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FACTORIZATIONS FOR nD 
POLYNOMIAL MATRICES* 

Zhiping Lin, 1 Jiang Qian Ying, 2 and Li Xu 3 

Abstract.  In this paper, a constructive general matrix factorization scheme is developed 
for extracting a nontrivial factor from a given nD (n > 2) polynomial matrix whose 
maximal order minors satisfy certain conditions. It is shown that three classes of nD 
polynomial matrices admit this kind of general matrix factorization. It turns out that minor 
prime factorization and determinantal factorization are two interesting special cases of the 
proposal general factorization. As a consequence, the paper provides a partial solution to 
an open problem of minor prime factorization as well as to a recent conjecture on minor 
prime factorizability for nD polynomial matrices. Three illustrative examples are worked 
out in detail. 
Key words: Multidimensional systems, nD polynomial matrices, matrix factorizations, 
reduced minors, minor primeness, Quillen-Suslin theorem. 

1. Introduction 

The problems of  multivariate (nD) polynomial factorizations and nD polynomial 
matrix factorizations have attracted much attention over the past decades because 
of  their wide applications in multidimensional (nD) circuits, systems, controls, 
signal processing, and other areas (see, e.g., [1]-[7], [10]-[19], [21]-[24], [28], 
[30], [32], [33]). For an arbitrary nD polynomial over the field of  real numbers 
or the field of  complex numbers, although the existence of its factorization into a 
product of  irreducible polynomials has been known for a long time (see, e.g., [2]), 
constructive algorithms for carrying out such a factorization are available only 
for some classes of  nD polynomials (see, e.g., [21], [22], [30]). A constructive 
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method for testing and factorizing an nD polynomia~ into factors that are ~me• ~ 
in one and the same variable has been developed in [21]. This method will be 
utilized later in our paper. Another algorithm for simple and group factorizations 
for nD polynomials has recently been presented in [22]. The development of 
a constructive method for the unique factorization of a general nD polynomial 
is still an active research area. However. there exist algorithms for extracting a 
greatest common divisor (g.c.d.) from a finite number of nD polynomials with 
coefficients from any field [2]. 

The factorization problems for nD polynomial matrices mru out to be even 
more difficult than their polynomial counterparts because unlike the ring of nD 
potynolNals, which is a commutative ring, the ring of  nD polynomial matrices 
is not commutative. For example, it is still unknown [32], [10], [19], [12, p. 63] 
how to extract a common factor from two nD (n > 2) polynomial matrices. In 
fact, this open problem is closely related to the factorization of a normal full 
rank nD polynomial matrix into a product of  two nD polynomial matrices, with 
one of them being prime in some sense [23], [32], [7]. This prime factorization 
problem has long been solved for one-dimensional (1 D) and two-dimensional 
(2D) polynomial matrices [23], [10], [11]. However, it is a challenging open 
problem for nD (n > 2) polynomial matrices [32], [7], [12, p. 63] because of 
some fundamental differences between nD polynomial matrices and their 1D and, 
2D counterparts [32], [14], [7], [12, p. 63]. In this paper, we shall be concerned 
only with nD In > 2) polynomial matrix factorizations, so in what follows, the 
term "nD" implies In > 2) unless otherwise specified. 

Recently, some progress has been made in solving the zero prime factorization 
problem for nD polynomial matrices [4], [6], [18]. By making use of G rrbner 
bases [5] for modules, Bose and Charoenlarpnopparut have proposed an algorithm 
for carrying out the zero prime factorization for nD polynomial matrices whose 
reduced minors are devoid of any common zeros [4], [6]. Lin conjectured that 
the absence of  any common zeros in the reduced minors is a sufficient condition 
tot the existence of zero prime factorization and also provided a partial solution 
to this conjecture [18]. Unfortunately, neither the algorithm proposed in [4]~ [6] 
nor the method presented in [18] is applicable for nD polynomial matrices whose 
reduced minors have some common zeros. 

Lin [18] also posed another conjecture on minor prime factorizability of  an 
nD polynomial matrix based on its reduced minors and the greatest common 
divisor of its maximal order minors ~called maximal minors in this paper for 
simplicity). However, to our knowledge, this conjecture has not been answered 
up to now. Moreover. even when the existence of minor prime factorization is 
known for a given n D polynomial matrix, it is still nontrivial to can'y out the 
actual factorization. In tact. Charoenlarpnopparut and Bose have recently raised 
the following open problem [6]: 

Under the assumptions that the minor prime factorization of an nD polynomial 
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matrix exists and the reduced minors have common zeJvs, f ind an algorithm f o r  

computing this minor pr ime factorization. 

Another related matrix factorization problem is the determinantal factorization 
problem for a given nD (n _> 1) polynomial matrix: to extract a factor with 
determinant equal to a divisor of  the determinant of  the given matrix. Again, 
it is well known [23], [10] that any 1D and 2D polynomial matrices admit 
determinantal factorizations. However, it has been pointed out [32], [ l 3] that some 
nD (n > 2) polynomial matrices do not have determinantal factorizations. Thus, 
it is interesting to know whether or not a given nD polynomial matrix admits a 
determinantal factorization. 

In this paper, we propose a general matrix factorization scheme for extracting 
a nontrivial factor from a given nD polynomial matrix whose maximal minors 
satisfy certain conditions. It is shown that three classes of  nD polynomial matrices 
admit this kind of general matrix factorization. It turns out that minor prime 
factorization and determinantal factorization are two special cases of  the proposal 
general factorization. As a consequence, the results obtained in this paper provide 
a partial solution to the open problem on minor prime factorization [6] and the 
conjecture on minor prime factorizability [ 18]. 

The organization of the paper is as follows. In Section 2, we recall some 
definitions and formulate the problems mathematically. A technique for general 
matrix factorizations for three classes of  nD polynomial matrices is presented in 
Section 3. Its relationship with minor prime and determinantal factorizations is 
also pointed out in the same section. In Section 4, three illustrative examples are 
worked out in detail. The conclusions are given in Section 5. 

2. Preliminaries and problem formulation 

In the following, we shall denote C[z] = C[zl . . . . .  zn] the set of  polynomials in 
complex variables Zl . . . . .  Zn with coefficients in the field of  complex numbers C; 
C m xl [z] the set of  m • I matrices with entries in C[z], etc. 

Throughout this paper, the argument (z) is omitted whenever its omission does 
not cause confusion. Without loss of  generality, the dimension of a given matrix is 
assumed to be m x l with m > l. Only normal full rank matrices whose maximal 
minors are not all identically equal to zero are discussed. The new results can in 
fact be applied to matrices not of  normal full rank after some minor modifications. 
We refer the reader to [18] for more details on this topic. 

Definition 1 ([32]). Let F ~ cm• Then F is said to be: 

(i) zero right prime (ZRP) if the l x I minors of  F are zero coprime, i.e., devoid 
of any common zeros; 

(ii) minor right prime (MRP) if the l • 1 minors of  F are factor coprime, i.e., 
devoid of any common factors. 
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R e m a r k  1. If F is a square matrix, i.e., m = l, the only f x i minor of F is its 

determinant. In such a case, MRP is equivalent to ZRR and F is MRP it" and only 
if F is a unimodular matrix, i.e., det F = k0 E C*, where C* denotes the set of  

all nonzero complex numbers. 

Defini t ion 2 ([14], [28]). Let F 6 cmxl[z]  and let a l  . . . . .  a~ denote the I x I 

minors of the matrix F ,  where/~ = (~) - m! Extracting the g.c.d., denoted ( m - l ) ! l !  " 
by d, of a l  . . . . .  a~ gives 

a i  - -  d b i ,  i = 1 . . . . .  f t .  (l) 

Then. bl . . . . .  b~ are called the reduced minors of F .  

The general matrix factorization problem is now formulated as follows. 
Let F be given in Definition 2, and let do be a common divisor (not necessarily 

the g.c.d.) of  a l  . . . .  a~, i.e., ai = do ei with ei c C[z] (i --= 1 . . . . .  fl). We say 
that F admits a general matrix factorization if F can be factorized as 

F (z )  = Fo(z) Go(z),  (2) 

such that Fo E CmXI[z], Go ~ ClXl[z], and de tGo  = do. 
It is obvious that the I x 1 minors of  Fo in (2) are equal to el . . . . .  el~. f f m  > t 

and do = d is the g.c.d, of a l  . . . .  ar then ei = bi (i = 1 . . . . .  ~), and Fo in (2) 
is MRR In such a case, we say that F admits an MRP factorization [18]. i t  was 
conjectured in [18] that F admits an MRP factorization if  d. bl . . . . .  b~ have no 

common zeros in C n. 
If  m = I. i.e.. F is a square matrix, then fi = 1. al  - -  el do, and Fo in (2) is 

also a square matrix with det Fo = el .  Notice that det Go = do. In such a case. 
we say that F admits a determinant factorization. 

In the next section, we show that the general matrix factorization (2) does exist 

for three classes of nD polynomial  matrices. 

3. Main results 

Four lemmas are first required. 

L e m m a  1. Let  F(Z l )  ~ cmxl[z l ] ,  and let a ( z l )  be the g.c.d, o f  the i x I minors 

o f  F(z l ) .  I f  z l l  is a simple zero o f  a (z l ) ,  i.e,, z l  - Zll is a divisor o f  a (z l ) ,  but 
(zl - z11) 2 is nora  divisor o f  a (z l ) ,  then rank F(Z11) = t - 1. 

Proof.  By transforming F ( z l )  into its Smith form [8], the result follows imme- 

diately. [] 

L e m m a  2. Let  F(z )  E CmXl[z] . / f rank F (z )  = 1 - 1 f o r  every (z) e C ~, then we 
can construct a ZRP vector w E C ix 1 [z] such that 

F(z)w(z)  = [0 . . . . .  01 T, (3) 

where ( . ) r  denotes transposition. 
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A proof can be given similarly as the proof for Theorem 1 of [16], thus it is 
omitted here. Notice that if F c cm• 2 . . . . .  Zn],  i.e., independent of  z~, then w 
in (3) can be chosen from C z • . . . . .  zn] as well, i.e., independent of  z j, 

L e m m a  3. Let  w c C l • 1 [z]. I fw(z )  is ZRP, then a square n D  po lynomia l  matr ix  

U(z) ~ CZXl[z] can be constructed such that det U(z) = I and w(z) is dw  f irs t  

co lumn o f  U (z). 

The existence of U(z) in Lemma 3 was proved independently by Quillen and 
Suslin in 1976 [27], [29], [33]. Their results on this problem became the famous 
Quillen-Suslin theorem, which is sometimes also referred to as the unimodular 
matrix completion problem (see, e.g., [33]). However, constructive solutions to 
the unimodular matrix completion problem for nD polynomial matrices were not 
available until the 1990s, when Logar-Sturmfels and Park-Woodburn published 
their algorithms in [20] and [25], respectively, using Gr6bner bases [5]. Recently, 
a computationally more efficient method for the same problem has also been 
developed in [6]. 

Before stating the next lemma, it is necessary to explain the usage of some 
mathematical symbols. In this paper, when we state an nD polynomial matrix 
equation such as F(z)w(z)  = [0, . . . ,  0] T in Lemma 2, we mean that the equality 
is for every (z) c C n, i.e., F(z)w(z)  = [0 . . . . .  0] :r has the same meaning 
as F(z)w(z)  -- [0 . . . . .  0] 7". No confusion can arise in using one of these 
two expressions in other parts of  the paper, therefore, we adopt the expression 
F(z)w(z)  = [0 . . . . .  0] r ,  which has been used commonly in the literature on nD 
polynomial matrix factorizations [1]-[7], [10]-[19], [23], [24], [28], [32], [33]. 
However, because an nD polynomial equation g(z) = 0 could also mean solving 
g(z) ---- 0 for some (but not  all) (z) ~ C n, in the following lemma and its proof, we 
shall use the expression g(z) =- 0 for the case when g(z) --- 0 for every (z) ~ C n. 
In the rest of  the paper, we shall still use the conventional symbol " = "  instead of 
"-~" when such a usage does not cause any confusion. 

L e m m a  4. Let  g E C[zl ,  z2 . . . . .  zn]; f ~ C[z2 . . . . .  z~]. I f  g ( f ( z 2  . . . . .  Zn), 

z2 . . . . .  z,z) = 0 f o r  every (z2 . . . . .  zn) ~ C ~-~, i.e., g ( f ( z 2  . . . . .  zn), 

z2 . . . . .  zn) - O, then (zl - f (z2 . . . . .  zn)) is a divisor o f  g ( z l ,  z2 . . . . .  zn). 

Proof.  I f  g ( z l ,  z2, . . . ,  zn) is independent of zl,  then g ( f  (z2 . . . . .  z,O, z2 . . . . .  

z~) ------ 0 implies that g ( z l ,  z2 . . . . .  Zn) ~ O. Hence, (z~ - f ( z 2  . . . . .  z~)) is a 
divisor of  g( z l ,  z2 . . . . .  Zn). Now assume that g( z l ,  z2 . . . . .  zn) depends on z~. 
We can write g(Zl ,  Z2 . . . . .  Zn) as 

f 

g ( z l ,  Z'), Zn) S hi(z2,  z i . . . . .  = . . . .  n ) z l ,  (4) 
i=0 

where r > 0 is an integer and hi E C [ z 2  . . . . .  Zn] (i = O, 1 . . . . .  r). Introduce a 
new variable t by 

t = z l  - f ( z 2  . . . . .  z n ) .  (5) 
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We have 

z l  = t + f ( z 2  . . . . .  zn ) .  (6) 

Subst i tut ing (6) into (4) and arranging terms, we have 

g ( z l ,  Z2 . . . . .  Zn) = g l ( t ,  Z2 . . . . .  Zn) = ~ S i ( Z 2  . . . . .  zn) t  i, ( 7 )  

i = 0  

where si ~ C[z2 . . . . .  zn] (i = 0, ! . . . . .  r) .  F rom (5) and (7), it is obvious ~ha~ 

g ( f ( z e  . . . . .  z~) ,  z2 . . . . .  Zn) =- 0 implies g l (0 ,  za . . . . .  z,~) ~ 0, which in turns 
means  that so(za  . . . . .  zn)  =- O. Therefore,  it follows that 

F 

g(Zl ,  Z2 . . . . .  Zn) = g l ( t ,  Z2 . . . . .  Zn) = ~ si(z2 . . . . .  Zn)t i 

i=1  

r - I  

= t ~ si (z2 . . . . .  z~ ) t  i. (8) 

i = 0  

Recal l ing that t = z~ - f ( z 2  . . . . .  zn), it follows immedia te ly  that (zl - j 

(Z2 . . . . .  Zn)) is a divisor of g ( z l ,  Z2 . . . . .  Zn). [] 

R e m a r k  2. For  a 1D polynomia l  g ( z ~ ) ,  it is well  known  that if  g(zlo)  = 0 for 

some complex number  zlo, then (zl - z~o) is a divisor of g ( z l ) .  L e m m a  4 can be 
considered as a general izat ion of  this wel l -known fact. 

We now present  the main  results of  this paper in the fol lowing three theorems. 

T h e o r e m  1. L e t  F be  g i v e n  in D e f i n i t i o n  2. A s s u m e  t h a t  do(z) = zl - f 

(z2 . . . . .  z~)  is a c o m m o n  d i v i s o r  o f  a~ ( z )  . . . . .  a ~ ( z ) ,  i.e., ai t .z)  = d o ( z ) e i ( z )  

(i = 1 . . . . .  ~) .  I f  do(z), e ~ ( z ) , . . . . e r  h a v e  no  c o m m o n  zeros ,  t hen  

r a n k F ( f ( z 2  . . . . .  z n ~ , z 2  . . . . .  z , )  = 1 - 1 f o r  e v e r y  (z2,  . . ,  zn)  E C '~-!. a n d  

F(z )  a d m i t s  a g e n e r a l  m a t r i x  f a c t o r i z a t i o n  in (2). 

Proof .  Because do(z) = z l  - f ( z 2  . . . . .  z~)  by assumption,  it is obvious 

that ( f ( z 2  . . . . .  zn), z2 . . . . .  z~) is a zero of do( z )  for every (za . . . . .  z~)  

C n-1.  Therefore.  it is seen that rank F ( f ( z 2 ,  . . . z n ) ,  z2 . . . . .  Zn) < t 

1 for every ( z 2 , . . . . z n )  c C n - l .  We show by contradict ion that rank 

F ( f ( z 2  . . . . .  z~) ,  z2 . . . . .  zn)  cannot  be smaller  than / - 1 for any ~z2 . . . .  z~'~ 
C n-1 . Suppose that for some fixed z2 - -  z 2 1 ,  . .  - .  Zn = Z n l ,  

r a n k F ( f ( z 2 1  . . . . .  z n i ) ,  z21 . . . . .  z~t) < ! - 1. (9) 

Let Zll = f ( z 2 1  . . . . .  z n l ) ,  which ts a constant.  Consider  the 1D polynomia l  
matrix F ( z l ,  z21 . . . .  z n l ) .  Let a'~(z l )  . . . . .  a~(z l )  denote the ! x I minors  of  

F ( z l ,  z21 . . . . .  Znl ) .  We have 

a ~ ( Z l )  = ai(Zl ,  Z21 . . . . .  Znl) 

= (Zl -- f(z21 . . . . .  Z n l ) ) e i ( z l ,  Z21 . . . . .  Znl) 

= (Zl -- Z l l ) e i ( z l ,  Z21 . . . . .  Zni ) ,  i = 1 , . .  ~. (10) 
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Let c ( z l )  denote the g.c.d, of el(z1,221 . . . . .  Z n l ) , - . . ,  e~(z l ,  z21 . . . . .  zn~). It 
follows that (zi - Zl 1) C(Zl) is the g.c.d, of  all (z l) . . . . .  @ (zt). The assumption 
that d0(z), el (z) . . . . .  e~ (z) have no common zeros implies that zll cannot be a 
zero of  C(Zl). Otherwise, (Zll, z21 . . . . .  znl)  would be a common zero of  d0(z), 
el (z) . . . . .  e~(z), a contradiction. Hence, zll is a simple zero of  (zl  - z11) c ( z l ) .  

By Lemma 1, 

rank F(Zll ,  Z21 . . . . .  Znl) = l -- 1, (11) 

or  

r a n k F ( f ( z 2 1  . . . . .  znl) ,  Zel . . . . .  znl) = I - 1. (12) 

Expressions (9) and (12) lead to a contradiction. Therefore, rank F ( f ( z 2  . . . . .  Zn), 

z2 . . . . .  zn) = l - 1 for every (z2 . . . . .  zn) 6 C n- l .  
By Lemma 2, we can construct a ZRP vector w 6 C l• 1 [z2 . . . . .  zn] such that 

F ( f ( z 2  . . . . .  zn), z2 . . . . .  zn)w(z2 . . . . .  Zn) = [0 . . . . .  0] T. (13) 

By Lemma 3, w ( z 2 , . . . ,  zn) can be completed into a unimodular matrix, i.e., we 
can construct a U 6 CZ• . . . . .  zn] such that det U = 1 and w(z2 . . . . .  zn) is 
the first column of  U(z2 . . . . .  Zn). From (13), we have 

F ( f ( z 2  . . . . .  zn), z2 . . . . .  zn )U(z2  . . . . .  Zn) = [0m,1 B], (14) 

where 0m,1 denotes the m x 1 zero matrix, and B ~ c m x ( / - 1 ) [ z  2 . . . .  , Z n ] .  

Let Y(z) = F ( z ) U ( z 2 ,  . . . , z n ) ,  and let Yjl(Z) be the j th  element of  
the first column of  Y(z) ( j  = l . . . . .  m). From (14), we have that 

y j l ( f ( z 2  . . . . .  Zn),Z2 . . . . .  Zn) =--- 0 ( j  = 1 , . . . , m ) .  By Lemma 4, (Zl - f 
(z2 . . . . .  z~)) is a divisor of  Yj l (Z)  ( j  = 1 . . . . .  m), i.e., (zI - f ( z 2  . . . . .  Zn)) 

divides the first column of Y(z). Hence, we have 

Y(z) = F ( z ) U ( z 2  . . . . .  zn) = F0(z) diag{(zl - f ( z 2  . . . . .  zn)) ,  1 . . . . .  1}, 

for some F0 6 cmx/[z].  It follows that 

F(z)  = Fo(z) Go(z), 

where Go = D U  -1 6 Cl• with det G = (zl - f ( z 2  . . . . .  Zn)) = do. [] 

Theorem 1 shows that the general matrix factorization (2) always exists for the 
class of nD polynomial matrices with d0(z) = (zl - f ( z 2 , . . . ,  zn)) and d0(z), 
el (z) . . . . .  e~ (z) devoid of  any common zero. Moreover, from the preceding proof 
and references [16], [20], [25], it is seen that the proposed factorization scheme 
is constructive and can be performed in a finite number of  steps, provided that 
d0(z) is already known to be of  the form d0(z) = (zl - f ( z 2  . . . . .  Zn)). However, 
as pointed out in the Introduction, although algorithms exist [2] for extracting a 
g.c.d, from a finite number of  nD polynomials with coefficients from any field, it 
is still unknown how to factor an arbitrary nD polynomial with coefficients from 
the field of  complex (or real) numbers into a product of  irreducible polynomials 
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constructively [21], [22]. [30]. It is interesting that the problem of nD potynonuai 
matrix factorizations is closely related to that of  nD polynomial factorizations. 
We point out here that algorithms have been available for factorizing an nD 
polynomial with coefficients from the ring of integers into a product of irreducible 
polynomials [31], [2]. 

Because constructive methods are available for factorizing an nD polynomial 
do (z) as do (z) P = 1 - I k = l ( Z l  - -  f k ( z 2  . . . . .  Zr~)), when such a factorization exists 
[21], it is natural to ask whether or not Theorem 1 can be generalized to this case 
with p > 1. The answer is yes when f l  . . . . .  f p  are distinguished con3tants or 
when they depend only on one variable, say, zz. For the latter case. an additional 
condition is also required. We first consider the former case. 

Theorem 2. Le t  F ( z )  be g iven  m Def ini t ion 2. A s s u m e  that  d0(z) ---- d o ( z l )  -= 
P ~k~ll.Zl - -  Zlk), where  z l l  . . . . .  Zip are p d i s t i ngu i shed  complex  numbers ,  is a 

c o m m o n  d iv i sor  o f  a l ( z )  . . . . .  ate(z), i.e.. ai(z) = d0(zl) ei(z) ti = 1 . . . . .  fi). 

I f  do(z  1), el (z) . . . .  e~ (z) have no c o m m o n  zeros, then  F (z) admi t s  a genera l  

mat r i x  f a c t o r i z a t i o n  in (2). 

Proof.  From the assumption. 

ai (z) = d0(zl) ei (z) 
P 

! 
where e i 

have no 

= ] - - I ( z l  - z l ~ )  e l ( z )  
k = l  

= (Zl - Zll) e~(z), (15) 

P = ~k=z(Zl -- ZI~)ei .  The assumption that do(z1),  el(z) . . . . .  e~(z) 
common zeros implies that the set of ( n -  1)D polynomials 

e l ( Z l l ,  Z2 ,  �9 � 9  Z n ) ,  - . . ,  e / ~ ( Z l l ,  Z2 ,  - .  � 9  Zn) have n o  c o m m o n  z e r o s .  Because 

�9 V I k = 2 ( Z l  1 -z l~)  el(z~, z2 . . . . .  Z,~), zH . . . .  z i p  are distinguished, it is clear that P 

. . . .  I~P=z(ZH - z l k )  e ~ ( z l l ,  z2 . . . . .  zn) have no common zeros. Consequently, 
(Zl - z1I), el(z) . . . . .  e~(z) have no common zeros either. By Theorem 1, F(z)  
can be factorized as 

F(z)  = Fl(z) Gl(z) ,  (16) 

such that F1 c cmxI[z],  Gl E CI• with detG1 = (zt - z11). 
Repeating this procedure for F1 (z) with respect to (zl - z12), we have 

f l  (z) = Fa(z) Gz(z), (17) 

o r  

F(z)  = Fz(z) Gz(z) Gl(z) ,  (i8) 

such that F2 ~ cmxI[z],  G2 6 C~• with detG2 = (zl - z12). 
Repeating the same procedure continuously with respect to (zt - z~) ,  

k = 3 . . . . .  p, we finally have 

F(z)  = Fp(z) G p ( z ) . . -  Gz(z) G1 (z), (19) 
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o r  

F(z) = Fo(z) Go(z), (20) 
P 

where  Fo = Fp ~ Cm• Go = l i p  Gk ~ Cl•  with det  Go ~Ik=t  (zl k = l  = - -  
Zlk) -~" d o ( z l ) .  [] 

We next  genera l ize  Theorem 1 for  another  class of nD po lynomia l  matr ices ,  
where  d (z )  is of  the fo rm d(z )  d(z l ,  z2) P = = l i l c = l ( z l - f k ( z 2 ) ) ,  with fk  C C[z2] 
(k = 1 . . . . .  p )  and f t (z2)  7~ f j ( z 2 ) , f o r a n y p a i r o f t ,  j ~ {1 . . . . .  p } , t  # j .  
Note  that unl ike the case  where  f l  . . . . .  f p  are d is t inguished constants ,  the 
me thod  of  Theo rem 2 cannot  be di rect ly  appl ied  here  wi thout  an addi t ional  

a s sumpt ion  as some  of  (Zl - f l  (z2)) . . . . .  (Zl - fp  (z2)) may  share c o m m o n  zeros 
even when f t (z2)  ~ f j ( z2 ) ,  for  any pair  of  t, j ~ {1 . . . . .  p}, t # j .  Cons ide r  a 

s imple  example  where  el  = 1 + z 3  (zl - z 2 ) ,  e2 = 1 + z 3 ( z l  + z 2 - 2 ) ,  e3 = e4 = 0, 

and do = (zl - z2)(z l  + z2 - 2) wi th  evident ly  f l ( z 2 )  = z2, f2(z2)  = - z 2  + 2. 
Clearly,  do, e l  . . . . .  e4 have no c o m m o n  zeros,  and f l ( z 2 )  ~ f2(z2).  However ,  

(Zl - -  Z2) ,  (Zl q-  Z2 - -  2) e l (Z l ,  z2, z3) . . . . .  (zl  + z2 - 2) e4(z l ,  z2, z3) have an 
infinite number  of  c o m m o n  zeros at (1, 1, z3). The diff icul ty arises at the c o m m o n  

zeros of  (zl  - f~(z2))  and (zl - f2(z2)) ,  or equivalent ly  at the case  when  
f l  (z2) = f2(z2) ,  i.e., z2 = - z 2  + 2, which  results  in z2 = 1. 

In the sequel ,  we assume that fr (z2) ~ r (z2), for  any pa i r  of  t, j ~ { 1 . . . . .  p}, 
t # j ,  and define 

1; = {z2 ~ C f f t ( z2 )  = f j  (z2), for any pa i r  of  t, j c {1 . . . . .  p}, t # j} .  (21) 

Because  f l  (z2) . . . . .  fp(z2)  are 1D po lynomia l s  and f t (z2)  ~ f j ( z2 ) ,  for  any 
pair  of  t,  j e {1 . . . . .  p}, t r j ,  the number  of  points  conta ined  in V is finite. 
These  points  are denoted  by  z21 . . . .  , z2p. 

T h e o r e m  3. Let F ( z )  be given in Definition 2. Assume that do(z) = do(zl,  z2) = 

l i  pk=l(zl - fk(z2))  is a common divisor o f  a l ( z ) ,  . . .  , a~(z) ,  i.e., a i (z )  = 

do(z l , z2 )e i ( z )  (i = 1 . . . .  fi), and f t (z2)  ~ f j ( z 2 ) , f o r a n y p a i r o f t ,  j ff 
{1 . . . . .  p}, t # j .  Let V be defined by (21). I f  do(zl, z2), e l ( z )  . . . . .  e~(z)  
have no common zeros, a n d  for  k = 1 . . . . .  p and r = 1 . . . . .  P, 
rankF( fk ( z2r ) ,  z2r, z3 . . . . .  zn) = I -- 1 for  every (Z3 . . . . .  Zn) ~ C n-2,  then 
F (z) admits a general matrixfactorization in (2). 

P roof .  F r o m  the assumpt ion,  

ai ( z )  = d o ( z l ,  z2 )  ei ( z )  
p 

= H ( Z l  - fk(Z2)) e i ( z )  
k = l  

= (zl f l (Z2) )  ' i . . . .  - -  e i ( z ) ,  = 1 , f l ,  ( 2 2 )  

I p 
where  e i = I-[k=2(zl - fk(z2))  ei. 

Cons ide r  first an arbi t rary  but  fixed z20 ~ C \ V .  It is c lear  that (Zl - f l  (z20)) 
P and y[k=2(z l  - fk(z20)) have no c o m m o n  zeros as f l (z20)  # fk(z20) for  
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f 
k = 2 . . . . .  p. tt follows that (el - fl(z20)), e l ( z l ,  z20, z3 . . . . .  zn) . . . . . .  @ ( z i ,  
z20, z3 . . . . .  zn) have no common zeros. Arguing similarly as in the proof for 
Theorem l, it is easy to show that rank F ( f l ( z 2 o ) , z e o ,  z3 . . . . .  z,,) = t 1 
for every (z3 . . . . .  zn) E C n-2. Now consider an arbitrary but fixed Z2r ~ V 
(r = 1 . . . . .  P). By assumption, rank F ( f l ( z 2 r ) ,  z2r, z3 . . . . .  zn) ---- I l for 
every (z3 . . . . .  zn) ~ C n '2 .  

Therefore, we have rank F ( f l  (z2), z2 . . . . .  z~) = l - 1 for every (z2 . . . . .  zn) 
C n-1. By Lemma 2, we can construct a ZRP vector wi ~ c /x l [z2  . . . . .  zn] such 
that 

F ( f l ( Z 2 ) ,  Z2 . . . . .  Zn)Wl(Z2 . . . . .  Zn) -= [0 . . . . .  0] r .  (23) 

Arguing similarly as in the proof of Theorem 1, it is easy to show that F(z)  can 
be factorized as 

F(z)  = F1 (z) G1 (z) (24) 

with F1 E cm• Gl ~ CI• and de tGl  = (Zl - ft(z2))." Now l-[t.=2(zlP - 
f~(z2)) is a common divisor of the l x l minors of  Fl(Z). Repeating file above 
procedure for F1 (z), we have 

F1 (z) = F2(z) G2(z), (25) 

with F2 ~ cm• G2 C ClXl[z], and detG2 --- (zl - f2(z2)). Combining (24) 
and (25) gives 

F(z)  = F2(z ) G2(z) G1 (z). (26) 

Repeating this process for p times, we finally arrive at 

F(z)  : Igp(z)Gp(z) . . .  G2(z) G1 (z) (27) 

= Fo(z) Go(z), (28) 

with F0 = Fp E cmx/[z],  GO = l i  pk=l Gk c CtXl[z], and detGo = ~k=~kzi -- 

f k (z2) )  = d0(el, Z2). 

R e m a r k  3. It is necessary to assume that f t ( z2)  Cs f j  (z2), for any pair of ; ~; 
{1 . . . . .  p}, t r j .  Otherwise, assume that f t ( za)  =- Y)(za) for some t, j 
{1 . . . . .  p}, Then the expression of equation (22) becomes 

ai (z) = (Zl t - f t ( z 2 ) ) e i ( z ) ,  i = ! . . . . .  l~, 

where e i = (zl - ft (z2)) l-IP_l.k#t,j (zl - f k (z2) )  ei (z). Because (zl - fi(Z2)) 
is a common divisor of (zI - fi(z2)), el(z) . . . . .  e}(z), it is then obvious that 

(zl - ft (z2)), e' 1 (z) . . . . .  e} (z) have many common zeros, and hence the results 
of Theorem 1 cannot be applied here. At present, we do not know how to solve 
this problem when f t ( za)  ~ f j ( z 2 )  for some t, j E {1 . . . . .  p}, t # j .  

R e m a r k  4. To test whether do(el, z2) can be factorized as do(zl, z2) = 
p [-[k=l(Zl -- f k (z2) )  and to carry out the above factorization of do(z1, Za) when 

it exists, we can use either the method proposed in [21], or in the case when 
the coefficients are from the ring of integers or the field of rational numbers, a 
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computationally more efficient software package such as SINGULAR [9]. To find 
the solutions of  f t  (z2) = f j  (z2), we can first transform this problem to finding 
the roots of  the equation f t j  (z2) = f t  (z2) - f j  (z;) = 0, and then employ any one 
of  the many existing root-finding methods (see, e.g., [26]). 

We point out that for the three classes of nD polynomial matrices discussed 
in Theorems 1-3, we have not only proved the existence of  general matrix 
factorization (2), but also given constructive methods for carrying out the actual 
factorizations, as evident from the proofs. Notice that the additional condition that 
for k = 1 . . . . .  p and r = 1 . . . . .  P,  rank F(fk(Z2r),  Z2r, Z3 . . . . .  Zn) = l -- 1 for 
every (z3 . . . . .  z,z) c C n-2 can be tested in a finite number of  steps because there 
are only a finite number of  points in V, and we only need to show that all the 
(l - 1) x (l - I) minors of  F(fk(z2r) ,  Z2r, Z3 . . . . .  Zn) are zero coprime, which 
can be accomplished by using Grrbner bases [5]. 

Can Theorem 1 be further generalized to the case where d(z) P = lq =l(Zl- 
fk(z~ . . . . .  zn)) with flc depending on more than one variable? Our answer is 
yes theoretically, but no practically. Consider the simple case where p = 2, 

d(z2, z3) = (Zl - f l (z2,  z3))(Zl - f2(z2, z3)). Similarly as in (21), let 

)Y ~- {(Z2, Z3) C C 2 [ f l  (z2, Z3) = f 2 ( g 2 ,  z3)}.  (29)  

Because f~ (z2, z3) and fz(z2, z3) are 2D polynomials, the number of  points in 
V' is now infinite even if f l (z2,  z3) ~ f2(z2, z3). Hence, it is computationally 
intractable to test whether or not for an arbitrary but fixed (z21, z31) ~ V', rank 
F( fk ( z2 i ,  z31), Z~l, z31, z4 . . . . .  zn) = l - 1 for every (z4 . . . . .  Zn) and for k = 
1, 2. Therefore, it remains an open problem for obtaining the required general 
matrix factorization (2) for an arbitrary nD polynomial matrix even when the 
existence is proved. 

The matrix factorization technique developed in Theorems ! -3  is very general 
in that it deals with both rectangular and square matrices, and it assumes that do 
is a common divisor (but not necessarily the g.c.d.) of  the maximal minors of  F. 
As mentioned earlier, this general matrix factorization scheme can be specialized 
to two important cases: MRP factorization and determinantal factorization, as 
presented in the following. 

Corol la ry  1. Let F(z)  be given in Definition 2. Assume that d(z) is a g.c.d, o f  
al (z) . . . . .  ac~(z), i.e., ai (z) = d(z) bi (z) (i = 1 . . . . .  fi) and is given in one o f  the 
following three forms: 

(i) d(z) = Zl - f ( z 2  . . . . .  zn); 
(ii) d(z) d(z l )  P - = = I-Ik=l(Z, 1 --  Zlk), with Zlt 7 ~ Z l j , f o r a n y p a i r o f t ,  j c 

{1 . . . . .  p}, t ~ j ;  
(iii) d(z) d(Zl, Z2) P = = [I/c=l (Zl -- fk(z2))  (with an additional assumption 

that ft(z2) ~ f j ( z 2 ) , f o r a n y p a i r o f  t, j E {1 . . . . .  p } , t  /= j ,  and for  
k = 1 . . . . .  p and r = l . . . . .  P, rankF( fk (z2r) ,  z2~, z3 . . . . .  Zn) = 1 - 1 
for  every (z3 . . . . .  z~) 6 Cn-2). 
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I f  d(z),  bl (z) . . . . .  b~ (z) have no common zeros, then F(z) admits the following 
MRP factorization: 

F(z) = Fo(z) Go(z), (30) 

such that Fo ~ cmxI[z] is MRP, GO ~ ClX/[z], and det Go = d(z). 

Corol lary  2. Let F ~ ClXl[z] and det F(z) = el(z) do(z). Assume that do(z) ~s 
one o f  the following three forms: 

(i) do(z) ----- z| - f ( z 2  . . . . .  zn); 
(ii) d0(z) = d(z l )  = FI e ( Z l -  zlk), with Zlt ~ z u , f o r  anv pair o f  t, j E k = l  

{1 . . . . .  p}, t # j ;  

(iii) do(z) d(z l ,  z2) P = = I - [k= l  (Zl - fk(Z2))  (with an additional assumption 
that f t ( z2)  ~ f j ( z 2 ) , f o r a n y p a i r o f t ,  j ~ {1 . . . . .  p } , t  ~ j ,  and f o r  

k : 1 . . . . .  p and r = 1 . . . . .  P, rankF( f k ( z2r ) ,  Z2r, z3 . . . . .  zn) = l -  l 
f o r  every (z3 . . . . .  zn) c c"-2). 

I f  do(z) and el(z) have no common zeros, then F(z) admits the following deter- 
minantal factorization: 

F(z)  = fo(z)  Go(z), (31) 

such that FO e ClXl[z] with detF0 = el(z), and Go E clx/[z]  with detG0 -- 
d0(z). 

R e m a r k  5. We point out that in Theorems 1-3 as well as in Corollaries 1 and 2, 
the condition that d0(z), e l ( z ) , . . i ,  e~(z) (or d(z), bl(Z) . . . . .  b/~(z)) have no 
common zeros is only a sufficient (but in general not a necessary) condition for 
F(z) to admit a general matrix factorization (2). It is therefore of  interest to find 
a necessary and sufficient condition. This is a topic for future research. 

4. Examples 

In this section, we present three examples to illustrate the proposed general matrix 
factorization scheme for three classes of nD polynomial matrices. The first two 
examples are concerned with MRP factorization, and the third example involves 
determinantal factorization. The constructive feature of  our new methods will be 
emphasized. 

Example l .  Let 

F 2zlz~+z~ - 2z2 - 1 
F(Zl,Z2, Z3) = ] 2Z~+ZlZ~+2ZlZ2+4Z~-P2Z| 4 - 4 z 2 + 1  

L2z~+ztz2-2z2+2z2z3+zlz3+z3-z l  - 2  

--Z1~34-~3 ] 

-z~z3-zz2z~+z2-2~3 + ~ i" 
-z2z3 - z~ + z3 + 1 j 

It can be checked that the g.c.d, of all the 2 x 2 minors of F is d(z~, z2, z3) = z~ - 
z 2 z 3 + 2 z 2 - z 3 + l ,  and the reduced minors are bl = ( z l - t ) ( z 2 + l ) ,  b2 = - z 2 z 3 -  
z3 + 2z2 + 3, and b3 = zl - 1. Clearly, bl, be, b3 have many common zeros, e.g., 
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(1, 0, 3). However, we observe that d, b~, b2, b3 are devoid of  any common zeros, 
and d(z~, z2, z3) is of the form Z l - f ( z 2 ,  z3), with f ( z 2 ,  z3) = z 2 z 3 - 2 z 2 + z 3 - 1 .  
By Theorem 1 or Corollary I, F ( z l ,  z2, z3) admits an MRP factorization. In the 
following, we illustrate the steps for obtaining such a factorization. 

Substituting zi = f ( z 2 ,  z3) into F(Z l ,  z; ,  z3). After simplification, we have 

Z3(Z2q ~ |)(Z2Z3 --2Z2q-Z3 --2) 
F(f(z2, z3),Z2, Z3)= [-(Z2 + I)(-Z~Z3 - 2Z2Z3+Z2 - 2Z3 + 1) 

--(Z2§ 1)(--Z2Z3--Z~-t-Z3+I) 

--Z3(Z2Z3 -- 2Z2~-Z3 -- 2) 7 
--Z~Z3 -- 2Z2Z3 + Z2 -- 2 z 3 + l  j . 

--Z2Z3 -- Z~q-Z3q-I  

Let 

+ 1 )  �9 

We have 

I ~ F ( f ( z 2 ,  z3) , z2 ,  z3)U = 0 

Lo 
o r  

- -Z3(Z2Z3 - -  2 Z 2 4 - Z 3  - -  2) 7 

- z ~ z 3  - 2 z 2 z 3 4 - z 2  - 2 z 3 4 - 1 J  , 
- - Z 2 Z 3 - - Z ~ 4 - Z 3 4 - 1  

I z~ - 1 
F(zl,z2, z3)U = z 2 + 2 z 2 + 2  

zz + z3 - 1 

-zlz3 + z3 ~ Fzl - z2z3 + 2z2 - z3 + 
--Z2Z3 -- 2Z27~3 q- Z2 -- 2z3 @ l [ 0 ?] '  

J -z2z3 - z~ + z3 + 1 
D 

1"o 

o r  

where 

F ( Z 1 ,  22,  Z3) = F 0 ( Z 1 ,  Z2, Z3) Go(z1 ,  z2, z3 ) ,  

Go = D U - 1  = I z l  - z2z3 4- 2Z2 - Z3 + i 0 1  
- ( z 2  + 1) 1 ' 

Clearly, det Go = zl  - z2z34- 2z2 - z3 + 1 ----- d, and we have obtained the desired 
MRP factorization for F ( z l ,  z2, z3). 

We next consider the case where d(zl)  P -- 1-L=l(Zl - Zl~), with zti  ~ Zl j ,  
i / = j .  

Example  2. Let 

I 
Z~Z3+Z2Z3+z3+l z~z3§247247 +2"7 

F(Zl,Z2, Z3)= Zl 4-z2 + 1 z2-l-ZlZ2+3ZI+2Z24-2 I " 
0 Z~ - z l  

It is easy to check that the g.c.d, of all the 2 x 2 minors of  F is d ( z l )  -= z~ - 

Zl = zl(zl  - 1), and the reduced minors are bl = 0, b2 = Zl + z2 + 1, and 
b3 = z2z3 -q- z2z34-  z34-  l. Clearly, bl, b2, b3 have many common zeros, e.g., 
( - 1 ,  0, -0 .5 ) .  However, d, bl, b2, b3 are devoid of  any common zeros, and d(z) 
is of  the form d(z) = d ( z l )  = l i  p ~ = l ( Z l - Z l ~ ) , w i t h z l i  /= Z l j , i  ~ j .  B y  
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Theorem 2 or Corollary 1, F admits an MRP factorization. In the following, we 
illustrate the steps for obtaining such a factorization. 

For z l = 0, we have 

Let 

We have 

r Z2Z3 4c Z3 + 1 
F(O, z2, Z3) = l Z20q-1 

UI=!, 2 
k - 1  

r 0 
f (0 ,  Z2, z3)UI = t 0  

L0 
or 

.[--(z1223 n t- z2z3 -i- 73 -~- l) 
F(Zl, z2, z3)U1 ~--- I - ( z l  -I- z2 -b 1) 

I ~- --Zl -[- 1 

F1 
or 

where 

2 

Z2Z3 @ g3 -I- 1 -] 
z 2 + l  2 

0 

z2z3 -H z2z3 -H z3 -t- [ ~ ~z O? 
Z I + Z 2 + I  1 j 

0 iL0 ; '  
D] 

Clearly, detG1 

ffl (Zl, Z2, Z3) as 

F(zL, za, z3) F~tzl, z2, z3) u l (z i ,  z2, z3), 

= Zt. 

(32) 

Continuing in the same manner, we can factorize 

FI(Z1, Z2, Z3) = f2(zl,  z2, g3)G2(zt, z2, z3), (33) 

where 

I 0 ~21z3-Hz2Z3-}-Z3-t- 1 1 I -I z l - I  0 
F 2 =  0 z i + z 2 + l  , G 2 =  - 1  ? j  

- 1  0 _ - 

Combining (32) and (33) gives 

F(zl,  z2, z3) ~ Fo(zl, z2, z3)Go(zl, z2, z3), 

where Fo = F2 is MRR Go = G2 GI = zl + 2 ' 

z l ( z l  - 1). 

Finally, we present another example to illustrate Theorem 3 or Corollary 2 fo; 
determinant factorization for a square matrix. 
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E x a m p l e  3. Let  

9 2 ? 9 
[ Z [ Z 3  - -Z lZ223  -}-ZlZ2 --L9 - - Z l  + 2 Z 2  --Z~Z3 ~-ZIZ2Z3 - - g l g 2 @ Z ~  - - 2 Z l  + 3 Z 2  ] 

F ( g l , Z 2 ,  g3) = 2 3 - --g~Z3 -- ZlZ2Z3 -r- 3Z2Z3 -F gl -- 2 J '  [ --ZIZ3 -- ZlZ2Z3~-  Z l Z 3 ~ - S 2  -- 2 

It is easy  to check  that d e t F  = el  do, where  do = (zl - z2)(Zl  -}- z2 - 2) = 

(zl - fl(z2))(zl - f2(z2))  and el = 1 + z3(zl  - z2)(Zl + z2 - 2) = 1 + z3 do. 
Hence,  do and el are zero copr ime.  We need to compute  the set )2 first. For  this 
s imple  example ,  the only  solut ion to the equat ion z2 = 2 - z2 is when z2 = 1. 
Hence,  z2 = 1 is the only  point  in V. We have 

[- z2 [ ( f l  tz2), z2, z3) = -2z~z3 + 3Z2Z3 -~- Z2 --  2 

or  

F( f l (1 ) , l , z3 )=  z 3 - 1  

z2 ] 
--2Z2Z3 + 3z2z3 + z2 -- 2 ' 

11 
z3 - 1 j '  

It  is obvious  that rank  F(fl  (1), 1, z3) = 2 - 1 = 1 for  any z3 ~ C. Hence,  
rank  F(fl  (z2), z2, z3) = 1 for  every  (z2, z3) E C 2. It can be s imi lar ly  tested that  
rank  F(f2(z2), z2, z3) = 1 for  every (z2, z3) E C 2. Therefore,  by  Theorem 3 or 
Coro l la ry  2, F admits  a de terminanta l  factorizat ion.  

Let  

~ 
We have 

] F(fI (Z2), Z2, z3)U1 = 9 -2z~z3 + 3z2z3 + z2 - 2 ' 

or  

f ( z l ,  Z2, z3)UI  = 

Z~Z3 q- ZIZ2Z3 -- ZIg2 q- Z T -- Zl q- Z2 ] [ ( Z l  -- Z2) 0 ]  [ z ~ z 3 - z ~ - z 2 z 3 + z 2 + l  9 9 2 3 
- 9 �9 1 [ - -Z lZ3  --  Z9Z3 4:- 3Z3 -- 1 --Z{Z3 --  ZlZ2Z3 q- 3 Z 2 Z 3 + Z l  -- 2 J [ 0 l j  

F I DI 

or  

where  

Clearly,  det GI  

F1 (Zl, z2, z3) as 

F ( Z l ,  z2, z3) = f l ( Z l ,  z2, z3) O l ( Z l ,  z2, z3),  (34)  

G I = D 1 U I I = I ( Z l - Z 2 )  O] 
1 1 " 

= zl - z2. Cont inuing  in the same manner,  we can factor ize  

F1 (Zl,  Z2, Z3) == F2(Zl ,  Z2, Z3) G 2 ( z l ,  z2, z3),  (35)  
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where 

F2 = Za51Zl Z l Z 3 - Z l  - z 2 z 3  + z 2 + l  G 2 =  
- Z l z 3  - z2z3 + 3z3 - t ' Z2 3 " 

Combining (34) and (35) gives 

F ( Z l ,  z 2 ,  Z3) = F0(Zl, Z2, z 3 ) G O ( Z l ,  Z2,  Z3), 

where Fo = F2, with det Fo = et = 1 + z 3 ( z l  - z2)(zt + z2 - 2), 

= r - -Z l  - - Z 2 + 2  --Z1 - - Z 2 @ 2  1 
GO = G2 G1 [ Zl Z2 ' 

with detGo = do = (Zl - z2)(Zl + z2 - 2). 

5. Conclusions 

In this paper, we have considered the open problem of minor prime factoriza- 
tion [6] and the conjecture on minor prime factorizability [18], as well as the 
open problem of determinantal factorization [32], [131 for nD (n > 2) polynomial 
matrices. We have presented a constructive general matrix factorization scheme 
for extracting a nontrivial factor from a given nD polynomial matrix whose 
maximal minors satisfy certain conditions. It has been shown that three classes 
of  nD polynomial matrices admit this kind of  general matrix factorization, it 
turns out that minor prime factorization and determinantal factorization are two 
interesting special cases of  the proposal general factorization. As a consequence, 
we have provided a partial solution to the open problem of minor prime factoriza- 
tion [6] and the conjecture on minor prime factorizability [t8] for nD polynomial 
matrices. Three illustrative examples have also been worked out in detail. 

Finally, we admit that the new results can only deal with the classes of nD 
polynomial matrices discussed in this paper. The general matrix factorization for 
an arbitrary nD polynomial matrix remains a challenging and important open 
problem lsee also [12, p. 63]). 
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