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Abstract. This paper discusses a relationship between the prime factorizability of a normal full rankn-D (n >
2) polynomial matrix and its reduced minors. Two conjectures regarding then-D polynomial matrix prime
factorization problem are posed, and a partial solution to one of the conjectures is provided. Another related
open problem of factorizing ann-D polynomial matrix that is not of normal full rank as a product of twon-D
polynomial matrices of smaller size is also considered, and a partial solution to this problem is presented. An
illustrative example is worked out in details.
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1. Introduction

The problems of multivariate (n-D) polynomial matrix factorizations have attracted much
attention over the past decades because of their wide applications in circuits, systems,
controls, signal processing and other areas (see, e.g., [1]–[13]). One of such a factorization
problem is to decompose a normal full rankn-D polynomial matrix into a product of two
n-D polynomial matrices, with one of them being prime in some sense [3], [6], [11]. This
prime factorization problem has long been solved for 1-D and 2-D polynomial matrices [3],
[4], [14]. However, it is a challenging open problem forn-D (n > 2)1 polynomial matrices
[6], [11], because of some fundamental differences betweenn-D polynomial matrices and
their 1-D and 2-D counterparts [6], [7], [11]. Although some recent efforts have been
made towards solving this and other related factorization problems [8]–[13], the prime
factorization problem remains largely unresolved.

In this paper, we attempt to establish a relationship between the prime factorizability of a
normal full rankn-D polynomial matrix and its reduced minors by posing two conjectures.
As a partial solution to one of the conjectures, we present a simple sufficient condition for
the factorizability of a class ofn-D polynomial matrices. When a matrix in this class is
factorizable, a constructive method is provided to carry out the actual factorization. As
a by-product, we also show how to factorize some specialn-D polynomial matrix that is
not of normal full rank as a product of twon-D polynomial matrices of smaller size. The
new results are derived by exploiting the celebrated Quillen–Suslin theorem [15]–[17] that
can now be implemented using the efficient Gr¨obner basis approach [18]–[21], and some
properties of reduced minors [7], [12], [22].

The organization of the paper is as follows. In the next section, we recall some definitions,
and then raise two conjectures regarding zero and minor prime factorizations forn-D
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polynomial matrices. A partial solution to one of the conjectures posed is presented in
Section 3, along with new results on factorizations of a class ofn-D polynomial matrices
that are not of full normal rank. An example is illustrated in Section 4 and conclusions are
given in Section 5.

2. Preliminaries and Problem Formulation

In the following, we shall denoteC(z) = C(z1, . . . , zn) the set of rational functions in
complex variablesz1, · · · , zn with coefficients in the field of complex numbersC; C[z] the
set of polynomials in complex variablesz1, · · · , zn with coefficients inC; Cm×l [z] the set of
m× l matrices with entries inC[z], etc. Throughout this paper, the argument(z) is omitted
whenever its omission does not cause confusion.

DEFINITION 1: ([6]) Let F ∈ Cm×l [z], with m≥ l. Then F is said to be:

(i) zero right prime (ZRP) if there exists no n-tuplez0 ∈ Cn which is a common zero of
the l× l minors of F;

(ii) minor right prime (MRP) if the l× l minors of F are factor coprime;

(iii) factor right prime (FRP) if in any polynomial decomposition F= F1F2, the l× l
matrix F2 is a unimodular matrix, i.e.,detF2 = k0 ∈ C∗.2

Zero left prime (ZLP) and minor left prime (MLP)etc. can be similarly defined.

DEFINITION 2: ([7], [22]) Let F ∈ Cm×l [z] be of normal full rank,3 with m > l, and let
a1, . . . ,aβ denote the l× l minors of the matrix F, whereβ = (ml ) = m!

(m−l )!l ! . Extracting
the greatest common divisor (g.c.d.) d of a1, . . . ,aβ gives:

ai = dbi , i = 1, . . . , β. (1)

Then, b1, . . . ,bβ are called the “reduced minors” (or equivalently, the “generating poly-
nomials”) of F.

Reduced minors of a normal full rank matrix̃F ∈ Cm×l [z], with m < l , can be defined
by replacingF with FT in Definition 2, where(·)T denotes transposition. We do not define
reduced minors for a square matrix.

Consider now a normal full rankn-D polynomial matrixF ∈ Cm×l [z] with m > l . Let
a1, . . . ,aβ denote thel × l minors ofF , b1, . . . ,bβ denote the reduced minors ofF . By
Definition 2,ai andbi are related by:

ai = dbi , i = 1, . . . , β. (2)

Throughout the paper, we assume thatd is not a non-zero constant. Although we only
consider the case whenm > l for convenience of exposition, the results presented can be
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easily applied to the case whenm < l with minor modification. The prime factorization
problem considered here is to factorizeF as:

F = F0 G0 (3)

with F0 ∈ Cm×l [z], G0 ∈ Cl×l [z] and detG0 = d. We feel that the prime factorizability of
ann-D polynomial matrix may be related to its reduced minors and pose the following two
conjectures:

CONJECTURE1: If b1, . . . ,bβ have no common zeros inCn, then F can be factorized as in
(3) with F0 being ZRP anddetG0 = d.

CONJECTURE2: If d, b1, . . . ,bβ have no common zeros inCn, then F can be factorized as
in (3) with F0 being MRP anddetG0 = d.

When F admits factorization (3) withF0 being ZRP (MRP), we say thatF has a ZRP
(MRP) factorization. Recently, Bose and Charoenlarpnopparut have also considered the
samen-D ZRP factorization problem [13]. By making use of Gr¨obner bases for modules,
they have proposed an algorithm for carrying out the ZRP factorization, with assumptions
that b1, . . . ,bβ have no common zeros inCn, and that a ZRP factorization forF exists.
However, given an arbitraryn-D polynomial matrixF with a nontriviald, it is still unknown
whether there exists a ZRP factorization forF , even whenb1, . . . ,bβ have no common zeros
in Cn. In view of the ZRP factorization algorithm proposed in [13], the critical question
now is to show the existence of a ZRP factorization forF . In this paper, we prove that ZRP
factorizations do exist for a class ofn-D polynomial matrices. We also propose alternative
methods for carrying out ZRP factorizations for this class of matrices.

We next consider another closely related polynomial matrix factorization problem. Let
F1 ∈ Cm×l [z] be of normal rankr < min{m, l }. we would like to know whetherF1 can be
factorized as:

F1 = F2 G2 (4)

with F2 ∈ Cm×r [z] and G2 ∈ Cr×l [z]. Youla and Gnavi [6] have shown that such a
factorization is always possible for 1-D and 2-D polynomial matrices, but not for theirn-D
counterparts in general. However, to our best knowledge, there is no algorithm available
to determine whether or notF1 can be factorized as in (4). In this paper, we also solve the
factorization problem (4) for a class ofn-D polynomial matrices.

3. Main Results

We first require two lemmas.

LEMMA 1: Let A ∈ Ck×m[z] be ZLP with k< m. Then there exists a ZRP matrix B∈
Cm×l [z], with l = m− k, such that4

A B= 0k,l . (5)
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Moreover, if B1 ∈ Cm×r [z], where r is a positive integer, such that

A B1 = 0k,r , (6)

then

B1 = B G (7)

for some G∈ Cl×r [z].

Proof: SinceA is ZLP, there existsH ∈ Cl×m[z] such that the matrixU = [H T AT ]T ∈
Cm×m[z] is a unimodular matrix, i.e., detU = 1. This is in fact a result of the celebrated
Quillen–Suslin theorem [15]–[17], and there are now algorithms for solving such a matrix
completion problem [19]–[21]. Clearly,V = U−1 ∈ Cm×m[z] is also a unimodular matrix.
PartitionV asV = [B T], whereB ∈ Cm×l [z], T ∈ Cm×k[z]. We have

U V =
[

H
A

]
[B T] =

[
Il 0l ,k

0k,l Ik

]
, (8)

or

A B= 0k,l . (9)

SinceH B = Il , B is ZRP [6], [11]. Now consider an arbitrary matrixB1 ∈ Cm×r [z], where
r is a positive integer, such that

A B1 = 0k,r . (10)

Combining (8) and (10) leads to[
H
A

]
[B1 B T] =

[
G Il 0l ,k

0k,r 0k,l Ik

]
, (11)

whereG = H B1 ∈ Cl×r [z]. Simple algebra on (11) gives[
H
A

]
[B1− BG B T] =

[
0l ,r Il 0l ,k

0k,r 0k,l Ik

]
, (12)

or

U [B1− BG] = 0m,r . (13)

Since detU = 1, we must have [B1− BG] = 0m,r , or B1 = BG.

LEMMA 2: Let F ∈ Cm×l [z] be of normal full rank with m= l + 1, b1, . . . ,bβ be the
reduced minors of F. If b1, . . . ,bβ have no common zeros inCn, then there exists a ZLP
row vectorb̃0 ∈ C1×m[z] such that

b̃0 F = 01,l . (14)
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Proof: SinceF is of normal full rank and of sizem× l with m = l + 1, without loss
of generality, we can assume that thel × l submatrixD ∈ Cl×l [z] formed from the firstl
rows of F is nonsingular, i.e., detD 6≡ 0 andF = [DT NT ]T , whereN ∈ C1×l [z]. Define
ann-D rational matrixP = N D−1 ∈ C1×l (z) and obtain a left matrix fraction description
(MFD) of P = D̃−1Ñ whereD̃ ∈ C[z], Ñ ∈ C1×l [z]. SinceP = D̃−1Ñ = N D−1, we
have

[−Ñ D̃]

[
D
N

]
= 01,l (15)

or

b̃0 F = 01,l (16)

whereb̃0 = [−Ñ D̃] = [b̃1 · · · b̃m]. Without loss of generality, we can assume thatb̃0 is
already MLP, for otherwise one can always pull out the g.c.d. ofb̃1, . . . , b̃m using methods
available in the literature (see, e.g., [1]).Hence, the reduced minors ofb̃0 are justb̃1, . . . , b̃m.
According to a known result on reduced minors associated with MFDs of ann-D rational
matrix [7], we have

bi = ±b̃′i , i = 1, . . . ,m, (17)

whereb̃′1, . . . , b̃
′
m are obtained by reordering̃b1, . . . , b̃m appropriately. Sinceb1, . . . ,bβ

have no common zeros inCn, it follows from (17) thatb̃′1, . . . , b̃
′
m and hencẽb1 · · · b̃m have

no common zeros inCn. This implies that̃b0 is ZLP.

We now present a simple necessary and sufficient condition for the ZRP factorizability
of F ∈ Cm×l [z] whenm= l + 1.

PROPOSITION1: Let F ∈ Cm×l [z] be of normal full rank with m= l + 1, a1, . . . ,aβ be the
l × l minors of F, b1, . . . ,bβ be the reduced minors of F, i.e., ai = dbi (i = 1, . . . , β). F
can be factorized as

F = F0G0 (18)

where F0 ∈ Cm×l [z] is ZRP, and G0 ∈ Cl×l [z] with detG0 = d, if and only if b1, . . . ,bβ
have no common zeros inCn.

Proof: (Sufficiency)Assume thatb1, . . . ,bβ have no common zeros inCn. By Lemma 2,
there exists a ZLP row vectorb̃0 ∈ C1×m[z] such that

b̃0 F = 01,l . (19)

By Lemma 1, there exists a ZRP matrixF0 ∈ Cm×l [z], such that

b̃0 F0 = 01,l . (20)
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Sinceb̃0 F = 01,l , applying Lemma 1 gives

F = F0G0 (21)

whereG0 ∈ Cl×l [z]. It remains to show that detG0 = d. Let detG0 = g and f1, . . . , fβ
be thel × l minors ofF0. From (21), we have

ai = fi g, i = 1, . . . , β, (22)

or

dbi = g fi , i = 1, . . . , β. (23)

Since F0 is ZRP, f1, . . . , fβ have no nontrivial common divisors. Hence,d must be a
divisor of g. On the other hand, sinceb1, . . . ,bβ have no nontrivial common divisors by
Definition 2,g must be a divisor ofd. Hence, we haveg = k0d for somek0 ∈ C∗. We may
assume thatk0 = 1. Therefore,g = d, or detG0 = d.

Necessity:Assume thatF = F0G0, with F0 being ZRP and detG0 = d. Arguing
similarly as in the above proof for sufficiency, we can also arrive at equation (23) with
g = d, i.e.

bi = fi , i = 1, . . . , β. (24)

The assumptionF0 being ZRP implies thatf1, . . . , fβ have no common zeros inCn. It is
then clear from (24) thatb1, . . . ,bβ cannot have any common zero inCn.

The main reason for requiring the size of the matrixF to be (l + 1) × l in Lemma
2 and Proposition 1 is that it guarantees the existence of a ZLP row vectorb̃0 such that
b̃0 F = 01,l , as algorithms are available for extracting the g.c.d. ofb̃1, . . . , b̃m [1]. If F
is of size(l + k) × l wherek > 1, we do not know whether there exists a ZLP matrix
B̃0 ∈ Ck×(l+k)[z] such thatB̃0F = 0k,l . In fact, it is even not known whether there exists a
ZLP row vectorb̃0 ∈ C1×(l+k)[z] such that̃b0 F = 01,l whenk > 1. We shall consider this
problem in more details later.

We next apply Proposition 1 to the factorization of ann-D polynomial matrix that is not
of normal full rank as a product of twon-D polynomial matrices of smaller size.

COROLLARY 1: Let F1 ∈ Cm×r [z] be of normal rank l with m= l + 1 and r > l. If there
exists an m× l submatrix F of F1, such that the reduced minors of F have no common
zeros inCn, then F1 can be factorized as

F1 = F2G2 (25)

where F2 ∈ Cm×l [z] is ZRP, and G2 ∈ Cl×r [z].

Proof: Without loss of generality, we can assume that them× l submatrixF is formed
from the firstl columns ofF1. That is,F1 = [F A], where A ∈ Cm×(r−l )[z]. Since the
reduced minors ofF have no common zeros inCn, by Proposition 1, we haveF = F2G0,
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whereF2 ∈ Cm×l [z] is ZRP, andG0 ∈ Cl×l [z], or

F1 = [F A] = [F2G0 A] = [F2 A]

[
G0 0l ,r−l

0r−l ,l Ir−l

]
. (26)

We first show that the normal rank of [F2 A] is equal tol . Since [F A] and F are both of
normal rankl , all the columns ofAcan be generated by linear combinations of thel columns
of F over C(z), i.e., there existsW ∈ Cl×(r−l )(z) such thatFW = A, or F2G0W = A.
HenceF2W0 = A for W0 = G0W ∈ Cl×(r−l )(z). This implies that all the columns ofA can
be generated by linear combinations of thel columns ofF2 overC(z). Therefore [F2 A]
is of normal rankl . SinceF2 is ZRP, according to a result due to Youla and Gnavi [6], we
can factorize [F2 A] as:

[F2 A] = F2G1 (27)

for someG1 ∈ Cl×r [z]. Substituting (27) into (26) gives

F1 = F2G2 (28)

where

G2 = G1

[
G0 0l ,r−l

0r−l ,l Ir−l

]
∈ Cl×r [z]. (29)

The proof is thus completed.

We next show that under certain condition, Conjecture 1 is also true form = l + 2. We
require first the following lemma.

LEMMA 3: Let F1 ∈ Cm×l [z], F2 ∈ Cr×l [z] and U ∈ Cm×r [z] such that

F1 = U F2 (30)

with m≥ r > l. Let b11, . . . ,b1β be the reduced minors of F1, whereβ = (ml ), d1 be the
g.c.d. of all the l× l minors of F1, b21, . . . ,b2α be the reduced minors of F2, whereα = (rl ),
and d2 be the g.c.d. of all the l× l minors of F2. If U is ZRP, then d1 = k0d2 for some
k0 ∈ C∗ and b11, . . . ,b1β and b21, . . . ,b2α share the same set of common zeros.

Proof: Let a11, . . . ,a1β denote thel × l minors of the matrixF1, anda21, . . . ,a2α denote
thel × l minors of the matrixF2. By Definition 2, we have

a1i = d1b1i , i = 1, . . . , β, (31)

and

a2 j = d2b2 j , j = 1, . . . , α. (32)
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LetUi denote thel×r matrix formed by selecting the rowsi1, . . . , i l (1≤ i1 < · · · < i l ≤ m)
from U , and letqi 1, . . . ,qiα denote thel × l minors ofUi . From (30), and by using the
Cauchy-Binet formula [24], it follows that

a1i =
α∑

j=1

qi j a2 j

=
α∑

j=1

qi j d2b2 j

= d2

α∑
j=1

qi j b2 j i = 1, . . . , β. (33)

Thus,d2 is a common divisor ofa11, . . . ,a1β . Since by assumption,d1 is the g.c.d. of
a11, . . . ,a1β , d2 is necessarily a divisor ofd1.

Next, sinceU is ZRP, there existsW ∈ Cr×m[z] such thatWU = Ir [6], [21]. Premulti-
plying (30) byW leads to:

F2 = W F1 (34)

It can be similarly argued as above thatd1 is a divisor ofd2. Therefore,d1 = k0d2 for some
k0 ∈ C∗.

Substituting (31) andd1 = k0d2 into (33) and cancelingd2 from both sides gives

k0b1i =
α∑

j=1

qi j b2 j i = 1, . . . , β. (35)

It follows that a common zero ofb21, . . . ,b2α is necessarily a common zero ofb11, . . . ,b1β .
Starting from (34), it can be similarly shown that a common zero ofb11, . . . ,b1β is also a
common zero ofb21, . . . ,b2α. Therefore,b11, . . . ,b1β andb21, . . . ,b2α share the same set
of common zeros.

Remark 1. Whenm = r , the above lemma reduces to Lemma 1 in [12]. It should be
pointed out that Lemma 3 does not hold in general form< r . This is because whenm< r ,
(30) does not imply (34), since there does not exist anyW such thatWU = Ir . We also
notice that althoughb11, . . . ,b1β andb21, . . . ,b2α share the same set of common zeros, the
family of b11, . . . ,b1β are in general different from the family ofb21, . . . ,b2α.

A special case of Lemma 3 is whenF2 is ZRP, i.e.,d2 = 1 andb21, . . . ,b2α have no
common zeros inCn. For this case, Lemma 3 reduces to the following corollary.

COROLLARY 2: If both U ∈ Cm×r [z] and F2 ∈ Cr×l [z] are ZRP, then the product F1 = U F2

is also ZRP.

We now show that Conjecture 1 is also true for matrices of dimension(l + 2)× l under
certain condition.
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PROPOSITION2: Let F1 ∈ Cm×l [z] be of normal full rank with m= l + 2, and let d be the
g.c.d. of the l× l minors of F1. If there exists an(l + 1)× l submatrix F of F1, such that
the reduced minors of F, denoted by b1, . . . ,bl+1, have no common zeros inCn, then F1
can be factorized as

F1 = F2G2 (36)

where F2 ∈ Cm×l [z] is ZRP, and G2 ∈ Cl×l [z] with detG2 = d.

Proof: Without loss of generality, we can assume thatF is formed from the firstl+1 rows
of F1. That is,F1 = [FT f̃T

1 ]T , wheref̃1 ∈ C1×l [z]. SinceF is of dimension(l + 1) × l
and its reduced minorsb1, . . . ,bl+1 have no common zeros inCn, by Lemma 2, there exists
a ZLP row vector̃f0 ∈ C1×(l+1)[z] such that

f̃0 F = 01,l . (37)

Let f̃′0 = [ f̃0 0] ∈ C1×(l+2)[z]. It is clear that̃f′0 is also ZLP, and satisfies

f̃′0 F1 = 01,l . (38)

By Lemma 1, there exists ZRPF0 ∈ C(l+2)×(l+1)[z] andG1 ∈ C(l+1)×l [z], such that

f̃′0 F0 = 01,l , (39)

and

F1 = F0G1. (40)

Let b1, . . . ,bβ denote the reduced minors ofF1. SinceF0 is ZRP and(l +2) > (l +1) > l ,
by Lemma 3, the reduced minors ofG1 have the same set of common zeros with that of
b1, . . . ,bβ . SinceF is an(l + 1)× l submatrix formed from the firstl + 1 rows ofF1, it is
clear thatb1, . . . ,bl+1 is a proper subset ofb1, . . . ,bβ . The assumption thatb1, . . . ,bl+1

have no common zeros inCn implies thatb1, . . . ,bβ have no common zeros inCn. It
follows immediately that the reduced minors ofG1 also have no common zeros inCn.
Furthermore, by Lemma 3, the g.c.d. of thel × l minors ofG1 is equal tod (we assume that
k0 = 1). SinceG1 is of dimension(l + 1)× l , by Proposition 1,G1 can be factorized as

G1 = G3G2 (41)

whereG3 ∈ C(l+1)×l [z] is ZRP, andG2 ∈ Cl×l [z] with detG2 = d. Substituting (41) into
(40) gives

F1 = F0G3G2 = F2G2 (42)

whereF2 = F0G3 ∈ Cm×l [z]. Since bothF0 andG3 are ZRP, by Corollary 2,F2 is also ZRP.

Remark 2. Unlike Proposition 1, in Proposition 2 the condition that there exists an
(l + 1) × l submatrix whose reduced minors have no common zeros inCn is a sufficient
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but not necessary one for ZRP factorizability ofF1. As we pointed out earlier, forF1 of
size (l + k) × l with k > 1, it is still unknown whether there exists a ZLP row vector
b̃0 ∈ C1×(l+k)[z] such that̃b0 F1 = 01,l . Imposing the condition that the reduced minors of
an(l + 1)× l submatrix have no common zeros inCn is to ensure the existence of such a
ZLP row vector.

COROLLARY 3: Let F1 ∈ Cm×r [z] be of normal rank l with m= l + 2 and r > l. If there
exists an(l +1)× l submatrix F of F1, such that the reduced minors of F have no common
zeros inCn, then F1 can be factorized as

F1 = F2G2 (43)

where F2 ∈ Cm×l [z] is ZRP, and G2 ∈ Cl×r [z].

A proof is similar to that for Corollary 1 (with Proposition 1 replaced by Proposition 2)
and is hence omitted here.

We now refine Proposition 2 and Corollary 3 to the general case for ann-D polynomial
matrix of arbitrary size. In the following proposition, we present an algorithm for testing
the ZRP factorizability of an arbitraryn-D polynomial matrixF , and for carrying out the
ZRP factorization ofF when exists.

PROPOSITION3: Let F ∈ Cm×l [z] be of normal full rank with m= l + k, k ≥ 1, and let
d denote the g.c.d. of the l× l minors of F. If the following algorithm can be executed to
the statementExit instead of the statementStop and exit, then F admits ZRP factorization
F = AF0 with A∈ Cm×l [z] being ZRP, F0 ∈ Cl×l [z] anddetF0 = d.

INITIALIZATION : Let J = k and FJ = F

WHILE (J 6= 0) DO

IF (there exists an(l + 1)× l submatrix of FJ, such that its reduced minors have no
common zeros inCn)

Factorize FJ as FJ = AJ FJ−1, where AJ ∈ C(l+J)×(l+J−1)[z] is ZRP and FJ−1 ∈
C(l+J−1)×l [z]

ELSE

Stop and exit.

END IF

J = J − 1

IF (J = 0)

Let A= Ak Ak−1 · · · A1

Exit.

END IF

END WHILE
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A proof is omitted here as it would be similar to the one for Proposition 2 (with repetition
of k times). Whenk = 1, Proposition 3 specializes to Proposition 1, and whenk = 2 to
Proposition 2. However, it should be pointed out that while the ZRP factorizability ofF can
be determined by its reduced minors before carrying out the actual factorization fork = 1,2,
it is not so whenk > 2, as it can be seen from the above algorithm. More investigation is
still required for the case whenk > 2. It should also be noted that as in Proposition 2, the
condition for ZRP factorizability stated in Proposition 3 is only a sufficient one fork > 2.

COROLLARY 4: Let F1 ∈ Cm×r [z] be of normal rank l with m= l + k, k≥ 1 and r > l. If
there exists an m× l submatrix F of F1, such that F admits a ZRP factorization, then F1

can be factorized as

F1 = F2G2 (44)

where F2 ∈ Cm×l [z] is ZRP, and G2 ∈ Cl×r [z].

4. Example

In this section, we present an example to illustrate Proposition 2, which covers Proposition
1 as a special case and can be generalized easily to Proposition 3. Most of the computations
are implemented using the program SINGULAR [23].

Example: Let

F3 =


2z2

1z2z3− z2
1z2+ 3z2+ z3+ 2 2z2

1z3+ z1z2+ z1z3− z2
1 + 2z1+ 2

2z2z3− z2 2z3− 1
1 z1

2z2z3− z2+ z3 2z3+ z1z3− 1


The g.c.d. of the 2× 2 minors ofF3 is d3 = (1− z1z2), and the reduced minors are:

b31 = (2z3− 1)(z2+ z3+ 2),

b32 = −(2z2
1z3− z2

1 + 2),

b33 = (2z3− 1)(−z2
1z3+ z2+ z3+ 2)− 2z3,

b34 = −(2z3− 1),

b35 = −z3(2z3− 1),

b36 = 2z3− 1.

It is easy to test thatb31, . . . ,b36 have no common zeros inC3. Hence,F3 may admit a ZRP
factorization. LetF1 denote the 3× 2 submatrix formed from the first 3 rows ofF3. it can
be checked that the reduced minors ofF1 (they areb31, b32 andb34) also have no common
zeros inC3. By Proposition 2,F3 is ZRP factorizable. Therefore, we can determine the
ZRP factorizability ofF3 without carrying out the actual matrix factorization. To illustrate



390 Z. LIN

that F3 indeed admits a ZRP factorization, we first construct a ZLP row vector

b̃3 = [2z3− 1 − 2z2
1z3+ z2

1 − 2 − 2z2z3− 2z2
3 + z2− 3z3+ 2 0]

such that

b̃3F3 = 01,2.

By Lemma 1, we can constructF5 andG7,

F5 =


z2+ z3+ 2 2z2

1z3− z2
1 + 2 0

0 2z3− 1 0
1 0 0
0 0 1


and

G7 =
 1 z1

z2 1
2z2z3− z2+ z3 2z3+ z1z3− 1


such that

b̃3F5 = 01,2

and

F3 = F5G7, (45)

whereF5 is ZRP. Letd7 denote the g.c.d. of the 2×2 minors ofG7 andb71, b72 andb73 denote
the reduced minors ofG7. By Lemma 3, we should haved7 = k0d3 for somek0 ∈ C∗, and
thatb71, b72 andb73 are free from any common zeros sinceb31, . . . ,b36 have no common
zeros inC3. This is indeed the case, as direct computation givesd7 = (1− z1z2) = d3, and

b71 = 1,
b72 = 2z3− 1,
b73 = −z3.

Notice that the family ofb71, b72 andb73 are different from the family ofb31, . . . ,b36.
Applying Proposition 1 toG7 gives

G7 = G8G9, (46)

where

G8 =
 1 0

0 1
z3 2z3− 1


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and

G9 =
[

1 z1

z2 1

]
.

Clearly,G8 is ZRP, and detG9 = (1− z1z2) = d3. Combining (45) and (46) leads to

F3 = F6G9,

where

F6 = F5G8 =


z2+ z3+ 2 2z2

1z3− z2
1 + 2

0 2z3− 1
1 0
z3 2z3− 1

 .
SinceF5 andG8 are both ZRP, by Corollary 2,F6 must be ZRP. This is indeed the case by
checkingF6 directly.

5. Conclusions

In this paper, we have made an attempt to establish a relationship between the prime
factorizability of ann-D (n > 2) polynomial matrix and its reduced minors by raising
two conjectures on zero and minor prime factorizability ofn-D polynomial matrices. We
have proved that Conjecture 1 (zero right prime factorizability) is always true for ann-D
polynomial matrixF of dimension(l + 1)× l , and under some condition also true whenF
is of arbitrary dimension. In particular, ZRP factorizability for ann-D polynomial matrix
of dimension(l + k) × l (k = 1,2) can be easily tested from its reduced minors without
carrying out the actual matrix factorization. An illustrative example has been worked out
in details.

We have also shown how to factorize some specialn-D polynomial matrix that is not of
normal full rank as a product of twon-D polynomial matrices of smaller size.

We hope that the conjectures posed and the new results presented in this paper will
motivate further research in the area ofn-D polynomial matrix factorizations.

Finally, although for simplicity, the ground field is assumed to be the field of complex
numbers, all the derived results are still valid with minor modification for an arbitrary
coefficient field.
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Notes

1. In what follows, the term “n-D” implies (n > 2) unless otherwise specified.

2. C∗ = C\{0}, the set of non-zero complex numbers.

3. An m× l matrix A(z) is of normal full rank if there exists anr × r minor of A(z) that is not identically zero,
wherer = min{m, l }.

4. Denote 0l ,m thel ×m zero matrix andIm them×m identity matrix.
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