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Abstract. This paper discusses a relationship between the prime factorizability of a normal fulartk >

2) polynomial matrix and its reduced minors. Two conjectures regarding-bepolynomial matrix prime
factorization problem are posed, and a partial solution to one of the conjectures is provided. Another related
open problem of factorizing an-D polynomial matrix that is not of normal full rank as a product of tax®
polynomial matrices of smaller size is also considered, and a partial solution to this problem is presented. An
illustrative example is worked out in details.
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1. Introduction

The problems of multivariatenD) polynomial matrix factorizations have attracted much
attention over the past decades because of their wide applications in circuits, systems,
controls, signal processing and other areas (see, e.g., [1]-[13]). One of such a factorization
problem is to decompose a normal full ramD polynomial matrix into a product of two

n-D polynomial matrices, with one of them being prime in some sense [3], [6], [11]. This
prime factorization problem has long been solved for 1-D and 2-D polynomial matrices [3],
[4], [14]. However, it is a challenging open problem feD (n > 2)! polynomial matrices

[6], [11], because of some fundamental differences betweBrpolynomial matrices and

their 1-D and 2-D counterparts [6], [7], [11]. Although some recent efforts have been
made towards solving this and other related factorization problems [8]-[13], the prime
factorization problem remains largely unresolved.

In this paper, we attempt to establish a relationship between the prime factorizability of a
normal full rankn-D polynomial matrix and its reduced minors by posing two conjectures.
As a partial solution to one of the conjectures, we present a simple sufficient condition for
the factorizability of a class af-D polynomial matrices. When a matrix in this class is
factorizable, a constructive method is provided to carry out the actual factorization. As
a by-product, we also show how to factorize some speeialpolynomial matrix that is
not of normal full rank as a product of tweD polynomial matrices of smaller size. The
new results are derived by exploiting the celebrated Quillen—Suslin theorem [15]-[17] that
can now be implemented using the efficienb@mér basis approach [18]-[21], and some
properties of reduced minors [7], [12], [22].

The organization of the paper is as follows. In the next section, we recall some definitions,
and then raise two conjectures regarding zero and minor prime factorizatiomsCfor
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polynomial matrices. A partial solution to one of the conjectures posed is presented in
Section 3, along with new results on factorizations of a classDfpolynomial matrices

that are not of full normal rank. An example is illustrated in Section 4 and conclusions are
given in Section 5.

2. Preliminaries and Problem Formulation

In the following, we shall denot€(z) = C(z, ..., z,) the set of rational functions in
complex variableg,, - - -, z, with coefficients in the field of complex numbegs C[z] the
set of polynomials in complex variables - - - , z, with coefficients inC; C™*![z] the set of
m x | matrices with entries i€[Z], etc. Throughout this paper, the arguméntis omitted
whenever its omission does not cause confusion.

DEFINITION 1: ([6]) Let F € C™![Z], with m> |. Then F is said to be:

(i) zero right prime (ZRP) if there exists no n-tuafee C" which is a common zero of
the | x | minors of F;

(i) minor right prime (MRP) if the Ix | minors of F are factor coprime;

(iii) factor right prime (FRP) if in any polynomial decomposition= F; F,, the | x |
matrix & is a unimodular matrix, i.egetF, = kg € C*.2

Zero left prime (ZLP) and minor left prime (MLR8tc can be similarly defined.

DEFINITION 2: ([7], [22]) Let F € C™![Z] be of normal full rank with m > |, and let
ay, ..., ag denote the Ix | minors of the matrix F, wherg = () = (mT—I'),I, Extracting
the greatest common divisor (g.c.d.) d ef a ., ag gives:

a =dhb, i=1...,8 (1)

Then, B, ..., bg are called the “reduced minors” (or equivalently, the “generating poly-
nomials”) of F.

Reduced minors of a normal full rank matrix € C™![Z], with m < |, can be defined
by replacingF with FT in Definition 2, wherg-)T denotes transposition. We do not define
reduced minors for a square matrix.

Consider now a normal full rank-D polynomial matrixF € C™![z] with m > |. Let
ai, ..., ag denote thed x | minors of F, by, ..., bg denote the reduced minors Bt By
Definition 2,a andb; are related by:

a=db, i=1...8. )

Throughout the paper, we assume ttidas not a non-zero constant. Although we only
consider the case when > | for convenience of exposition, the results presented can be
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easily applied to the case whem < | with minor modification. The prime factorization
problem considered here is to factorizeas:

F = FoGo 3)

with Fg € C™![Z], Gy € C'*'[7] and deiG, = d. We feel that the prime factorizability of
ann-D polynomial matrix may be related to its reduced minors and pose the following two
conjectures:

CONJECTUREL: If by, ..., bg have no common zeros@f', then F can be factorized as in
(3) with Ry being ZRP andietGy = d.

CONJECTUREZ: Ifd, by, ..., bg have no common zeros@f, then F can be factorized as
in (3) with Ry being MRP andietGy = d.

When F admits factorization (3) withFy being ZRP (MRP), we say th& has a ZRP
(MRP) factorization. Recently, Bose and Charoenlarpnopparut have also considered the
samen-D ZRP factorization problem [13]. By making use ofdbrier bases for modules,
they have proposed an algorithm for carrying out the ZRP factorization, with assumptions
thatby, ..., bg have no common zeros @", and that a ZRP factorization fd¥ exists
However, given an arbitrany-D polynomial matrixF with a nontriviald, itis still unknown
whether there exists a ZRP factorizationfareven wheil, . . ., bg have no common zeros
in C". In view of the ZRP factorization algorithm proposed in [13], the critical question
now is to show the existence of a ZRP factorizationForin this paper, we prove that ZRP
factorizations do exist for a class 0D polynomial matrices. We also propose alternative
methods for carrying out ZRP factorizations for this class of matrices.

We next consider another closely related polynomial matrix factorization problem. Let
F1 € C™![Z] be of normal rank < min{m, 1}. we would like to know whetheF; can be
factorized as:

Fi=FG; 4)

with F, € C™"[z] and G, € C"¥'[Z]. Youla and Gnavi [6] have shown that such a
factorization is always possible for 1-D and 2-D polynomial matrices, but not forrkir
counterparts in general. However, to our best knowledge, there is no algorithm available
to determine whether or né; can be factorized as in (4). In this paper, we also solve the
factorization problem (4) for a class ofD polynomial matrices.

3. Main Results

We first require two lemmas.

LEMMA 1: Let A e C¥*™M[z] be ZLP with k< m. Then there exists a ZRP matrix &
C™![Z], with | = m — k, such thét

AB=0,. (%)
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Moreover, if B € C™"[Z], where r is a positive integer, such that

A By = O, (6)
then

Bi=BG ()

for some Ge C'*"[Z].

Proof: SinceA is ZLP, there exist#d € C'*™[Z] such that the matrik) = [HT AT]T ¢
C™M*M[Z] is a unimodular matrix, i.e., d&t = 1. This is in fact a result of the celebrated
Quillen—Suslin theorem [15]-[17], and there are now algorithms for solving such a matrix
completion problem [19]-[21]. Clearlyf = U~! € C™™M[Z] is also a unimodular matrix.
PartitionV asV = [B T], whereB € C™![z], T € C™K[z]. We have

H I 0,
UV=[A][B T]=[0k"| Ikk]’ (8)
or
AB=0,. )

SinceHB = ||, Bis ZRP [6], [11]. Now consider an arbitrary mati¢ € C™*"[z], where
r is a positive integer, such that

AB; = O,. (10)

Combining (8) and (10) leads to

w][Bl ° T]z[o(ks.r o Ql’kk]’ (11)

whereG = HB; € C'*"[2]. Simple algebra on (11) gives

[H[Bl—se B ﬂ:[g'kfr 0'k"l 0||[(k] (12)
or

U[B; — BG] = Op,. (13)
Since detU = 1, we must havel}; — BG] = Oy, or B; = BG. ]
LEMMA 2: Let F € C™![Z] be of normal full rank with m= | + 1, by, ..., bs be the

reduced minors of F. Iff..., bg have no common zeros @', then there exists a ZLP
row vectorby € C*™[2] such that

bo F = 0y. (14)
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Proof: SinceF is of normal full rank and of sizen x | with m = | 4+ 1, without loss
of generality, we can assume that the | submatrixD e C'*![Z] formed from the first
rows of F is nonsingular, i.e., ddd # 0 andF = [DT NT]T, whereN e C'*'[z]. Define
ann-D rational matrixP = ND~! € C¥*!(z) and obtain a left matrix fraction description
(MFD) of P = DN whereD € C[z], N € C™[z]. SinceP = DN = ND %, we
have

-1 5 | =0 15)
or
bo F = 0y (16)

wherebg = [-N D] = [by - - - by]. Without loss of generality, we can assume thgis
already MLP, for otherwise one can always pull out the g.c.d,0f. ., by, using methods
available in the literature (see, e.g., [1]).Hence, the reduced minbgsoé justs, . . . , br.
According to a known result on reduced minors associated with MFDs pf@mational
matrix [7], we have

b = +0/, i=1,...,m, (17)
whereb, ..., bj, are obtained by reorderiny, . .., l§m appropriately. Since, ..., b
have no common zeros @, it follows from (17) thatby, . . ., by, and hencé; - - - by, have
no common zeros i&". This implies thaby is ZLP. ]

We now present a simple necessary and sufficient condition for the ZRP factorizability
of F e C™[zlwhenm =1 + 1.

PROPOSITIONL: Let F € C™![Z] be of normal full rank with m= | + 1, &, .. ., ag be the
| x I minors of F, Iy, ..., bg be the reduced minors of F,i.e;, & dby (i=1,...,8). F
can be factorized as

F = FoGo (18)

where iy € C™![Z] is ZRP, and G € C'*![Z] with detG, = d, if and only if by, ..., bs
have no common zeros @f'.

Proof: (SufficiencyfAssume thaby, .. ., bg have no common zeros @". By Lemma 2,
there exists a ZLP row vecttx, € C1*™[z] such that

by F = 0y;. (19)
By Lemma 1, there exists a ZRP matfiy € C™![Z], such that

by Fo = 01. (20)
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Sincebg F = 04, applying Lemma 1 gives
F = FoGo (21)

whereGq € C'¥![Z]. It remains to show that d&, = d. Let detGy = gand fy, ..., fs
be thel x | minors of Fy. From (21), we have

a = fig, i=1...,8 (22)
or

db = gf, i=1...,8 (23)
SinceFp is ZRP, f1, ..., fg have no nontrivial common divisors. Henakmust be a
divisor of g. On the other hand, sindas, . .., bg have no nontrivial common divisors by

Definition 2,g must be a divisor ofi. Hence, we havg = kod for someky € C*. We may
assume thaty = 1. Thereforeg = d, or detGy = d.

Necessity: Assume thatr = FyGp, with Fy being ZRP and deb, = d. Arguing
similarly as in the above proof for sufficiency, we can also arrive at equation (23) with
g=d,i.e.

b = fi, i=1,...,8 (24)
The assumptiorfry being ZRP implies thafs, ..., fz have no common zeros @". It is
then clear from (24) thdi, . .., bg cannot have any common zero@?. ]

The main reason for requiring the size of the matfixo be (I + 1) x | in Lemma
2 and Proposition 1 is that it guarantees the existence of a ZLP row Jecwrch that
boF = 01, as algorithms are available for extracting the g.c.dilof .., b [1]. If F
is of size(l + k) x | wherek > 1, we do not know whether there exists a ZLP matrix
By € C¥<(+K[Z] such thatByF = Oy,. In fact, it is even not known whether there exists a
ZLP row vectorby € C*(+X[z] such thatby F = 0;; whenk > 1. We shall consider this
problem in more details later.

We next apply Proposition 1 to the factorization ofra® polynomial matrix that is not
of normal full rank as a product of twe-D polynomial matrices of smaller size.

COROLLARY 1: Let i € C™"[Z] be of normal rank | withm=1 + 1andr > |. If there
exists an mx | submatrix F of F, such that the reduced minors of F have no common
zeros inC", then K can be factorized as

F1= F.G, (25)

where i, € C™![Z] is ZRP, and G € C'*'[Z].

Proof: Without loss of generality, we can assume thatrthe | submatrixF is formed
from the firstl columns ofF;. Thatis,F; = [F A], where A € C™(-D[z]. Since the
reduced minors oF have no common zeros {@", by Proposition 1, we havE = F,G,
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whereF, e C™![z] is ZRP, andG, € C'¥'[Z], or

FL=[F Al=[FGo Al =[F A]|:OrG_CI>| 0||;:| } 6

We first show that the normal rank df{ A]is equal td. Since F A] andF are both of
normal rankt, all the columns ofA can be generated by linear combinations of t@umns
of F overC(2), i.e., there exist®W € C'*~D(z) such thatFW = A, or F.GoW = A.
HenceF,Wy = Afor Wo = GoW e C'*-D(z). This implies that all the columns & can
be generated by linear combinations of thmlumns ofF, overC(z). Therefore F, A]

is of normal rank. SinceF, is ZRP, according to a result due to Youla and Gnavi [6], we
can factorize F, A] as:

[F2 Al = F2Gy (27)

for someG; e C'*"[z]. Substituting (27) into (26) gives

Fi = FG; (28)
where
G2 — Gl G0 OI,r—I c CIXF[Z]. (29)
Oty I
The proof is thus completed. ]

We next show that under certain condition, Conjecture 1 is also trua forl + 2. We
require first the following lemma.

LEMMA 3: Let FL e C™![Z], F, € C"*![z] and U € C™'[Z] such that
Fi=UFR (30)

withm >r > I. Let by, ..., by be the reduced minors ofiFwhereg = (1), dy be the
g.c.d. of all the Ix I minors of R, bys, . . ., bz, be the reduced minors obFwherex = (7),
and & be the g.c.d. of all the k | minors of k. If U is ZRP, then d = kqd, for some
koe C*and by, ..., big and byy, .. ., by, share the same set of common zeros.

Proof: Letay;, ..., ajp denote thé x | minors of the matri¥;, anday,, . . ., ax, denote
thel x | minors of the matrix=,. By Definition 2, we have

ayj = diby;, i=1...,8 (31)
and

aj =d2b2j, j =1...,c. (32)
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LetU; denote théxr matrix formed by selectingtherows ...,ij (1 <iy <--- <ij <m)
from U, and letqiy, . .., g, denote thd x | minors ofU;. From (30), and by using the
Cauchy-Binet formula [24], it follows that

o
a; = ZQij Qj
=1

= ZQijdzij
-1

= d ) gjby i=1....8 (33)
=1
Thus, d; is a common divisor otyy, ..., ais. Since by assumptiord; is the g.c.d. of
aii, ..., &g, dz is necessarily a divisor afy.

Next, sincel is ZRP, there exist®/ € C'*™M[z] such thatWU = |, [6], [21]. Premulti-
plying (30) byW leads to:

F,=WHR (34)
It can be similarly argued as above tlais a divisor ofd,. Therefored; = kod, for some

ko € C*.
Substituting (31) and; = kqd, into (33) and canceling, from both sides gives

o
koby =) “gjby;  i=1.....8 (35)
j=1
It follows that a common zero dib,, . . ., by, is necessarily a common zerolmf, . . ., byg.
Starting from (34), it can be similarly shown that a common zerb,gf. . ., by is also a
common zero obyy, . .., by,. Thereforepyy, ..., byg andbyy, .. ., by, share the same set
of common zeros. [

Remark 1. Whenm = r, the above lemma reduces to Lemma 1 in [12]. It should be
pointed out that Lemma 3 does not hold in generahfiot r. This is because whan < r,

(30) does not imply (34), since there does not exist Whguch thatWU = I,. We also
notice that althoughay, . . ., big andby, .. ., by, share the same set of common zeros, the
family of byy, ..., big are in general different from the family &b, . . ., by,.

A special case of Lemma 3 is whén is ZRP, i.e.,d, = 1 andby;, ..., by, have no
common zeros ilC". For this case, Lemma 3 reduces to the following corollary.

COROLLARY 2: IfbothU € C™"[z] and F; € C"*![Z] are ZRP, then the product = U F»
is also ZRP.

We now show that Conjecture 1 is also true for matrices of dimensien2) x | under
certain condition.
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PROPOSITION2: Let F; € C™![z] be of normal full rank with m=1 4 2, and let d be the
g.c.d. of the Ix | minors of k. If there exists aril + 1) x | submatrix F of i, such that
the reduced minors of F, denoted by, b.., b1, have no common zeros @', then R
can be factorized as

Fi = FGy (36)
where B € C™![Z] is ZRP, and G e C'*![z] with detG, = d.

Proof: Without loss of generality, we can assume thas formed from the first+ 1 rows
of F1. Thatis,F; = [FT f]]7, wheref; € C*'[2]. SinceF is of dimension( + 1) x |
and its reduced minots, . .., b1 have no common zeros &, by Lemma 2, there exists
a ZLP row vectoffg € C*(+D[Z] such that

foF =0q. (37)
Letfy = [fo 0] € C™(+2[2]. Itis clear thaffy is also ZLP, and satisfies

fo F1=0q. (38)
By Lemma 1, there exists ZRRy € C!+2*(+1[z] andG; e C+Y*![z], such that

fo Fo =04y, (39)
and

F1 = FoGu. (40)

Letby, ..., bg denote the reduced minorskf. SinceFyis ZRP andl +2) > (1+1) > |,
by Lemma 3, the reduced minors Gf; have the same set of common zeros with that of

by, ..., bg. SinceF is an(l + 1) x | submatrix formed from the fir$t+ 1 rows ofF, itis
clear thatby, ..., b1 iS a proper subset df, ..., bg. The assumption thdd, ..., b1
have no common zeros i@" implies thatb,, ..., bg have no common zeros i@". It

follows immediately that the reduced minors @f also have no common zeros Gf'.
Furthermore, by Lemma 3, the g.c.d. of thel minors ofG; is equal tad (we assume that
ko = 1). SinceG; is of dimensionl + 1) x |, by Proposition 1(5; can be factorized as

G1 = G3G» (41)

whereG; e C!tDx![Z] is ZRP, andG, € C'*'[z] with detG, = d. Substituting (41) into
(40) gives

F1 = FoG3Ga = G, (42)

whereF, = FoG3 € C™![Z]. Since bothFyandG;are ZRP, by Corollary & is also ZRP.
[ ]

Remark 2. Unlike Proposition 1, in Proposition 2 the condition that there exists an
(I + 1) x | submatrix whose reduced minors have no common zer@¥ iis a sufficient
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but not necessary one for ZRP factorizabilityf. As we pointed out earlier, fof, of
size(l +Kk) x | with k > 1, it is still unknown whether there exists a ZLP row vector
by € C*(+X[Z] such thatbg F, = 01,. Imposing the condition that the reduced minors of
an(l +1) x | submatrix have no common zerosGAi is to ensure the existence of such a
ZLP row vector.

COROLLARY 3: Let F; € C™[Z] be of normal rank | withm=1 + 2andr > I. If there
exists an(l + 1) x | submatrix F of k, such that the reduced minors of F have no common
zeros inC", then R can be factorized as

F1= F.G; (43)

where i € C™![Z] is ZRP, and G € C'*'[Z].

A proof is similar to that for Corollary 1 (with Proposition 1 replaced by Proposition 2)
and is hence omitted here.

We now refine Proposition 2 and Corollary 3 to the general case far@polynomial
matrix of arbitrary size. In the following proposition, we present an algorithm for testing
the ZRP factorizability of an arbitramy-D polynomial matrixF, and for carrying out the
ZRP factorization of when exists.

PROPOSITION3: Let F € C™![z] be of normal full rank with m= 1 + k, k > 1, and let

d denote the g.c.d. of thed | minors of F. If the following algorithm can be executed to
the statemerxit instead of the stateme8top and exit then F admits ZRP factorization
F = AR with A e C™![Z] being ZRP, € C'*'[z] anddetF, = d.

INITIALIZATION :lLetJ=kandk =F
WHILE (J # 0) DO
IF (there exists arfl + 1) x | submatrix of F, such that its reduced minors have no

common zeros i")

Factorize F as Fy = AjF;_1, where Ay € Cl+9x(+3-D[z]isZRPand f_;
C(I+J71)><I [Z]

ELSE
Stop and exit.

END IF

J=J-1

IF(J=0)
Let A= AcAc1--- A1
Exit.

END IF

END WHILE
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A proof is omitted here as it would be similar to the one for Proposition 2 (with repetition
of k times). Wherk = 1, Proposition 3 specializes to Proposition 1, and wkea 2 to
Proposition 2. However, it should be pointed out that while the ZRP factorizabilEyaain
be determined by its reduced minors before carrying out the actual factorizatioa-far 2,
it is not so wherk > 2, as it can be seen from the above algorithm. More investigation is
still required for the case whdn> 2. It should also be noted that as in Proposition 2, the
condition for ZRP factorizability stated in Proposition 3 is only a sufficient on& fer2.

COROLLARY 4: Let i, € C™'[z] be of normal rank | withm=1+k, k> 1andr > I. If
there exists an nx | submatrix F of F, such that F admits a ZRP factorization, then F
can be factorized as

Fi1= F.G, (44)

where B € C™![Z] is ZRP, and G € C'*"[Z].

4. Example

In this section, we present an example to illustrate Proposition 2, which covers Proposition
1 as a special case and can be generalized easily to Proposition 3. Most of the computations
are implemented using the program SINGULAR [23].

Example: Let

222,23 — B2+ 32+ 23+ 2 22223+ 2125 + 2423 — 22 + 271 + 2

Fa— 272,23 — 2o 223—1
3= 1 Z1
27,23 — 2o + 73 223+ 2123 — 1

The g.c.d. of the Z 2 minors ofFz is d3 = (1 — z;2,), and the reduced minors are:
b3y = 23— D(z2+23+2),
by = —(2Z3z3 — 22 + 2),

bss = (223 — D)(—Z223+ 2o + 23 + 2) — 22,

b3y = —(2z3—-1),
b3s = —23(223 - 1),
b36 = 223— 1.
Itis easy to test thddsy, . . ., bsg have no common zeros @F. Hence Fz may admit a ZRP

factorization. LetF; denote the 3 2 submatrix formed from the first 3 rows &%. it can

be checked that the reduced minordef(they arebs;, bs, andbss) also have no common
zeros inC3. By Proposition 2,F; is ZRP factorizable. Therefore, we can determine the
ZRP factorizability ofF3; without carrying out the actual matrix factorization. To illustrate
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that F3 indeed admits a ZRP factorization, we first construct a ZLP row vector
b3=[223—-1 —2Zz3+7Z -2 —2223—-225+2—323+2 0]
such that

b3 F3 = 01’2.

By Lemma 1, we can construgt andGy,

Z+23+2 22223—22+2 0
F— 0 223 —1 0
5= 1 0 0
0 0 1
and
1 Z;
Gy = Z 1
272523 — 2o+ 23 223+ 2123 — 1
such that
b3Fs = 012
and
Fs = FsGy, (45)

whereFs is ZRP. Letd; denote the g.c.d. of the22 minors ofG7 andb;4, b7, andb;3 denote
the reduced minors @&;. By Lemma 3, we should hawe = kods for somek, € C*, and
thatb;1, b7, andb;3 are free from any common zeros sifeg, . . ., bsg have no common
zeros inC3. This is indeed the case, as direct computation gives (1 — z,2,) = ds, and

bri=1,
b7, =223 — 1,
b3 = —2z3

Notice that the family ot;1, by, and by are different from the family obsy, .. ., bse.
Applying Proposition 1 td57 gives

G7 = GgGy, (46)
where
1 0
Gg=| 0 1

73 225—1



POLYNOMIAL MATRIX FACTORIZATIONS 391
and
1z
Gy = .
9 2 1

Clearly,Gg is ZRP, and deGg = (1 — z;2;) = d3. Combining (45) and (46) leads to

Fz = FesGo,
where
+23+2 2523224 2
0 223 —1
Fe = FsGg = 1 *
Z3 225—1

SinceFs andGg are both ZRP, by Corollary s must be ZRP. This is indeed the case by
checkingFg directly. [ |

5. Conclusions

In this paper, we have made an attempt to establish a relationship between the prime
factorizability of ann-D (n > 2) polynomial matrix and its reduced minors by raising
two conjectures on zero and minor prime factorizabilityned polynomial matrices. We
have proved that Conjecture 1 (zero right prime factorizability) is always true far@n
polynomial matrixF of dimension(l + 1) x |, and under some condition also true wten
is of arbitrary dimension. In particular, ZRP factorizability for @D polynomial matrix
of dimension(l + k) x I (k = 1, 2) can be easily tested from its reduced minors without
carrying out the actual matrix factorization. An illustrative example has been worked out
in details.

We have also shown how to factorize some spetiBl polynomial matrix that is not of
normal full rank as a product of twe-D polynomial matrices of smaller size.

We hope that the conjectures posed and the new results presented in this paper will
motivate further research in the areaned polynomial matrix factorizations.

Finally, although for simplicity, the ground field is assumed to be the field of complex
numbers, all the derived results are still valid with minor modification for an arbitrary
coefficient field.
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Notes

In what follows, the termri-D” implies (n > 2) unless otherwise specified.

2. C* = C\{0}, the set of non-zero complex numbers.

3. Anm x | matrix A(z) is of normal full rank if there exists anx r minor of A(z) that is not identically zero,
wherer = min{m, 1}.

4. Denote Dy thel x m zero matrix andy, them x m identity matrix.
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