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Abstract—Estimation of the unknown parameters that charac-
terize a bilinear system is of primary importance in many appli-
cations. The Cramer–Rao lower bound (CRLB) provides a lower
bound on the covariance matrix of any unbiased estimator of un-
known parameters. It is widely applied to investigate the limit of
the accuracy with which parameters can be estimated from noisy
data. Here it is shown that the CRLB for a data set generated by a
bilinear system with additive Gaussian measurement noise can be
expressed explicitly in terms of the outputs of its derivative system
which is also bilinear. A connection between the nonsingularity of
the Fisher information matrix and the local identifiability of the un-
known parameters is exploited to derive local identifiability condi-
tions of bilinear systems using the concept of the derivative system.
It is shown that for bilinear systems with piecewise constant inputs,
the CRLB for uniformly sampled data can be efficiently computed
through solving a Lyapunov equation. In addition, a novel method
is proposed to derive the asymptotic CRLB when the number of
acquired data samples approaches infinity. These theoretical re-
sults are illustrated through the simulation of surface plasmon res-
onance experiments for the determination of the kinetic parame-
ters of protein–protein interactions.

Index Terms—Bilinear systems, Cramer–Rao lower bound
(CRLB), Fisher information matrix, local identifiability, param-
eter estimation, surface plasmon resonance experiments, system
identification.

I. INTRODUCTION

B ILINEAR systems are an important class of nonlinear
systems because of their wide range of applications in a

number of different fields, including engineering, biomedical
science, economics, etc. A fundamental problem in these ap-
plications is to estimate/identify the unknown parameters of a
bilinear system from its output observations [1]–[4]. The ques-
tion therefore naturally arises concerning the accuracy of the
estimation that can be achieved based on the assumed bilinear
system model and observed noisy outputs. The Cramer–Rao
lower bound (CRLB) gives a lower bound on the covariance
matrix of any unbiased estimator of unknown parameters [5],
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[6]. It is commonly used to evaluate the performance of an
estimation/identification algorithm and provide guidance to
improve the experimental design. The purpose of this paper is
to derive an explicit expression of the CRLB for noisy data sets
generated by a bilinear system, from the perspective of system
theory.

The CRLB for estimating unknown parameters of stationary
time series has received considerable attention in the literature
[7]–[9]. Recently, the CRLB or Fisher information matrix for
one-dimensional (1-D) dynamic nonstationary systems with de-
terministic input and Gaussian measurement noise has been in-
vestigated in [10]. The calculation of the Fisher information
matrix for the 1-D data is performed in terms of the derivative
system with respect to the unknown parameters and by using the
solution to a Lyapunov equation. The above approach has been
extended to multidimensional ( -D) data sets generated by -D
linear separable-denominator systems and applied to the anal-
ysis of -D nuclear magnetic resonance (NMR) spectroscopy
data sets [11].

Here we generalize the results in [10] to bilinear systems
and continue to explore some system theoretical insights of
the approach. It is shown that the Fisher information matrix
for the output data samples of a multiple-input-multiple-output
(MIMO) bilinear system can be expressed in terms of the
outputs of its derivative system which is also an MIMO bilinear
system. The use of the notion of the derivative system brings
two main benefits. First, we can study properties of the Fisher
information matrix and the CRLB from a system theoretic point
of view, e.g., the local identifiability conditions discussed in
Section II. Second, for uniformly sampled data sets generated
by bilinear systems with piecewise constant inputs, the CRLB
can be efficiently computed using algorithms based on the
solution to a Lyapunov equation. It is important to note that dif-
ferent notions of bilinear systems exist in the literature. In [12]
and [13], the CRLB was calculated for specific equations that
do not immediately reduce to the class of systems considered
here, although our general approach may also be applicable to
the type of systems considered in [12] and [13].

The organization of the paper is as follows. In Section II,
we apply the concept of the derivative system to obtain an ex-
plicit expression of the Fisher information matrix for noise cor-
rupted data sets generated by an MIMO time-invariant bilinear
system. Provided some weak regularity conditions hold the non-
singularity of the Fisher information matrix is equivalent to the
local identifiability of the system. We consider the question of
local identifiability in two contexts. First, we answer the ques-
tion under which conditions a finite number of inputs exist that
lead to an identifiable data set. Second, we address the question
under which conditions for a given input the resulting data set
leads to local identifiability of the parameters. For the uniformly
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sampled data sets generated by a bilinear system with piece-
wise constant inputs, it is shown in Section III that the CRLB
can be efficiently calculated through solving a Lyapunov equa-
tion and that the asymptotic CRLB can be derived without ex-
plicitly computing the Fisher information matrix. In Section IV,
the theoretical results presented in the paper are illustrated by
the simulation of surface plasmon resonance experiments aimed
at estimating kinetic constants of protein–protein interactions.
Conclusions are presented in Section V. Proofs are given in the
Appendix.

II. CRAMER–RAO LOWER BOUND FOR MIMO TIME-INVARIANT

BILINEAR SYSTEMS

A. General Approach

Consider the state–space model of a general MIMO time-in-
variant bilinear system given by (see [14])

(1)

(2)

where is the state vector, is
the system output vector,

are the system
matrices depending on the unknown parameter vector

, is the initial
state vector, which can also depend on the parameter
vector , and is the input vector with
components , which are independent
of . For convenience of exposition, we use the notation

to represent the bilinear
system with state vector , input , output , system
matrices , and initial state , as
defined in (1) and (2). The th element of is represented
by , i.e., .
Similarly, the th row of is denoted by ,
i.e., , etc.

In this section, we will derive some general results and prop-
erties of the CRLB for bilinear systems for the class of admis-
sible inputs , which are assumed to be piecewise continuous,
have a finite number of discontinuities and are defined on finite
or semi-finite left-closed intervals whose left boundary point is

. The main reason for considering the class of admissible in-
puts is that there exists a unique solution when the input to a
bilinear system is from this class. Specifically, when the input
is piecewise continuous with a finite number of discontinuities,
the state and output vectors will be continuous.

Assume that we have acquired noise corrupted samples
, of the measured output of

the bilinear system defined by (1) and (2), i.e.,

(3)

where is the noise free output and is the measure-
ment noise at the sampling point

. We assume that the measurement noise components are

zero-mean, Gaussian distributed and temporally uncorrelated.
The probability density function for the acquired data set

is given by

where is the covariance matrix of
, which is assumed to be positive definite

throughout the paper. Assume that satisfies the standard
regularity conditions (see e.g., [15], [16]). The Fisher informa-
tion matrix is then defined as (see [5], [17])

where . If is pos-
itive definite for all , where is assumed to be an open
subset of the Euclidean space , by the CRLB any unbiased
estimator of has a variance such that

where is interpreted as meaning that the matrix
is positive semidefinite.

In the following theorem, we first show that the derivative
system (with respect to the given parameter vector ) of a gen-
eral MIMO time-invariant bilinear system is also an MIMO
time-invariant bilinear system. The Fisher information matrix
for the sampled output data of the bilinear system with Gaussian
measurement noise is then expressed using the output samples
of its derivative system.

Theorem 2.1 (Appendix A): Consider the bilinear system
represented by . Assume
that the partial derivatives of and

with respect to the elements of exist for . Let

... with ...

Then, we have the following results.

1) , is the output of the derivative system
given by

(4)

(5)

which is an MIMO time-invariant bilinear system with
state vector , and has the same input
as . The state vector , initial state , and system
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matrices are given as fol-
lows, which will be adopted throughout the paper:

...
...

...
... with

(6)

where for

(7)

2) For the data points , where
is the sampled output of the bilinear system ,

and is temporally independent Gaussian noise
with zero mean and variance matrix , the Fisher
information matrix is given by

(8)

Here is defined as
, for .

Note that in the above theorem, is a matrix, while
is an vector.

B. Local Identifiability

The parameter vector is said to be locally identifiable if
there exists an open neighborhood of containing no other pa-
rameter vector that is observably equivalent to [18]. The fol-
lowing Theorem 2.2 quoted from [19] (see also [20]) states that
under some weak regularity conditions the local identifiability
of an unknown parameter vector is equivalent to the nonsingu-
larity of its associated Fisher information matrix. This connec-
tion between local identifiability and the nonsingularity of the
Fisher information matrix is of importance in itself. It is also
relevant for the calculation of the CRLB which is typically ex-
pressed in terms of the inverse of the Fisher information ma-
trix . For the remaining part of the paper we need to impose
the standard weak regularity conditions (see, e.g., [19]). In our
context, this implies in particular that we will assume the par-
tial derivatives of and with re-
spect to are continuous for all .

Theorem 2.2 [19]: Let . Then is locally identifiable
if and only if the Fisher information matrix is nonsingular.

For a bilinear system with a specific input, we can determine
the local identifiability based on the nonsingularity of the Fisher
information matrix by Theorems 2.1 and 2.2. However, a dis-
advantage is that we need to calculate the output samples of the
derivative system first. In the study of local identifiability, we are
sometimes interested in determining whether there exist some
admissible inputs such that the unknown parameter vector is lo-
cally identifiable based on the system matrices and the initial
state vector of a given system without specifying a specific input
and computing its output. In such a study, we may also allow
a finite number of admissible inputs to be applied to the same
system one after another. In terms of practical experiments, this
amounts to conducting a finite number of independent exper-
iments on the same system sequentially, each with a different
input. The system theoretic notion of reachability will play an
important role in our study of identifiability. We study the ques-
tion of local identifiability in two contexts. First, we ask the
question: Given a bilinear system, under which conditions do
there exist a finite number of inputs and output sampling points
such that the parameter vector is locally identifiable? Second,
we consider the problem of assessing local identifiability for a
given input, which will be presented in the next section.

Before proceeding, we first review some important notions
from mathematical system theory [21].

Definition 2.1: Consider a system with a set of inputs de-
noted by . We define the following:

1) a state is said to be reachable from initial state
via inputs if there exists an input in such that the
path of its corresponding states starts at and passes
through ;

2) an output is said to be reachable from initial state
via inputs if there exists a state reachable from via
inputs such that its corresponding output is .

The following lemma characterizes the span of reachable
states and outputs of a bilinear system via admissible inputs .

Lemma 2.1 (Appendix B): Consider the MIMO bilinear
system represented by ,
and denote the span of reachable states and the span
of reachable outputs from a given via admissible inputs .
Define matrices as

(9)

Here are given by

(10)

where . Then there exists an
integer with such that

range range range

range range

and

range
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Recall that in Theorem 2.1, for the output data set generated
by a single input , we have

The above expression can be generalized to multiple or even
infinitely many inputs. Consider an arbitrary set of admissible
inputs denoted by . For each input , let denote the
set of output sample points, , and ,
the state and output vectors of the derivative system , respec-
tively. For each (vector) sample , let denote the
corresponding sampling instant of , and the noise
covariance matrix at . Then we have

(11)

where , for
. Using the Fisher information matrix defined

in (11) for the set of inputs and the set of output sampling
points , and making use of Lemma 2.1, we can now obtain
necessary and sufficient conditions for the local identifiability
with respect to a finite number of inputs.

Theorem 2.3 (Appendix C): Consider the bilinear system
represented by .
The derivative system of is represented by

, where the dimension of is
with . Define matrices as

(12)

Here, are given by

(13)

where . Then there exists a fi-
nite number of admissible inputs and output sampling points
such that the parameter vector is locally identifiable with re-
spect to a finite number of inputs, i.e., the associated Fisher in-
formation matrix is nonsingular if and only if

rank

where is the integer such that

range range range

range range (14)

This theorem provides a criterion in terms of the system
matrices and the initial state vector of the derivative system

for the existence of a finite number of inputs that will lead to
the local identifiability of the parameter vector. An important
aspect of this criterion is that it is given in terms of the
system matrices and initial conditions without any reference
to inputs. However, the result does not provide a direct means
of constructing the inputs that lead to local identifiability.
After assessing whether or not inputs exist that lead to local
identifiability specific inputs need to be found that achieve
this. This requires criteria for the local identifiability given a
specific input. The derivation of such criteria is one of the
topics of the next section.

III. PIECEWISE CONSTANT INPUTS

In this section, we apply the general results derived in Sec-
tion II for admissible inputs to a special class of piecewise con-
stant inputs , which are vector-valued piecewise constant func-
tions with a finite number of steps. A piecewise constant input

can be represented by

(15)

where , are constant
vectors, and , are the indicator functions
defined by

for
for

Here, denote the starting and ending points of the
time intervals with , where can be either
finite or infinite. Note that could be a zero vector, and that
for a piecewise constant input as defined in (15) we are
only interested in the output for .

The restriction of our study to the special class of piecewise
constant inputs is of great interest for several reasons. First
and most important, the output of a bilinear system can be ex-
pressed in closed form for an input (see, e.g., [22]), while
the output of a bilinear system is typically expressed by the in-
finite Volterra series for an admissible input (see [21]).
The closed form expression of the output greatly facilitates the
derivation of several new results on the CRLB and local iden-
tifiability with respect to a specific input to be presented in this
section. Second, the two classes and are closely related be-
cause and is dense in [23], [24]. For further details
on the approximation of a system with general admissible inputs
to the case when the inputs are restricted to piecewise constant
inputs (see [23] and [24]).

Lemma 3.1 [22]: Consider a bilinear system represented
by , with a specific input

. The derivative system of is represented by
, with an initial state vector .

Assume that all the eigenvalues of are in the open
left-half plane, where .
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Let , where
for

Then, the state and output of the derivative system are given
by

(16)

(17)

where , for
, and is defined as

for

for

(18)

Remark 3.1: The assumption that all the eigenvalues of
, are in the open left-half plane implies that

all the eigenvalues of , are also in
the open left-half plane, since , is
a block lower triangular matrix with as its diagonal
block submatrices. Consequently, ,
is invertible, and is well defined. Note also that the defini-
tion of in (18) is not needed in the above
theorem. It is defined for the convenience of several theorems
to follow. For a specific input as defined in (15), the state
and output vectors are continuous in the interval . In
particular, . Hence,
we can express in the recursion, shown at the bottom of
the page, where is given in (18).

With Theorem 2.1 and Lemma 3.1, we can readily derive a
closed form expression of the Fisher information matrix for
a bilinear system with a specific input when the output
of the bilinear system is sampled (uniformly or nonuniformly)
at . The local identifiability
with respect to a specific input from , or just local identifia-
bility in short in this section, can then be determined by checking
the nonsingularity of . However, checking the nonsingularity
of directly is computationally rather inefficient, particularly
for a large number of data samples. When the output of a bilinear

system is sampled uniformly, it is possible to develop a simpli-
fied method for checking the nonsingularity of , as stated in
the following theorem.

Theorem 3.1 (Appendix D): Consider the bilinear system
represented by ,
whose derivative system of is represented by

, with a specific input as
defined in (15). Assume the following.

1) The output signal is uniformly sampled with sampling
period in the th interval, i.e., at

with

where denotes the th sampling instant in the th
interval, and , with , is the total number
of samples acquired in the th interval.

2) All the eigenvalues of , are
in the open left-half plane.

3) The noise covariance matrix , for
.

Then, we have the following results.

i) The Fisher information matrix for the given data set
is given by

(19)

where .
ii) The parameter vector is locally identifiable if

and only if rank ,
where is defined as

, and is
given by

(20)

iii) When , the local identifi-
ability condition is the same as that in part ii) except

for

for
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that the expression for , given in
(20) now reduces to

(21)

Although the Fisher information matrix could be calculated
from part i) of Theorem 3.1, it is computationally rather ineffi-
cient to directly compute the sum in (19), particularly when the
number of samples is large. If we are only interested in the local
identifiability, the simplified nonsingularity condition presented
in part ii) of Theorem 3.1 can be used. In particular, when the
number of data samples approaches infinity, we are unable to de-
termine the local identifiability through calculating the sum in
(19) directly. Nevertheless, the local identifiability in such a case
can be checked easily based on , which
depends only on the system matrices, the initial state vector of
the derivative system and the specific piecewise constant input.

From the above discussion, we see that there is still a need to
calculate the Fisher information matrix efficiently if we are in-
terested not just in the local identifiability, but also in the CRLB.
We now propose an alternative method for calculating the Fisher
information matrix efficiently through the solution to a Lya-
punov equation. Standard results on Lyapunov equations can be
found in [25, pp. 177–180], [26].

Theorem 3.2 (Appendix E): Assume that the data model and
all the assumptions are the same as in Theorem 3.1. Then the
Fisher information matrix for the given data set is

(22)

where and are obtained as follows.
, is the unique solution to the following Lyapunov equation:

, is given by

For finite data samples, we can calculate the CRLB by di-
rectly inverting when it is nonsingular. This is because the
inverse of a nonsingular is well defined for finite data sam-
ples. However, when the number of data samples approaches

infinity, i.e., , the asymptotic CRLB
cannot be computed either by part i) of Theorem 3.1 or Theorem

3.2 in general, since the term in

(19) and the term in (22) can tend to
infinity, leading to infinity as well. To overcome this diffi-
culty, we propose a novel method for calculating the asymptotic
CRLB without computing directly.

Given that the nonsingularity condition in part iii) of The-
orem 3.1 holds for the asymptotic case, the following theorem
proves the existence of the asymptotic CRLB and gives an ex-
plicit expression. The asymptotic CRLB for the limiting case
of infinite data samples is defined as the limit of the CRLB for
the corresponding finite data sample situations. This limit exists
since the Fisher information matrices form a monotonically in-
creasing sequence of positive semidefinite matrices.

The CRLB is often used to provide guidance for experimental
design. In this context the question often arises how many data
samples should be acquired. It is therefore important to know
what the CRLB provides in the limiting case where an infinite
number of data samples are available.

Theorem 3.3 (Appendix F): Assume that the data model is
the same as in Theorem 3.1, except that the number of equidis-
tant samples in tends to infinity, i.e.,

, and . Assume the nonsingularity condition
in part iii) of Theorem 3.1 holds. Then the asymptotic CRLB is
given by

if rank
if rank

where and are defined as follows.

i) Construction of

where , is the unique solution to
the following Lyapunov equation:

and , is given by

ii) Construction of and : Represent the span of all
, by ,

and let denote the rank of . Then
is defined as a full rank matrix such that the column
space of is equal to , i.e., range . For

is defined as a full rank
matrix such that

and rank
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In the next section, we illustrate the theoretical results
presented in this paper using a simulation example of surface
plasmon resonance experiments for the determination of the
kinetic parameters of protein–protein interactions.

IV. EXAMPLE

Surface plasmon resonance (SPR) (see, e.g., [27] and [28])
occurs under certain conditions from a conducting film at the in-
terface between two media of different refractive index. Biosen-
sors such as instruments by the BIAcore company offer a tech-
nique for monitoring protein–protein interactions in real time
using an optical detection principle based on SPR. In the exper-
iments one of the proteins (ligand) is coupled to a sensor chip
and the second protein (analyte) is flowed across the surface
coupled ligand using a micro-fluidic device. The SPR response
reflects a change in mass concentration at the detector surface
as molecules bind or dissociate from the sensor chip. The mea-
sured response data can be used to estimate the kinetic constants
of protein–protein interactions.

In this simulation example we use the theoretical results pre-
sented in the previous sections to analyze the SPR experiments
for one-to-one protein–protein interactions that can be modeled
by the differential equation

(23)

where is the measured SPR response in resonance units
(RU), and are the kinetic association and
dissociation constants of the interaction respectively, is
the maximum analyte binding capacity in RU, is the con-
centration value of the analyte in the flow cell which can be
controlled in the experiments, and the initial SPR response is
assumed to be zero.

Let ,
and , (23) becomes the following bilinear
system :

(24)

(25)

where
. The unknown parameter vector

to be estimated in the experiments is .
A practical SPR experiment may consist of an association

phase ( ) and a dissociation phase ,
or one of these two phases. During the association phase ana-
lyte is flowed across the ligand on the sensor chip with constant
concentration up to time , i.e.,

. The dissociation phase immediately follows the association
phase and is characterized by analyte free buffer being flowed
across the sensor chip, i.e., . Hence,
a two-phase SPR experiment can be modeled by the bilinear
system with a two-phase piecewise
constant input

(26)

where

for
for

for
for

Note that in the two-phase SPR experiment the output samples
are obtained from for .

A. Derivative System

The first step is the calculation of the derivative system
by Theorem 2.1. We represent the derivative system of

by , where
are given as follows.

where

where

where

where

Since the initial state of is equal to zero, the initial state
vector of is also equal to zero, i.e., .
Obviously, the partial derivatives of , and
with respect to the elements of are continuously differentiable
functions of for all .

B. Local Identifiability

Before computing the CRLB we first check whether there
exist a finite number of inputs such that will be locally iden-
tifiable. We then examine the local identifiability for a specific
two-phase input.

1) Case 1: Existence of Inputs That Lead to Local Identifia-
bility: In this case we assume that we can freely select an input
to the bilinear system model from the set of admissible inputs

, repeat the experiment for another input from the same set,
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and measure the corresponding output samples for each experi-
ment conducted. Simple calculations give

rank

rank

for positive and . The positivity assumption is re-
striction since the constants are naturally positive. Since the size
of is 3, by Theorem 2.3 is locally identifiable with respect
to a finite number of inputs from the set of admissible inputs.

2) Case 2: Specific Two-Phase Piecewise Constant Input
With Uniform Sampling: We next exploit Theorem 3.1 to find
out whether the same parameter vector is still locally identifi-
able with respect to the specific two-phase piecewise constant
input defined in (26), assuming that the output is sampled
uniformly. Denote the sampling intervals of the association and
dissociation phases as and , respectively. By simple
calculations, we obtain the equation shown at the bottom of
the page, where , and

. It is easy to verify that

rank

rank

Thus, by Theorem 3.1, is locally identifiable with respect to
the specific two-phase piecewise constant input defined in (26)
and with uniformly sampled output. Although it happens that for
this particular example the parameter vector is locally identifi-
able with respect to a finite number of inputs from the set of ad-
missible inputs, and also with respect to the specific two-phase
piecewise constant input defined in (26), this is not necessarily
so in general, as we will see later in this section.

We next consider the nonsingularity criterion in part iii)
of Theorem 3.1 for the asymptotic situation where an infinite
number of data set points are available. Of the necessary ex-
pressions all have already been established with the exception
of

Hence (note that ), we have

rank

rank

It then follows from Theorem 3.1 that is also locally
identifiable with respect to the specific two-phase piecewise
constant input defined in (26) for sufficiently large
and . This is of course an obvious result since local
identifiability in the finite data case implies local identifiability
in the infinite data case.

C. CRLB and Asymptotic CRLB

Since is locally identifiable with respect to a two-phase
piecewise constant input in the SPR experiment with uniformly
sampled finite data, the next step is to apply Theorems 3.2 and
3.3 to numerically calculate the CRLB and asymptotic CRLB.
Here we use simulated data so that we could conveniently select
various experimental settings. Forcomparison, typical numerical
values from [29] are assigned to the unknown parameters, i.e.,

RU

The sampling intervals are chosen as s, and
the noise variance is assumed to be . Fig. 1 plots
the CRLB in terms of the standard deviations of and

as functions of and the number of data samples.
Obviously, it shows that increasing the number of samples
improves the accuracy of estimation. As can be seen from the
figure, when the number of samples is sufficiently large, e.g.,

, the CRLB approaches the asymptotic
CRLB, which is the lowest possible CRLB, given fixed sampling
intervals. The plot also reveals that the concentration value

has an influence on the accuracy of parameter estimation.
From Fig. 1(a), the optimal values of corresponding to the
lowest variances of for different number of data samples
lie between M and M, and for
greater than the optimal values the variance increases slowly
with . On the other hand, the variances of and
decrease with the increase of , but remain almost constant
when is greater than M. Therefore, a good
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choice of for practical two-phase SPR experiments would
be around the value of M.

D. Analytical Solution of Asymptotic CRLB

For the two-phase SPR experimental model with identical
uniform sampling interval for both the association and the
dissociation phases, i.e., , it is in fact possible
to give an explicit expression for the asymptotic CRLB for the
unknown parameters and . The following results are
obtained by applying Theorem 3.3 with some algebraic manip-
ulations. The detailed derivations are omitted here but can be
found in [30]. (See the equation at the bottom of the next page.)

E. One-Phase SPR Experiment With Uniform Sampling

Finally, we show that the same parameter vector is not lo-
cally identifiable with respect to the one-phase piecewise con-
stant input , for the same
bilinear system in this example. Note that the corresponding ex-
periment consists of only an association phase, and the output
samples are obtained from for .

Based on the results in Case 2 of Subsection IV-B, it is easy
to check that ( here)

rank

rank

By Theorem 3.1, is not locally identifiable with respect to the
above given one-phase piecewise constant input. Similarly, it is
easy to show that is not locally identifiable with respect to the
same input in the asymptotic case either.

V. CONCLUSION

In this paper an explicit expression of the Cramer–Rao lower
bound (CRLB) has been derived for the problem of estimating the
unknown parameters of a bilinear system from noise corrupted
output samples. The concept of derivative system allows us to ex-
press the Fisher information matrix in terms of the output samples
of its associated derivative system. The establishment of the re-
lationship between local identifiability and reachability has led
to the derivation of a necessary and sufficient condition for local
identifiabilitywith respect to afinitenumberofadmissible inputs.
This criterion is based only on the system matrices and the initial
state vector of the derivative system. For the special but impor-
tant class of piecewise constant inputs with uniformly sampled
output data sets, we have derived a criterion for local identifia-
bility with respect to a specific input. Moreover, an alternative
method was introduced to calculate the Fisher information ma-
trix and the CRLB through the solution of a Lyapunov equation.
This approach was exploited to derive an expression for the limit
of the CRLB as the number of data points approaches infinity. A
simulation example of surface plasmon resonance experiments

Fig. 1. CRLB for simulated two-phase one-to-one SPR experimental data
with T = T = 1 s and � = 1. (a), (b), and (c) plot the standard
deviations of the estimates of k ; k and R , respectively, for different
concentration values and different numbers of samples acquired in the
association and dissociation phases.

has illustrated the applicability of the theoretical results and com-
putational methods presented in this paper.
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APPENDIX

A. Proof of Theorem 2.1

1) By assumption the partial derivatives of
and with re-

spect to ( throughout the proof) exist
for . Hence, the partial derivatives of and

, with respect to also exist
for and . Since the input ,
is piecewise continuous, it follows that and

are partially differentiable with respect to
on with the possible exception of the disconti-

nuities of . Also, the partial derivative of
with respect to exists for and with
the possible exception of the discontinuities of .
With the exception of the discrete discontinuities of

, we have
(see [31,p. 359]).

Taking the partial derivative of (1) with respect to
and using the product formula (see, e.g., [11, Lemma
2.3]) give

(27)

With the exception of the discontinuities of , combining
(1) and (27) yields

(28)

Also

(29)

Since ,
taking the partial derivative of with respect to
gives

(30)

For , since

...
...

stacking the corresponding equations from (28) and (30)
gives

(31)

(32)

The desired derivative system is then obtained by
stacking the corresponding equations from (32) as

(33)

The initial condition of is given by stacking the
corresponding equations from (29) as .
Clearly, , is the output of the derivative
system . Note that
each element of is a continuous function of for

.
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2) From a classic result on the Fisher information matrix
(see, e.g., [5] and [17])

where
. It then follows directly that the Fisher

information matrix is given by

where
.

B. Proof of Lemma 2.1

Let and
. By substitution, (1) and (2) become

(34)

(35)

where . Let
denote the span of reachable states and the span of reach-
able outputs of the new system (34)–(35) from via
admissible inputs .

The next part of the proof is similar to that for Lemmas 4.1
in [21] with some straightforward generalizations from SIMO
bilinear systems to their MIMO counterparts. We only sketch
the major steps here. We can first prove that is included
in the column space of ,
where are defined in (10), is defined as

, and sim-
ilarly for and so on. Using the input-output
Volterra series expansion in [21] and expressing in
terms of the power series of by Cayley–Hamilton the-
orem, we obtain that range . Next, we
can show that range using the same ar-
gument in the Proof of Lemmas 4.1 in [21]. Therefore,

range . Combining this result with the known
fact that range range (see [21, Lemma
4.2]), it follows immediately that range , and
furthermore, there exists an integer with such
that

range range range

range range

and

range and range

Since and
, it is obvious that

range and

range

C. Proof of Theorem 2.3

Consider an arbitrary set of admissible inputs denoted by .
For each input , let denote the set of output sam-
pling points, , and , the state and
output vectors of the derivative system , respectively. For each
(vector) sample , let denote the corresponding sam-
pling instant of , and the noise covariance matrix
at . The Fisher information matrix is then given in (11),
which is repeated here for convenience.

where , for
. By Theorem 2.2, to show local identifiability it is

equivalent to showing that is nonsingular. Since the size of
is and all the covariance matrices are positive
definite, nonsingularity of is equivalent to that the span of all
the column vectors of for all , is of
dimension , i.e., the span of all the vectors

, has a dimension of .
Let denote the span of reachable outputs of , and

the span of the vectors for all the reachable outputs
of . From bilinear system theory [21],
the dimension of the span of any set of outputs of is no
bigger than that of , and there exists a finite set of admis-
sible inputs such that the span of the corresponding outputs is
of the same dimension as that of the span of all the reachable
outputs. Similarly, the dimension of the span of any set of the
vectors , is no bigger than that of , and
there exists a finite set of admissible inputs such that the span
of the corresponding , is of the same dimension
as that of . It is then clear that the existence
of a nonsingular is equivalent to that the span of the vectors

, for all the reachable outputs
, is of dimension .

By Lemma 2.1, range ,
for some with . Hence,
range . Then the span of
the vectors , for all the reachable
outputs , is given by

Therefore, there exist a finite number of admissible inputs and
output sampling points such that the associated Fisher informa-
tion matrix such that is nonsingular if and only if

is of dimension , i.e.,

rank

for some with .
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D. Proof of Theorem 3.1

i) From the definition of in Lemma 3.1,

we have

. Substituting

into in (16)
gives

(36)

By Theorem 2.1 and recalling (36), we have

(37)

ii) By Theorem 2.2, to show local identifiability it suffices
to show that is nonsingular. From Remark 3.1, all the
eigenvalues of are also in the open left-half
plane. Hence, all the eigenvalues of are in the
open unit disc, and none of them is equal to one. From
the proof in part i), the Fisher information matrix is
given by

Let , where

,
with , being given
in (36). Thus, being nonsingular is equiv-
alent to the space spanned by all the vectors

for is of full rank, or,

rank . It remains
to show that rank is
equivalent to rank
for which it is sufficient to show range
range .

Consider and . is of size
while is of size , with

. We first show that all the columns of can be
expressed by linear combinations of the columns of

. Expand as

. By Cayley–Hamilton

theorem,
. We then have

Hence, is a linear combination of
the columns of with coefficients
of , and . Using
Cayley–Hamilton theorem repeatedly, it can be simi-
larly argued that ,
can be expressed as linear combinations of the columns
of . Hence, and are related by

...
...

. . .
...

...
...

where X is an constant
matrix whose value is of no interest here. Since none
of the eigenvalues of are equal to one, we then
have

Thus, is of full rank, which implies that all the
columns of can also be expressed as linear
combinations of the columns of . Therefore,
range range . It can be similarly shown
that range range .
Therefore, range range .

iii) From the proof in part ii), it is clear that the
nonsingularity condition (20) holds for any

, with , and hence
holds for . To show expression (20) reduces
to (21) for , it is equivalent
to show that . Since
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from (18), we only need to show
that for . From the
proof in part i), .

Since all the eigenvalues of are in the open

unit disc,
, for .

Therefore

E. Proof of Theorem 3.2

For , let

Substituting and into (19), we have

Since all the eigenvalues of , are in the

open unit disc, , is the unique solution to
the following Lyapunov equation:

As
is given by

F. Proof of Theorem 3.3

With for , the Fisher information
matrix in Theorem 3.2 can be rewritten in terms of as

where , is the unique solution to the
following Lyapunov equation:

(38)

and , is given by

(39)

Let

(40)

Then

Since the nonsingularity condition in part iii) of Theorem 3.1
holds for the asymptotic case, there exists a sufficiently large
integer such that is nonsingular for all

, which in turn implies that is positive definite as the
Fisher information matrix is always positive semidefinite. In the
remainder of the proof, we assume . From the proof in
part iii) of Theorem 3.1, we have
and , for . Hence, taking
the limit of on both sides of (38) gives

where . Similarly,
taking the limit of on both sides of (39) gives
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where . Now taking the limit of
on both sides of (40) gives

For , although tends to infinity, the
inverse of still converges, as will be shown in
the following. Using a singular value decomposition,

can be expressed as

(41)

where is diagonal with positive diagonal entries,
, and is orthogonal.

By substitution

Consider first the case when , i.e., has a rank of
and diminishes in (41). In this case, the asymptotic CRLB
is given by

since and is of full rank.
Next, consider the case when . Let

,
and ( is called the Schur complement

of ). That is positive definite implies

is also positive definite. Then and are positive definite
(see [32. Th. 7.7.6]). Using the formula of the inverse of block
matrices [25]

For
. Since is

positive definite, for any nonzero vector

which shows that
is positive definite. Therefore

The asymptotic CRLB is then given in terms of as

Finally, we show that
. As range range ,

there exists a nonsingular matrix such
that . It follows that
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