Further Results on \boldsymbol{n}-D Polynomial Matrix Factorizations

ZHIPING LIN ezplin@ntu.edu.sg
School of Electrical and Electronic Engineering, Nanyang Technological University, Block S2, Nanyang Avenue, Singapore 639798

Received April 25, 2000; Revised August 25, 2000

Abstract

In this paper, some new results on zero prime factorization for a normal full rank n - $\mathbf{D}(n>2)$ polynomial matrix are presented. Assume that d is the greatest common divisor (g.c.d.) of the maximal order minors of a given n-D polynomial matrix F_{1}. It is shown that if there exists a submatrix F of F_{1}, such that the reduced minors of F have no common zeros, and the g.c.d. of the maximal order minors of F equals d, then F_{1} admits a zero right prime (ZRP) factorization if and only if F admits a ZRP factorization. A simple ZRP factorizability of a class of n-D polynomial matrices based on reduced minors is given. An advantage is that the ZRP factorizability can be tested before carrying out the actual matrix factorization. An example is illustrated.

Keywords: n-D polynomial matrices, matrix factorizations, zero primeness, reduced minors, QuillenSuslin theorem

1. Introduction

The long-standing open problem of multivariate (n - $\mathrm{D}, n>2$) ${ }^{1}$ polynomial matrix prime factorization was first posed by Youla and Gnavi 20 years ago [1], and has attracted some attention over the past decade (see [2]-[4] for more details). Consider ${ }^{2}$ a normal full rank n-D polynomial matrix $F \in \mathbf{C}^{m \times l}[\mathbf{z}]$ with $m>l$. Let a_{1}, \ldots, a_{β} denote the $l \times l$ minors of $F, b_{1}, \ldots, b_{\beta}$ the reduced minors of F, and d the greatest common divisor (g.c.d.) of a_{1}, \ldots, a_{β}. Unlike 2-D polynomial matrices [5], [6], it is, in general, not possible to factorize F as $F=F_{0} G_{0}$ such that both F_{0} and G_{0} are n-D polynomial matrices, with $\operatorname{det} G_{0}=d$ [1], [7], [8]. However, if the reduced minors of F satisfy the zero coprime condition, i.e., b_{1}, \ldots, b_{β} having no common zeros, it might be possible to carry out the above matrix factorization for F [2]-[4]. Two related but different approaches have recently been developed independently to tackle this special case.
The first approach, advanced by Bose and Charoenlarpnopparut [3], [4], is to consider the module generated by the m rows of F. A Gröbner basis for this module is first computed, and a zero right prime (ZRP) factorization of F may then be obtained from this Gröbner basis. An advantage of this approach is that it is computationally attractive, and it can be applied to n-D polynomial matrices of any dimensions. However, this approach sometimes fails to produce a ZRP factorization even when it exists [4]. Moreover, one does not know the ZRP factorizability of a given n-D polynomial matrix until the actual matrix factorization has been attempted.

[^0]The second approach to the same problem, adopted by Lin [2], is to build upon existing results on n-D polynomial matrix theory, such as the Quillen-Suslin theorem (see, e.g., [9]), and the properties of reduced minors [10], and then to identify classes of n-D polynomial matrices for which ZRP factorization exists. In particular, the ZRP factorizability is conjectured recently in [2] and recalled in the following.

Conjecture 1 [2] Let $F \in \mathbf{C}^{m \times l}[\mathbf{z}]$ be of normal full rank with $m>l$, and let d be the g.c.d. of the $l \times l$ minors of F, and b_{1}, \ldots, b_{β} be the reduced minors of F. If b_{1}, \ldots, b_{β} have no common zeros, then F can be factorized as

$$
\begin{equation*}
F=F_{0} G_{0} \tag{1}
\end{equation*}
$$

where $F_{0} \in \mathbf{C}^{m \times l}[\mathbf{z}]$ is $Z R P$, and $G_{0} \in \mathbf{C}^{l \times l}[\mathbf{z}]$ with $\operatorname{det} G_{0}=d$.
It has been proved in [2] that Conjecture 1 is always true if $m=l+1$, and under some condition, also true for F of arbitrary dimension. An advantage of Lin's approach is that ZRP factorizability can be tested before the actual matrix factorization is carried out for the two classes of n-D polynomial matrices discussed in [2].

To our best knowledge, the above two approaches are the only ones available in the literature for attacking the zero prime factorization problem for n-D polynomial matrices. The lack of aggressive progress in this research area is probably due to the fact that factor and zero prime factorization for n - D polynomial matrices is a mathematically highly complicated and challenging problem [11, p. 63]. It is expected that it may take some time before the zero prime factorization problem can be resolved completely. Meanwhile, we believe that any incremental progress would be useful in solving this open problem in part. In this paper, we present some new results which improve existing results on the ZRP factorization problem.

2. Main Results

For convenience of exposition and comparison with the new results, we recall two related results from [4], [2].

Proposition 1 [4] Let $F_{1} \in \mathbf{C}^{m \times l}[\mathbf{z}]$ be of normal full rank with $m>l$, and let d be the g.c.d. of the $l \times l$ minors of F_{1}, and b_{1}, \ldots, b_{β} be the reduced minors of F_{1}. Assume that b_{1}, \ldots, b_{β} have no common zeros. Compute a Gröbner basis \mathbf{G} for the module generated by rows of F_{1} using any ordering. If there exists a set of l linearly independent elements (which are row vectors) of \mathbf{G}, such that all rows of F_{1} belong to the module generated by these l elements of \mathbf{G}, then a $Z R P$ factorization of F_{1} has been found,

$$
\begin{equation*}
F_{1}=F_{0} G_{0} \tag{2}
\end{equation*}
$$

where $F_{0} \in \mathbf{C}^{m \times l}[\mathbf{z}]$ is $Z R P$, and $G_{0} \in \mathbf{C}^{l \times l}[\mathbf{z}]$ is formed from the above mentioned l elements of \mathbf{G} with $\operatorname{det} G_{0}=d$.

Proposition 2 [2] Let $F_{1} \in \mathbf{C}^{m \times l}[\mathbf{z}]$ be of normal full rank with $m=l+2$, and let d be the g.c.d. of the $l \times l$ minors of F_{1}. If there exists an $(l+1) \times l$ submatrix F of F_{1}, such that
the reduced minors of F have no common zeros, and the g.c.d. of the $l \times l$ minors of F equals d, then F_{1} can be factorized as

$$
\begin{equation*}
F_{1}=F_{2} G_{2} \tag{3}
\end{equation*}
$$

where $F_{2} \in \mathbf{C}^{m \times l}[\mathbf{z}]$ is $Z R P$, and $G_{2} \in \mathbf{C}^{l \times l}[\mathbf{z}]$ with $\operatorname{det} G_{2}=d$.
Remark 1. It is easy to see that a necessary condition for an arbitrary n - D polynomial matrix $F_{1} \in \mathbf{C}^{m \times l}[\mathbf{z}]$ with $m>l$, to admit a ZRP factorization is its reduced minors having no common zeros. This condition is satisfied if there exists an $(l+1) \times l$ submatrix F of F_{1}, such that the reduced minors of F have no common zeros, and the g.c.d. of the $l \times l$ minors of F equals d, where d is the g.c.d. of the $l \times l$ minors of F_{1}. However, without adding and the g.c.d. of the $l \times l$ minors of F equals d in the above Proposition, the reduced minors of F_{1} may have some common zeros even when the reduced minors of F have no common zeros. Hence, Proposition 2 of [2] was in fact incorrect. For example, let $F_{1}^{\prime}=\left[\begin{array}{lll}z_{1} z_{2} & z_{1} z_{2}^{2} & z_{3}\end{array}\right]^{T} \in \mathbf{C}^{3 \times 1}[\mathbf{z}]$ where $(\cdot)^{T}$ denotes transpose. Obviously, the g.c.d. of the minors of F_{1}^{\prime} equals 1 . Since the reduced minors $\left(1\right.$ and $\left.z_{2}\right)$ of the submatrix F_{0}^{\prime} formed from the first two rows of F_{1}^{\prime} have no common zeros, by Proposition 2 of [2], F_{1}^{\prime} should admit a ZRP factorization $F_{1}^{\prime}=F_{2} G_{2}$ with $F_{2} \in \mathbf{C}^{3 \times 1}[\mathbf{z}]$ being ZRP and $G_{2}=d=1$. However, such a factorization is impossible since the reduced minors of F_{1}^{\prime} have a common zero at $(0,0,0)$. Hence, F_{1}^{\prime} is a counterexample to Proposition 2 of [2], but not to Proposition 2 in this paper, since the g.c.d. of the minors of F_{0}^{\prime} does not equal the g.c.d. of the minors of F_{1}^{\prime}, and therefore, the new assumption made in Proposition 2 is not satisfied. The author is very grateful to an anonymous reviewer for pointing out this error in Proposition 2 of [2].

Remark 2. It should also be pointed out at this point that the proof presented in [2] for Proposition 2 there was not correct either since it was assumed in the proof that the g.c.d. of the $l \times l$ minors of the $(l+1) \times l$ submatrix equaled the g.c.d. of the $l \times l$ minors of the $m \times l(m=l+2)$ matrix. In fact, it can be seen that the proof for Proposition 2 of [2], although wrong for Proposition 2 of [2], is a correct proof for Proposition 2 of the present paper. Moreover, Proposition 2 of this paper turns out to be a spcecial case of Corollay 1 to be presented later.

An important feature of Proposition 2 is that we can test the ZRP factorizability of F_{1} before carrying out the actual matrix factorization for F_{1}. In the following, we present some new results which not only generalize Proposition 2, but may also improve Proposition 1.

Lemma $1 \quad$ Let $F_{1} \in \mathbf{C}^{m \times l}[\mathbf{z}]$ be of normal full rank with $m>l$, and let d be the $g . c . d$. of the $l \times l$ minors of F_{1}. If there exists an $l \times l$ submatrix G_{1} of F_{1}, such that $\operatorname{det} G_{1}=k_{0} d$, for some nonzero constant k_{0}, then F_{1} can be factorized as

$$
\begin{equation*}
F_{1}=F_{2} G_{2} \tag{4}
\end{equation*}
$$

where $F_{2} \in \mathbf{C}^{m \times l}[\mathbf{z}]$ is $Z R P$, and $G_{2} \in \mathbf{C}^{l \times l}[\mathbf{z}]$ with $\operatorname{det} G_{2}=d$.

Proof: Without loss of generality, assume that $k_{0}=1$, and G_{1} is formed from the first l rows of F_{1}. We have,

$$
F_{1}=\left[\begin{array}{c}
G_{1} \tag{5}\\
F_{3}
\end{array}\right]
$$

where $F_{3} \in \mathbf{C}^{(m-l) \times l}[\mathbf{z}]$.
Let $F_{4}=F_{3} G_{1}^{-1}$. By Cramer's rule [12], $F_{4}=F_{3} \cdot \operatorname{adj} G_{1} / \operatorname{det} G_{1}=\left(F_{3} \cdot \operatorname{adj} G_{1}\right) / d$. Notice that any entry of $\left(F_{3} \cdot \operatorname{adj} G_{1}\right)$ is just an $l \times l$ minor of F_{1} and hence contains d as its divisor. Therefore, F_{4} is an n-D polynomial matrix. We then have

$$
F_{1}=\left[\begin{array}{c}
I_{l} \tag{6}\\
F_{3} G_{1}^{-1}
\end{array}\right] G_{1}=\left[\begin{array}{c}
I_{l} \\
F_{4}
\end{array}\right] G_{1}=F_{7} G_{1}
$$

where $F_{7} \in \mathbf{C}^{m \times l}[\mathbf{z}]$, and $G_{1} \in \mathbf{C}^{l \times l}[\mathbf{z}]$ with $\operatorname{det} G_{1}=d$. Clearly, F_{7} is ZRP. Let $F_{2}=F_{7}$, $G_{2}=G_{1}$. The proof is thus completed.

We now present the main result of this paper. The objective of Proposition 3 is trying to reduce the ZRP factorization problem for F_{1} to the one for F, where F is a submatrix of F_{1} satisfying certain condition.

Proposition 3 Let $F_{1} \in \mathbf{C}^{m \times l}[\mathbf{z}]$ be of normal full rank with $m>l$, and let d be the g.c.d. of the $l \times l$ minors of F_{1}. If there exists an $s \times l(m>s \geq l)$ submatrix F of F_{1}, such that the reduced minors of F have no common zeros, and the g.c.d. of all the $l \times l$ minors of F equals d, then the following two statements are equivalent:
(i) F_{1} can be factorized as

$$
\begin{equation*}
F_{1}=F_{2} G_{2} \tag{7}
\end{equation*}
$$

where $F_{2} \in \mathbf{C}^{m \times l}[\mathbf{z}]$ is $Z R P$, and $G_{2} \in \mathbf{C}^{l \times l}[\mathbf{z}]$ with $\operatorname{det} G_{2}=d$.
(ii) F can be factorized as

$$
\begin{equation*}
F=F_{0} G_{2} \tag{8}
\end{equation*}
$$

where $F_{0} \in \mathbf{C}^{s \times l}[\mathbf{z}]$ is $Z R P$, and $G_{2} \in \mathbf{C}^{l \times l}[\mathbf{z}]$ with $\operatorname{det} G_{2}=d$.
Moreover, if F admits a $Z R P$ factorization in (8), a $Z R P$ factorization for F_{1} can be readily obtained by letting $F_{2}=F_{1} G_{2}^{-1} \in \mathbf{C}^{m \times l}[\mathbf{z}]$, and $F_{1}=F_{2} G_{2}$.

Proof: It is easy to show that (i) implies (ii). In fact, if $F_{1}=F_{2} G_{2}$ with $\operatorname{det} G_{2}=d$, we can partition F_{1} as $F_{1}=\left[\begin{array}{c}F \\ F_{3}\end{array}\right]$, and F_{2} as $F_{2}=\left[\begin{array}{c}F_{0} \\ F_{3}^{\prime}\end{array}\right]$, where $F, F_{0} \in \mathbf{C}^{s \times l}[\mathbf{z}]$. It follows immediately that $F=F_{0} G_{2}$. Since by assumption, the g.c.d. of the $l \times l$ minors of F equals d, and $\operatorname{det} G_{2}=d$, it follows easily that the $l \times l$ minors of F_{0} equal to the reduced minors of F, and thus have no common zeros. Therefore, F_{0} is ZRP.

To show that (ii) implies (i), we first notice that the case $s=l$ reduces to Lemma 1. In the following, we assume that $m>s>l$. Without loss of generality, we can assume that F is formed from the first s rows of F_{1}. Thus,

$$
F_{1}=\left[\begin{array}{c}
F \tag{9}\\
F_{3}
\end{array}\right]
$$

where $F_{3} \in \mathbf{C}^{(m-s) \times l}[\mathbf{z}]$. By assumption, F admits a ZRP factorization

$$
\begin{equation*}
F=F_{0} G_{2} \tag{10}
\end{equation*}
$$

where $F_{0} \in \mathbf{C}^{s \times l}[\mathbf{z}]$ is ZRP, and $G_{2} \in \mathbf{C}^{l \times l}[\mathbf{z}]$ with $\operatorname{det} G_{2}=d$. By the Quillen-Suslin theorem (see, e.g., [9]), there exists $B \in \mathbf{C}^{s \times(s-l)}[\mathbf{z}]$ such that $V_{0}=\left[F_{0} B\right] \in \mathbf{C}^{s \times s}[\mathbf{z}]$ and $\operatorname{det} V_{0}=1$. Let $U_{0}=V_{0}^{-1}$. Clearly, $U_{0} \in \mathbf{C}^{s \times s}[\mathbf{z}]$, $\operatorname{det} U_{0}=1$ and

$$
\begin{equation*}
U_{0} V_{0}=I_{s} \tag{11}
\end{equation*}
$$

or

$$
U_{0} F_{0}=\left[\begin{array}{c}
I_{l} \tag{12}\\
0_{s-l, l}
\end{array}\right]
$$

or

$$
U_{0} F=\left[\begin{array}{c}
G_{2} \tag{13}\\
0_{s-l, l}
\end{array}\right]
$$

Let

$$
U=\left[\begin{array}{cc}
U_{0} & 0_{s, m-s} \tag{14}\\
0_{m-s, s} & I_{m-s}
\end{array}\right] .
$$

Clearly, $U \in \mathbf{C}^{m \times m}[\mathbf{z}], \operatorname{det} U=1$, and

$$
U F_{1}=U\left[\begin{array}{c}
F \tag{15}\\
F_{3}
\end{array}\right]=\left[\begin{array}{c}
U_{0} F \\
F_{3}
\end{array}\right]=\left[\begin{array}{c}
G_{2} \\
0_{s-l, l} \\
F_{3}
\end{array}\right]
$$

Let

$$
F_{5}=\left[\begin{array}{c}
G_{2} \tag{16}\\
0_{s-l, l} \\
F_{3}
\end{array}\right]
$$

and let $a_{1}^{\prime}, \ldots, a_{\beta}^{\prime}$ denote the $l \times l$ minors of F_{5}. Since $F_{5}=U F_{1}$ and U is a unimodular matrix, by Lemma 3 of [2], d is the g.c.d. of $a_{1}^{\prime}, \ldots, a_{\beta}^{\prime}$. Since G_{2} is an $l \times l$ submatrix of F_{5} with $\operatorname{det} G_{2}=d$, by Lemma 1, we have

$$
\begin{equation*}
F_{5}=F_{7} G_{2} \tag{17}
\end{equation*}
$$

where $F_{7} \in \mathbf{C}^{m \times l}[\mathbf{z}]$ is ZRP.
From (15)-(17), we have

$$
\begin{equation*}
F_{1}=U^{-1} F_{5}=U^{-1} F_{7} G_{2}=F_{2} G_{2} \tag{18}
\end{equation*}
$$

where $F_{2}=U^{-1} F_{7} \in \mathbf{C}^{m \times l}[\mathbf{z}]$, and $G_{2} \in \mathbf{C}^{l \times l}[\mathbf{z}]$ with $\operatorname{det} G_{2}=d$. Since both U^{-1} and F_{7} are ZRP, by Corollary 2 of [2], F_{2} is ZRP. Finally, notice that G_{2} in (18) is the same G_{2} in (10). Therefore, if F admits a ZRP factorization in (10), a ZRP factorization for F_{1} can be readily obtained by just letting $F_{2}=F_{1} G_{2}^{-1} \in \mathbf{C}^{m \times l}[\mathbf{z}]$, and $F_{1}=F_{2} G_{2}$.
Remark 3. It should be emphasized that in practice, it is not necessary to construct U_{0} and U in order to factorize F_{1}. Once a ZRP factorization $F=F_{0} G_{2}$ is available, We can simply compute $F_{2}=F_{1} G_{2}^{-1} \in \mathbf{C}^{m \times l}[\mathbf{z}]$. Then $F_{1}=F_{2} G_{2}$ is the desired ZRP factorization for F_{1}.

Remark 5. The above proposition can also be combined with Proposition 1 (originally from [3], [4]) to improve the computational efficiency. Let $F_{1} \in \mathbf{C}^{m \times l}[\mathbf{z}]$ be of normal full rank with $m>l$, and let d be the g.c.d. of the $l \times l$ minors of F_{1}. If there exists an $s \times l$ ($m>s \geq l$) submatrix F of F_{1}, such that the reduced minors of F have no common zeros, and the g.c.d. of the $l \times l$ minors of F equals d, then, instead of computing a Gröbner basis for the module generated by all the rows of F_{1}, as suggested by Bose and Charoenlarpnopparut in [3], [4] (see also Proposition 1 here), we can simply calculate a Gröbner basis for the module generated by all the rows of F. If F admits a ZRP factorization given in (8), then F_{1} will also admit a ZRP factorization given in (7). This will be illustrated by an example shortly. Notice that the improvement on computational efficiency is more significant when $m \gg s$.

Now combining Proposition 3 in this paper with Proposition 1 of [2], we have the following corollary which can be used to test the ZRP factorizability of F_{1} before carrying out the actual matrix factorization.

Corollary $1 \quad$ Let $F_{1} \in \mathbf{C}^{m \times l}[\mathbf{z}]$ be of normal full rank with $m=l+k, k \geq 2$, and let d be the g.c.d. of the $l \times l$ minors of F_{1}. If there exists an $(l+1) \times l$ submatrix F of F_{1}, such that the reduced minors of F have no common zeros, and the g.c.d. of all the $l \times l$ minors of F equals d, then F_{1} can be factorized as

$$
\begin{equation*}
F_{1}=F_{2} G_{2} \tag{19}
\end{equation*}
$$

where $F_{2} \in \mathbf{C}^{m \times l}[\mathbf{z}]$ is $Z R P$, and $G_{2} \in \mathbf{C}^{l \times l}[\mathbf{z}]$ with $\operatorname{det} G_{2}=d$.
Remark 4. Corollary 1 in fact includes Lemma 1 as a special case, since if there exists an $l \times l$ submatrix G_{1} of F_{1}, such that $\operatorname{det} G_{1}=k_{0} d$, for some nonzero constant k_{0}, there will also exist an $(l+1) \times l$ submatrix F of F_{1}, such that the reduced minors of F have no
common zeros, and the g.c.d. of all the $l \times l$ minors of F equals d. Notice also that when $k=2$, the above corollary reduces to Proposition 2. However, the proofs are quite different even for this special case. In fact, comparing the proof for Proposition 3 in this paper with the proof for Proposition 2 in [2], it is easy to see that Proposition 3 does provide a much more efficient way for obtaining a ZRP factorization for F_{1}, as it will also be illustrated by an example shortly. It may be worthwhile at this point to point out that an attempt was also made in [2] to generalize Proposition 2 to the case where $k>2$ without much success. Another criterion for the existence of ZRP factorization for F_{1} $(k>2)$ was derived in [2] under a stronger condition. In particular, it was not possible to test the ZRP factorizability of F_{1} before carrying out the actual matrix factorization for F_{1}. The reader is referred to [2] for more details on this result.

Consider now the example from [2]. Let

$$
F_{1}=\left[\begin{array}{cc}
2 z_{1}^{2} z_{2} z_{3}-z_{1}^{2} z_{2}+3 z_{2}+z_{3}+2 & 2 z_{1}^{2} z_{3}+z_{1} z_{2}+z_{1} z_{3}-z_{1}^{2}+2 z_{1}+2 \\
2 z_{2} z_{3}-z_{2} & 2 z_{3}-1 \\
1 & z_{1} \\
2 z_{2} z_{3}-z_{2}+z_{3} & 2 z_{3}+z_{1} z_{3}-1
\end{array}\right]
$$

The g.c.d. of the 2×2 minors of F_{1} is $d=\left(1-z_{1} z_{2}\right)$. Let F denote the 3×2 submatrix formed from the first 3 rows of F_{1}. It can be checked [2] that the reduced minors of F have no common zeros, and the g.c.d. of the 2×2 minors of F equals to d. By Corollary $1, F_{1}$ admits a ZRP factorization. By Proposition 3, to obtain a ZRP factorization for F_{1}, it suffices to obtain a ZRP factorization for F. Indeed, by Proposition 1 of [2], F admits a ZRP factorization given by

$$
\begin{aligned}
F & =F_{0} G_{2} \\
& =\left[\begin{array}{cc}
z_{2}+z_{3}+2 & 2 z_{1}^{2} z_{3}-z_{1}^{2}+2 \\
0 & 2 z_{3}-1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & z_{1} \\
z_{2} & 1
\end{array}\right],
\end{aligned}
$$

where F_{0} is ZRP and $\operatorname{det} G_{2}=d=\left(1-z_{1} z_{2}\right)$. The details are omitted here since it is similar to that in [2]. By Proposition 3, a ZRP factorization for F_{1} can be readily obtained:

$$
\begin{align*}
F_{1} & =\left(F_{1} G_{2}^{-1}\right) G_{2} \\
& =F_{2} G_{2} \\
& =\left[\begin{array}{cc}
z_{2}+z_{3}+2 & 2 z_{1}^{2} z_{3}-z_{1}^{2}+2 \\
0 & 2 z_{3}-1 \\
1 & 0 \\
z_{3} & 2 z_{3}-1
\end{array}\right]\left[\begin{array}{cc}
1 & z_{1} \\
z_{2} & 1
\end{array}\right] . \tag{20}
\end{align*}
$$

As can be seen, the above procedure for arriving at the same ZRP factorization is much simpler than that in [2].

On the other hand, applying Bose-Charoenlarpnopparut's algorithm [3], [4], we can also obtain a ZRP factorization for F_{1} as follows. Using the software package SINGULAR [13], a Gröbner basis, consisting of two row vectors $\mathbf{r}_{1}, \mathbf{r}_{2}$, for the module generated by all the rows of F_{1} is readily obtained:

$$
\mathbf{r}_{1}=\left[\begin{array}{ll}
0 & z_{1} z_{2}-1
\end{array}\right] ; \quad \mathbf{r}_{2}=\left[\begin{array}{ll}
1 & z_{1}
\end{array}\right] .
$$

Let

$$
G_{0}=\left[\begin{array}{l}
\mathbf{r}_{1} \tag{21}\\
\mathbf{r}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & z_{1} z_{2}-1 \\
1 & z_{1}
\end{array}\right]
$$

Simple algebra shows that F_{1} has the following ZRP factorization:

$$
\begin{align*}
F_{1} & =F_{0} G_{0}=\left(F_{1} G_{0}^{-1}\right) G_{0} \\
& =\left[\begin{array}{cc}
-2 z_{1}^{2} z_{3}+z_{1}^{2}-2 & 2 z_{1}^{2} z_{2} z_{3}-z_{1}^{2} z_{2}+3 z_{2}+z_{3}+2 \\
1-2 z_{3} & 2 z_{2} z_{3}-z_{2} \\
0 & 1 \\
1-2 z_{3} & 2 z_{2} z_{3}-z_{2}+z_{3}
\end{array}\right]\left[\begin{array}{cc}
0 & z_{1} z_{2}-1 \\
1 & z_{1}
\end{array}\right] \tag{22}
\end{align*}
$$

It can be easily checked that F_{0} is ZRP, and $\operatorname{det} G_{0}=d=\left(1-z_{1} z_{2}\right)$. Notice that F_{0} and G_{0} in (22) are different from F_{2} and G_{2} in (20). However, G_{0} and G_{2} are connected by a unimodular matrix $U=\left[\begin{array}{cc}0 & 1 \\ -1 & z_{2}\end{array}\right]$, such that $G_{2}=U G_{0}$ (see Remark 3 of [4]).

Since the submatrix F satisfies the condition given in Proposition 3, by Remark 4, instead of calculating a Gröbner basis for the module generated by all the four rows of F_{1}, we only need to compute a Gröbner basis for the module generated by all the three rows of F. It turns out that the Gröbner basis for F is the same as that for F_{1}, i.e., $F=F_{0}^{\prime} G_{0}$ where G_{0} is the same as in (21). By Proposition 3, F_{1} admits a ZRP factorization $F_{1}=\left(F_{1} G_{0}^{-1}\right) G_{0}=F_{2} G_{0}$, the same as in (22). An advantage is that it would be computationally more efficient to calculate a Gröbner basis for F than for F_{1}, particularly when the size of F is much smaller than that of F_{1}.

3. Conclusion

The new results presented in this paper can be summarized in the following:
Let $F_{1} \in \mathbf{C}^{m \times l}[\mathbf{z}]$ be of normal full rank with $m>l$, and let d be the g.c.d. of the $l \times l$ minors of F_{1}.

1. If there exists an $s \times l(m>s \geq l)$ submatrix F of F_{1}, such that the reduced minors of F have no common zeros, and the g.c.d. of the $l \times l$ minors of F equals d, then F_{1} admits a ZRP factorization if and only if F admits a ZRP factorization. Moreover,
once we have $F=F_{0} G_{2}$ with $\operatorname{det} G_{2}=d$, a ZRP factorization of F_{1} is given by $F_{1}=\left(F_{1} G_{2}^{-1}\right) G_{2}=F_{2} G_{2}$ (Proposition 3).
2. If there exists an $s \times l(m>s \geq l)$ submatrix F of F_{1}, such that the reduced minors of F have no common zeros, and the g.c.d. of the $l \times l$ minors of F equals d, then it is only necessary to compute a Gröbner basis for the module generated by all the rows of F instead of F_{1} (Remark 4).
3. If there exists an $(l+1) \times l$ submatrix F of F_{1}, such that the reduced minors of F have no common zeros, and the g.c.d. of the $l \times l$ minors of F equals d, then F_{1} is ZRP factorizable, and its ZRP factorization can be computed constructively (Corollary 1).
4. If there exists an $l \times l$ submatrix G_{2} of F_{1}, such that $\operatorname{det} G_{1}=k_{0} d$, for some nonzero constant k_{0}, then F_{1} is ZRP factorizable, and its ZRP factorization can be computed easily. Although this result is a special case of 3 , it is of some interest in its own right in view of its simplicity, i.e., a ZRP factorization for F_{1} can be calculated by simple matrix manipulations (Lemma 1).
5. An error in Proposition 2 of [5] has been corrected (Proposition 2). This was pointed out by an anonymous reviewer.

We believe that the contributions made in this paper are one further step towards completely resolving the open problem of zero prime factorization for n-D polynomial matrices, which is presently a challenge to both mathematicians [11, p. 63] and multidimensional system theorists [2]-[4].

Acknowledgment

The author would like to thank Prof. N. K. Bose for helpful discussions and the anonymous reviewers for many helpful suggestions and comments.

References

1. D. C. Youla and G. Gnavi, "Notes on n-dimensional system theory," IEEE Trans. Circuits Syst., vol. 26, Feb. 1979, pp. 105-111.
2. Z. Lin, "Notes on n-D polynomial matrix factorizations," Multidimensional Systems and Signal Processing, vol. 10, 1999, pp. 379-393.
3. N. K. Bose and C. Charoenlarpnopparut, "Multivariate matrix factorization: new results," presented at MTNS'98, padova, Italy, July, 1998.
4. C. Charoenlarpnopparut and N. K. Bose, "Multidimensional FIR filter bank design using Gröbner bases," IEEE Trans. Circuits Syst.-II: Analog and Digital Signal Proc., vol. 46, 1999, pp. 1475-1486.
5. M. Morf, B. C. Lévy and S. Y. Kung, "New results in 2-D systems theory, Part I: 2-D polynomial matrices, factorization and coprimeness," Proc. IEEE, vol. 65, June 1977, pp. 861-872.
6. J. P. Guiver and N. K. Bose, "Polynomial matrix primitive factorization over arbitrary coefficient field and related results," IEEE Trans. Circuits Syst., vol. 29, Oct. 1982, pp. 649-657.
7. B. C. Lévy, "2-D polynomial and rational matrices, and their applications for the modelling of 2-D dynamical systems," Ph.D. dissertation, Stanford Univ., Stanford, June 1981.
8. N. K. Bose, Applied Multidimensional Systems Theory, New York: Van Nostrand Reinhold, 1982.
9. D. C. Youla and P. F. Pickel, "The Quillen-Suslin theorem and the structure of n-dimensional elementary polynomial matrices," IEEE Trans. Circuits Syst., vol. 31, 1984, pp. 513-518.
10. Z. Lin, "On matrix fraction descriptions of multivariable linear n-D systems," IEEE Trans. Circuits Syst., vol. 35, 1988, pp. 1317-1322.
11. S. Kleon and U. Oberst, "Transfer operators and state spaces for discrete multidimensional linear systems," Acta Applicandae Mathematicae, vol. 57, 1999, pp. 1-82.
12. F. R. Gantmacher, Theory of Matrices, vol. I and II, New York: Chelsea, 1959.
13. G. M. Greuel, G. Pfister, and H. Schonemann, Singular Reference Manual, Reports on Computer Algebra, No. 12, Centre of Algebra, University of Kaiserslautern, Germany. (Available from http://www.mathematik.uni-kl.de/~zca/Singular).

[^0]: Throughout the paper, it is assumed that $n>2$.
 For related notation and definitions, see [2]. It should also be pointed out that the results presented in this paper can be easily applied to the case when $m<l$ with minor modification.

