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Abstract. In this paper, some new results on zero prime factorization for a normal full rank n-D (n > 2)
polynomial matrix are presented. Assume that d is the greatest common divisor (g.c.d.) of the maximal
order minors of a given n-D polynomial matrix F1. It is shown that if there exists a submatrix F of F1, such
that the reduced minors of F have no common zeros, and the g.c.d. of the maximal order minors of F
equals d, then F1 admits a zero right prime (ZRP) factorization if and only if F admits a ZRP factoriza-
tion. A simple ZRP factorizability of a class of n-D polynomial matrices based on reduced minors is given.
An advantage is that the ZRP factorizability can be tested before carrying out the actual matrix factor-
ization. An example is illustrated.
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1. Introduction

The long-standing open problem of multivariate (n-D, n > 2)1 polynomial matrix prime

factorization was ®rst posed by Youla and Gnavi 20 years ago [1], and has attracted some

attention over the past decade (see [2]-[4] for more details). Consider2 a normal full rank

n-D polynomial matrix F 2 Cm�l�z� with m > l. Let a1; . . . ; a� denote the l � l minors of

F , b1; . . . ; b� the reduced minors of F , and d the greatest common divisor (g.c.d.) of

a1; . . . ; a�. Unlike 2-D polynomial matrices [5], [6], it is, in general, not possible to

factorize F as F � F0 G0 such that both F0 and G0 are n-D polynomial matrices, with

detG0 � d [1], [7], [8]. However, if the reduced minors of F satisfy the zero coprime

condition, i.e., b1; . . . ; b� having no common zeros, it might be possible to carry out

the above matrix factorization for F [2]-[4]. Two related but di�erent approaches have

recently been developed independently to tackle this special case.

The ®rst approach, advanced by Bose and Charoenlarpnopparut [3], [4], is to consider

the module generated by the m rows of F . A GroÈ bner basis for this module is ®rst

computed, and a zero right prime (ZRP) factorization of F may then be obtained from

this GroÈ bner basis. An advantage of this approach is that it is computationally attractive,

and it can be applied to n-D polynomial matrices of any dimensions. However, this

approach sometimes fails to produce a ZRP factorization even when it exists [4].

Moreover, one does not know the ZRP factorizability of a given n-D polynomial matrix

until the actual matrix factorization has been attempted.

1 Throughout the paper, it is assumed that n > 2.
2 For related notation and de®nitions, see [2]. It should also be pointed out that the results presented in this
paper can be easily applied to the case when m < l with minor modi®cation.



The second approach to the same problem, adopted by Lin [2], is to build upon existing

results on n-D polynomial matrix theory, such as the Quillen±Suslin theorem (see, e.g.,

[9]), and the properties of reduced minors [10], and then to identify classes of n-D poly-

nomial matrices for which ZRP factorization exists. In particular, the ZRP factorizability

is conjectured recently in [2] and recalled in the following.

Conjecture 1 [2] Let F 2 Cm�l�z� be of normal full rank with m > l, and let d be the

g.c.d. of the l � l minors of F , and b1; . . . ; b� be the reduced minors of F . If b1; . . . ; b� have

no common zeros, then F can be factorized as

F � F0 G0 �1�
where F0 2 Cm�l�z� is ZRP, and G0 2 Cl�l�z� with detG0 � d.

It has been proved in [2] that Conjecture 1 is always true if m � l � 1, and under some

condition, also true for F of arbitrary dimension. An advantage of Lin's approach is that

ZRP factorizability can be tested before the actual matrix factorization is carried out for

the two classes of n-D polynomial matrices discussed in [2].

To our best knowledge, the above two approaches are the only ones available in the

literature for attacking the zero prime factorization problem for n-D polynomial

matrices. The lack of aggressive progress in this research area is probably due to the

fact that factor and zero prime factorization for n-D polynomial matrices is a mathema-

tically highly complicated and challenging problem [11, p. 63]. It is expected that it may

take some time before the zero prime factorization problem can be resolved completely.

Meanwhile, we believe that any incremental progress would be useful in solving this open

problem in part. In this paper, we present some new results which improve existing results

on the ZRP factorization problem.

2. Main Results

For convenience of exposition and comparison with the new results, we recall two related

results from [4], [2].

Proposition 1 [4] Let F1 2 Cm�l�z� be of normal full rank with m > l, and let d be the

g.c.d. of the l � l minors of F1, and b1; . . . ; b� be the reduced minors of F1. Assume that

b1; . . . ; b� have no common zeros. Compute a GroÈbner basis G for the module generated by

rows of F1 using any ordering. If there exists a set of l linearly independent elements (which

are row vectors) of G, such that all rows of F1 belong to the module generated by these l

elements of G, then a ZRP factorization of F1 has been found,

F1 � F0 G0; �2�
where F0 2 Cm�l�z� is ZRP, and G0 2 Cl�l�z� is formed from the above mentioned l elements

of G with detG0 � d.

Proposition 2 [2] Let F1 2 Cm�l�z� be of normal full rank with m � l � 2, and let d be

the g.c.d. of the l � l minors of F1. If there exists an �l � 1� � l submatrix F of F1, such that
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the reduced minors of F have no common zeros, and the g.c.d. of the l � l minors of F equals

d, then F1 can be factorized as

F1 � F2 G2 �3�

where F2 2 Cm�l �z� is ZRP, and G2 2 Cl�l �z� with detG2 � d.

Remark 1. It is easy to see that a necessary condition for an arbitrary n-D polynomial

matrix F1 2 Cm�l �z� with m > l, to admit a ZRP factorization is its reduced minors having

no common zeros. This condition is satis®ed if there exists an �l � 1� � l submatrix F of

F1, such that the reduced minors of F have no common zeros, and the g.c.d. of the l � l

minors of F equals d, where d is the g.c.d. of the l � l minors of F1. However, without

adding and the g.c.d. of the l � l minors of F equals d in the above Proposition, the

reduced minors of F1 may have some common zeros even when the reduced minors of

F have no common zeros. Hence, Proposition 2 of [2] was in fact incorrect. For example,

let F 01 � �z1z2 z1z
2
2 z3�T 2 C3�1�z� where ���T denotes transpose. Obviously, the g.c.d.

of the minors of F 01 equals 1. Since the reduced minors (1 and z2) of the submatrix F 00
formed from the ®rst two rows of F 01 have no common zeros, by Proposition 2 of [2], F 01
should admit a ZRP factorization F 01 � F2G2 with F2 2 C3�1�z� being ZRP and

G2 � d � 1. However, such a factorization is impossible since the reduced minors of

F 01 have a common zero at �0; 0; 0�. Hence, F 01 is a counterexample to Proposition 2 of

[2], but not to Proposition 2 in this paper, since the g.c.d. of the minors of F 00 does not

equal the g.c.d. of the minors of F 01 , and therefore, the new assumption made in

Proposition 2 is not satis®ed. The author is very grateful to an anonymous reviewer

for pointing out this error in Proposition 2 of [2].

Remark 2. It should also be pointed out at this point that the proof presented in [2] for

Proposition 2 there was not correct either since it was assumed in the proof that the g.c.d.

of the l � l minors of the �l � 1� � l submatrix equaled the g.c.d. of the l � l minors of the

m� l �m � l � 2� matrix. In fact, it can be seen that the proof for Proposition 2 of [2],

although wrong for Proposition 2 of [2], is a correct proof for Proposition 2 of the present

paper. Moreover, Proposition 2 of this paper turns out to be a spcecial case of Corollay 1

to be presented later.

An important feature of Proposition 2 is that we can test the ZRP factorizability of F1

before carrying out the actual matrix factorization for F1. In the following, we present

some new results which not only generalize Proposition 2, but may also improve

Proposition 1.

Lemma 1 Let F1 2 Cm�l�z� be of normal full rank with m > l, and let d be the g.c.d. of the

l � l minors of F1. If there exists an l � l submatrix G1 of F1, such that detG1 � k0d, for

some nonzero constant k0, then F1 can be factorized as

F1 � F2 G2 �4�

where F2 2 Cm�l �z� is ZRP, and G2 2 Cl�l �z� with detG2 � d.
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Proof: Without loss of generality, assume that k0 � 1, and G1 is formed from the ®rst l

rows of F1. We have,

F1 �
G1

F3

" #
; �5�

where F3 2 C�mÿl��l�z�.
Let F4 � F3 G

ÿ1
1 . By Cramer's rule [12], F4 � F3 � adjG1= detG1 � �F3 � adjG1�=d.

Notice that any entry of �F3 � adjG1� is just an l � l minor of F1 and hence contains d

as its divisor. Therefore, F4 is an n-D polynomial matrix. We then have

F1 �
Il

F3 G
ÿ1
1

" #
G1 �

Il

F4

" #
G1 � F7 G1 �6�

where F7 2 Cm�l�z�, and G1 2 Cl�l�z� with detG1 � d. Clearly, F7 is ZRP. Let F2 � F7,

G2 � G1. The proof is thus completed. &

We now present the main result of this paper. The objective of Proposition 3 is trying to

reduce the ZRP factorization problem for F1 to the one for F , where F is a submatrix of

F1 satisfying certain condition.

Proposition 3 Let F1 2 Cm�l �z� be of normal full rank with m > l, and let d be the g.c.d.

of the l � l minors of F1. If there exists an s� l (m > s � l) submatrix F of F1, such that

the reduced minors of F have no common zeros, and the g.c.d. of all the l � l minors of F

equals d, then the following two statements are equivalent:

(i) F1 can be factorized as

F1 � F2 G2 �7�

where F2 2 Cm�l�z� is ZRP, and G2 2 Cl�l�z� with detG2 � d.

(ii) F can be factorized as

F � F0 G2 �8�

where F0 2 Cs�l�z� is ZRP, and G2 2 Cl�l�z� with detG2 � d.

Moreover, if F admits a ZRP factorization in (8), a ZRP factorization for F1 can be

readily obtained by letting F2 � F1 G
ÿ1
2 2 Cm�l�z�, and F1 � F2 G2.

Proof: It is easy to show that (i) implies (ii). In fact, if F1 � F2 G2 with detG2 � d, we

can partition F1 as F1 �
F

F3

� �
; and F2 as F2 �

F0

F 03

� �
; where F ;F0 2 Cs�l �z�. It

follows immediately that F � F0 G2. Since by assumption, the g.c.d. of the l � l minors of

F equals d, and detG2 � d, it follows easily that the l � l minors of F0 equal to the

reduced minors of F , and thus have no common zeros. Therefore, F0 is ZRP.
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To show that (ii) implies (i), we ®rst notice that the case s � l reduces to Lemma 1. In

the following, we assume that m > s > l. Without loss of generality, we can assume that F

is formed from the ®rst s rows of F1. Thus,

F1 �
F

F3

" #
; �9�

where F3 2 C�mÿs��l�z�. By assumption, F admits a ZRP factorization

F � F0 G2 �10�

where F0 2 Cs�l�z� is ZRP, and G2 2 Cl�l �z� with detG2 � d. By the Quillen±Suslin the-

orem (see, e.g., [9]), there exists B 2 Cs��sÿl��z� such that V0 � �F0 B� 2 Cs�s�z� and
detV0 � 1. Let U0 � Vÿ10 . Clearly, U0 2 Cs�s�z�, detU0 � 1 and

U0 V0 � Is; �11�

or

U0 F0 �
Il

0sÿl;l

" #
; �12�

or

U0 F �
G2

0sÿl;l

" #
: �13�

Let

U �
U0 0s;mÿs

0mÿs;s Imÿs

" #
: �14�

Clearly, U 2 Cm�m�z�, detU � 1, and

U F1 � U
F

F3

" #
�

U0 F

F3

" #
�

G2

0sÿl;l
F3

264
375: �15�

Let

F5 �
G2

0sÿl;l
F3

264
375; �16�
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and let a 01; . . . ; a 0� denote the l � l minors of F5. Since F5 � U F1 and U is a unimodular

matrix, by Lemma 3 of [2], d is the g.c.d. of a 01; . . . ; a 0�. Since G2 is an l � l submatrix of F5

with detG2 � d, by Lemma 1, we have

F5 � F7 G2 �17�

where F7 2 Cm�l�z� is ZRP.

From (15)-(17), we have

F1 � Uÿ1F5 � Uÿ1F7 G2 � F2 G2 �18�

where F2 � Uÿ1F7 2 Cm�l�z�, and G2 2 Cl�l �z� with detG2 � d. Since both Uÿ1 and F7

are ZRP, by Corollary 2 of [2], F2 is ZRP. Finally, notice that G2 in (18) is the same G2 in

(10). Therefore, if F admits a ZRP factorization in (10), a ZRP factorization for F1 can be

readily obtained by just letting F2 � F1 G
ÿ1
2 2 Cm�l �z�, and F1 � F2 G2. &

Remark 3. It should be emphasized that in practice, it is not necessary to construct U0

and U in order to factorize F1. Once a ZRP factorization F � F0 G2 is available, We can

simply compute F2 � F1 G
ÿ1
2 2 Cm�l �z�. Then F1 � F2 G2 is the desired ZRP factorization

for F1.

Remark 5. The above proposition can also be combined with Proposition 1 (originally

from [3], [4]) to improve the computational e�ciency. Let F1 2 Cm�l �z� be of normal full

rank with m > l, and let d be the g.c.d. of the l � l minors of F1. If there exists an s� l

(m > s � l) submatrix F of F1, such that the reduced minors of F have no common zeros,

and the g.c.d. of the l � l minors of F equals d, then, instead of computing a GroÈ bner

basis for the module generated by all the rows of F1, as suggested by Bose and

Charoenlarpnopparut in [3], [4] (see also Proposition 1 here), we can simply calculate a

GroÈ bner basis for the module generated by all the rows of F . If F admits a ZRP factor-

ization given in (8), then F1 will also admit a ZRP factorization given in (7). This will be

illustrated by an example shortly. Notice that the improvement on computational

e�ciency is more signi®cant when m� s.

Now combining Proposition 3 in this paper with Proposition 1 of [2], we have the

following corollary which can be used to test the ZRP factorizability of F1 before carrying

out the actual matrix factorization.

Corollary 1 Let F1 2 Cm�l �z� be of normal full rank with m � l � k, k � 2, and let d be

the g.c.d. of the l � l minors of F1. If there exists an �l � 1� � l submatrix F of F1, such that

the reduced minors of F have no common zeros, and the g.c.d. of all the l � l minors of F

equals d, then F1 can be factorized as

F1 � F2 G2 �19�

where F2 2 Cm�l�z� is ZRP, and G2 2 Cl�l�z� with detG2 � d.

Remark 4. Corollary 1 in fact includes Lemma 1 as a special case, since if there exists an

l � l submatrix G1 of F1, such that detG1 � k0d, for some nonzero constant k0, there will

also exist an �l � 1� � l submatrix F of F1, such that the reduced minors of F have no
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common zeros, and the g.c.d. of all the l � l minors of F equals d. Notice also that when

k � 2, the above corollary reduces to Proposition 2. However, the proofs are quite

di�erent even for this special case. In fact, comparing the proof for Proposition 3 in

this paper with the proof for Proposition 2 in [2], it is easy to see that Proposition 3 does

provide a much more e�cient way for obtaining a ZRP factorization for F1, as it will also

be illustrated by an example shortly. It may be worthwhile at this point to point out that

an attempt was also made in [2] to generalize Proposition 2 to the case where k > 2

without much success. Another criterion for the existence of ZRP factorization for F1

(k > 2) was derived in [2] under a stronger condition. In particular, it was not possible to

test the ZRP factorizability of F1 before carrying out the actual matrix factorization for

F1. The reader is referred to [2] for more details on this result.

Consider now the example from [2]. Let

F1 �

2z21z2z3 ÿ z21z2 � 3z2 � z3 � 2 2z21z3 � z1z2 � z1z3 ÿ z21 � 2z1 � 2

2z2z3 ÿ z2 2z3 ÿ 1

1 z1

2z2z3 ÿ z2 � z3 2z3 � z1z3 ÿ 1

2666664

3777775:

The g.c.d. of the 2� 2 minors of F1 is d � �1ÿ z1z2�. Let F denote the 3� 2 submatrix

formed from the ®rst 3 rows of F1. It can be checked [2] that the reduced minors of F have

no common zeros, and the g.c.d. of the 2� 2 minors of F equals to d. By Corollary 1, F1

admits a ZRP factorization. By Proposition 3, to obtain a ZRP factorization for F1, it

su�ces to obtain a ZRP factorization for F . Indeed, by Proposition 1 of [2], F admits a

ZRP factorization given by

F � F0 G2

�
z2 � z3 � 2 2z21z3 ÿ z21 � 2

0 2z3 ÿ 1

1 0

26664
37775 1 z1

z2 1

" #
;

where F0 is ZRP and detG2 � d � �1ÿ z1z2�. The details are omitted here since it is

similar to that in [2]. By Proposition 3, a ZRP factorization for F1 can be readily

obtained:

F1 � �F1 G
ÿ1
2 �G2

� F2G2

�

z2 � z3 � 2 2z21z3 ÿ z21 � 2

0 2z3 ÿ 1

1 0

z3 2z3 ÿ 1

26666664

37777775
1 z1

z2 1

" #
: �20�
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As can be seen, the above procedure for arriving at the same ZRP factorization is much

simpler than that in [2].

On the other hand, applying Bose-Charoenlarpnopparut's algorithm [3], [4], we can

also obtain a ZRP factorization for F1 as follows. Using the software package

SINGULAR [13], a GroÈ bner basis, consisting of two row vectors r1, r2, for the module

generated by all the rows of F1 is readily obtained:

r1 � �0 z1z2 ÿ 1�; r2 � �1 z1�:
Let

G0 �
r1

r2

� �
� 0 z1z2 ÿ 1

1 z1

� �
: �21�

Simple algebra shows that F1 has the following ZRP factorization:

F1 � F0G0 � �F1 G
ÿ1
0 �G0

�

ÿ2z21z3 � z21 ÿ 2 2z21z2z3 ÿ z21z2 � 3z2 � z3 � 2

1ÿ 2z3 2z2z3 ÿ z2

0 1

1ÿ 2z3 2z2z3 ÿ z2 � z3

26666664

37777775
0 z1z2 ÿ 1

1 z1

" #
: �22�

It can be easily checked that F0 is ZRP, and detG0 � d � �1ÿ z1z2�. Notice that F0 and

G0 in (22) are di�erent from F2 and G2 in (20). However, G0 and G2 are connected by a

unimodular matrix U � 0 1

ÿ1 z2

� �
, such that G2 � UG0 (see Remark 3 of [4]).

Since the submatrix F satis®es the condition given in Proposition 3, by Remark 4,

instead of calculating a GroÈ bner basis for the module generated by all the four rows of

F1, we only need to compute a GroÈ bner basis for the module generated by all the three

rows of F . It turns out that the GroÈ bner basis for F is the same as that for F1,

i.e., F � F 00 G0 where G0 is the same as in (21). By Proposition 3, F1 admits a ZRP

factorization F1 � �F1 G
ÿ1
0 �G0 � F2 G0, the same as in (22). An advantage is that it

would be computationally more e�cient to calculate a GroÈ bner basis for F than for

F1, particularly when the size of F is much smaller than that of F1. &

3. Conclusion

The new results presented in this paper can be summarized in the following:

Let F1 2 Cm�l�z� be of normal full rank with m > l, and let d be the g.c.d. of the l � l

minors of F1.

1. If there exists an s� l (m > s � l) submatrix F of F1, such that the reduced minors of

F have no common zeros, and the g.c.d. of the l � l minors of F equals d, then F1

admits a ZRP factorization if and only if F admits a ZRP factorization. Moreover,
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once we have F � F0 G2 with detG2 � d, a ZRP factorization of F1 is given by

F1 � �F1 G
ÿ1
2 �G2 � F2 G2 (Proposition 3).

2. If there exists an s� l (m > s � l) submatrix F of F1, such that the reduced minors of

F have no common zeros, and the g.c.d. of the l � l minors of F equals d, then it is

only necessary to compute a GroÈ bner basis for the module generated by all the rows

of F instead of F1 (Remark 4).

3. If there exists an �l � 1� � l submatrix F of F1, such that the reduced minors of F

have no common zeros, and the g.c.d. of the l � l minors of F equals d, then F1 is

ZRP factorizable, and its ZRP factorization can be computed constructively

(Corollary 1).

4. If there exists an l � l submatrix G2 of F1, such that detG1 � k0d, for some nonzero

constant k0, then F1 is ZRP factorizable, and its ZRP factorization can be computed

easily. Although this result is a special case of 3, it is of some interest in its own right

in view of its simplicity, i.e., a ZRP factorization for F1 can be calculated by simple

matrix manipulations (Lemma 1).

5. An error in Proposition 2 of [5] has been corrected (Proposition 2). This was pointed

out by an anonymous reviewer.

We believe that the contributions made in this paper are one further step towards

completely resolving the open problem of zero prime factorization for n-D polynomial

matrices, which is presently a challenge to both mathematicians [11, p. 63] and multi-

dimensional system theorists [2]-[4].
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