system given by — 178449024 (2 + = %) — 550027200 (=} + z; )
) 1 — 1021440912 (2] + =1 %)
G(z3) = Flzs) (Bt 240mtatats) — 1669789920 (21 + 2 ') — 2070668 544.

Since|z? 4 23| < |23 4123 = |21 P+ 22> < 2and|zi 420423 < FiiP(21) ~ Fj%(z1) are omitted as they are too long to be included
|z1] + |22] + |23] < 3onni_|z] < 1, itis obvious thatF'(z3) # 0 and it suffices, for our purpose here, to just have, €g. (1) = 0
onni_, < 1, i.e., the systend/(z3) is stable. for some = 1.

Zi 2
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II

Z1p

m |z =1

Fig. 1. Regions othz;| = 1 partitioned byz1,, z1, andzi.
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TABLE 1l

SIGN VARIATIONS OF P.(z1) ON|z1| = 1

P, | P, | P3| Py | Ps | Number of “-”

+|-1- 3
- | - 3

II
Im | + | -

+ | -

-~ 3

on each region, it is not difficult to obtain the results shown in Table II.
From the results we see that, though different sign variations occur for
different regions onz,| = 1, the numbers of negative signs for these

Due to the test given in [1], it would be concluded that the systepagions are all the same, i.e., are all 3, WhICh means[ﬂ"}act(zl )

G(z3) was not stable at this point a@&,°(z/) has zeros ofiz(| = 1.
However, further investigation shows tht O(zz has three zeros in
|z2] < 1 whenzy = z14, 21 = z1s, @ndz; = Z1s, i€,

H'"% (214, 22) = 18025 4 37225 + 280825 + 74425 + 90022 + 180
=0

at the points{zo. = —0.916 662 + 3.7421141, 225 = Zoa, 220 =
—0.208366, 224 = —0.012489 4 0.568474I, zo. = Zz4} With
[224| = |226] > 1, ]22¢] < 1,]224] = |22.] < 1, @nd

H" (214, 20) = — (41.993102 4 67.976 9861 ) 25
— (153.187792 + 181.8901[)22
— (753.734031 4 951.456 7371) 23
— (284.020541 + 381.492 5001 )25
— (282.820099 4 282.1702897T) 2,
— 77.371705 — 89.372 6961
=0

at the points{zo, = —1.441362 — 3.266 2401, zo5, = —1.146 045+
3.724 5241, zo. = —0.322843 — 0.0254471, z24 = —0.051896 —
0.570 8181, 2o, = 0.017809 — 0.572627T} With |20,] > 1, |225] >
1, |22¢] < 1,|224| < 1, and|zz| < 1. The case folf'°(z;, 22) is
similarto H'-°( 15, 22 ). Therefore, itis concluded that'° (z;, 20 ) #
0 on|z| = 1 atleast forzy = z14, 215 andz,. This can be verified
in a more direct way by substituting o, z1s, Z1s into F°(z, 22)
and finding their zeros, respectively. Also, one can convft (1)
to F;°(x1) by usingz: = (z1 + z; ')/2 and verify that they have

the zeros ofr; = 1,21 = —0.955254in —1 < x; < 1 which

correspond te;, andz1;, z15, respectively. However, all these detailed

elaborations are omitted here for brevity.

To determine whetheF':° (21, z2) # 0 on|z| = 1 for the other
pointsonz| = 1, we have to investigate the sign variatior®jf® (=)
andP%(z) = [\_ z1),r =1,. , on each region qk1| =
1 partitioned by/.1,,, Z1b and Z1p as shown in Fig. 1. Ag:°(z1),
t=1,...

, 5, are 1-D polynomials and have, respectively, the same sign

has three zeros i, ,z2) # 0 and
F'(z1,22) # 0on|z| = 1, |Zo| = 1. Further combining with
the fact that"*°(1,1) > 0, we see thaF(z;) satisfies condition (4),
thUSC(Z% is stable. It should be noted that if we uBg’ () instead
of F};°(z1), the sign variation of ;" (x1) on—1 < #; < 1 can be
venfled more easily.

Ill. CONCLUDING REMARKS

It has been shown that the author of [1] overlooked a mistake in the
N-D (N > 2) stability test procedure given in [1], which made the
polynomial array approach not general. It has been pointed out in this
brief that the test procedure of [1] in fact applies only to a very restricted
class of NV -D stability test problems. As a result, for the stability test of
a generalV-D system, the polynomial array approach proposed in [1]
provides only sufficient conditions instead of necessary and sufficient
conditions.

A numerical counterexample has also been given to support our
arguments, which has reinforced that singular cases must be treated
carefully when applying a table (or polynomial array) approach to
the N-D stability testing problem. Therefore, we believe that there
are still many difficulties at the present stage for generally reducing
a complicated zero distribution problem of &h-D polynomial to
a comparatively simple positivity test problem for 1-D polynomials.
Finding an effective and efficient method fof-D (N > 2) stability
test remains challenging.
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