
Empowering Database Systems
with Machine Learning

Gao Cong
Nanyang Technological University

Overview of our Research on Machine Learning for Database
(ML4DB)

Cardinality Estimation
(SIGMOD’21, EBDT’21,
VLDB’22, SIGMOD’24)

Query Optimization

Multi-Query
Optimization
(SIGMOD’24)

Query Representation Learning
(VLDB’22)

ML4DB Foundation

ML-enhanced Indexes,
data partitioning

(SIGMOD’23, VLDB’23,
SIGMOD’24)

Data Access Methods

Index Selection
(VLDB’23)

Database
Testing & Admin

Database
Generation

(SIGMOD’22)

2

SAM: Database Generation from Query Workloads

3

• Before migrating data from local to cloud, cloud providers need to
benchmark different DBMS to recommend a product.

• Problem: Cloud Provider usually do not have access to the user’s
database.

User’s data Benchmarking
Cloud DBMS

Jingyi Yang, Peizhi Wu, Gao Cong, Tieying Zhang, Xiao He. SAM: Database Generation from Query
Workloads with Supervised Autoregressive Models. SIGMOD 2022

• On the other hand, cloud providers may have access to the user’s query
logs and collect a set of queries & the result cardinalities.

• Observation: Queries and the result cardinalities provide information on
the data distribution.

4

SAM: Database Generation from Query Workloads

SELECT * From census WHERE
age > 40 and salary > 50K

Cardinality: 26992

Salary

Age

50K

40

SAM: Database Generation from Query Workloads

5

• Given a query workload with cardinalities, we aim to generate a synthetic
database that satisfies the cardinality constraints and is close to the
original database.

• Benchmarking can be conducted on the synthetic database.

User’s query
workload

Benchmarking
Cloud DBMS

Synthetic
Database

SAM: Database Generation from Query Workloads

6

• Another use case is stress testing for databases with strict access
controls.

• For example, core user database of a social media or e-commerce
platform, where replication is highly restricted.

Query workload
of core
database

Stress TestingSynthetic
Database

Database Generation From Query Workloads:
• Consider a set of n queries 𝑄𝑄 and their cardinalities collected on a database 𝐷𝐷.
• Aim to generate a database that satisfies the cardinality constraints and is close

to the original database.
• Cross entropy between the discrete data distribution of the generated relation �𝑇𝑇

and original relation 𝑇𝑇 as a measure of closeness.

𝐻𝐻 𝑇𝑇, �𝑇𝑇 = −𝔼𝔼𝑥𝑥∼𝑇𝑇[𝑙𝑙𝑙𝑙𝑙𝑙 �(𝑆𝑆𝑆𝑆𝑙𝑙 𝑥𝑥)]

7

Problem Setup

8

Workflow of SAM

• We propose SAM, a query-aware database generator based on
autoregressive models:

• Learning stage: Efficiently and accurately learn the join data distribution
• Generation stage: Generate a high-fidelity database from the AR model

10

Evaluation on Closeness
• SAM generates a database that is closer to the original database.
• SAM can well generalize to unseen queries, achieving 300X less mean

error on IMDB.

12

Evaluation on efficiency

• Processing time scales as a high-degree polynomial for PGM,
but linearly for SAM.

• Therefore, SAM can process query workloads of a much larger
scale.

Overview of our Research on Machine Learning for Database
(ML4DB)

Cardinality Estimation
(SIGMOD’21, EBDT’21,
VLDB’22, SIGMOD’24)

Query Optimization

Multi-Query
Optimization
(SIGMOD’24)

Query Representation Learning
(VLDB’22)

ML4DB Foundation

ML-enhanced Indexes,
data partitioning

(SIGMOD’23, VLDB’23,
SIGMOD’24)

Data Access Methods

Index Selection
(VLDB’23)

Database
Testing & Admin

Database
Generation

(SIGMOD’22)

13

Question： Can we have
some foundation of
different ML4DB tasks?

14

ML4DB Foundations

Index
Recommendation

Cost/Cardinality
Estimator

Join Order
Selection

View
Advisor

Learned
Optimizer

ML4DB Tasks

…

Query Plans are used as
inputs in many ML4DB
tasks

Query plan
representation is a key
operation

• Cost and Cardinality Estimation [Sun., et al. VLDB 19]
 Uses Tree-LSTM to extract feature representation from a query plan
 Uses MLP to predict cost and cardinality

15

Example: Cost Estimation

JOIN

JOIN C

A B

Model Input Model Output

Est. Cost: 123 ms
Est. Cardinality: 12345

• Index Recommendation [Bailu, D., et al. SIGMOD 19]
 Featurize a query plan by creating feature channels for each physical operator
 Perform classification on query plan pairs

16

Example: Index Recommendation

JOIN

JOIN C

A B

First plan is better

JOIN

JOIN C

A B

First index is better

Model Input Model Output

Featuring Query Plan by Bailu, D. (2019).

Classifier

• Index Recommendation [Shi, et al. VLDB 23]
 Featurize a query plan & an index configuration as a set of index optimizable operations.
 Adopting attention-based model for interrelations between operations and indexes.
 Replacing “What-if” call to perform index cost reduction estimation.

17

Example: Index Recommendation

Hash Join
(store_sales.ss_item_sk =

item.i_item_sk)

…

… …

Nested Loop
(store_sales.ss_sold_date_sk =

date_dim.d_date_sk)

… …

Column name No. Rows NULL Frac Distinct Frac
date_dim.d_date_sk 73049 0.0 1.0

store_sales.ss_item_sk 2.88e+07 0.0 0.003

Database StatisticsQuery Plan

Feature Vector of Each Index Optimizable Operation

Set of Feature Vectors

Model Input

Index Benefits
Estimation Model

Cost Reductions
𝒓𝒓𝒓𝒓𝒊𝒊,𝒋𝒋

Index Selection
Algorithms

Index
Recommendations

Model Output
Original Query Plan & Index Configuration

Jiachen Shi, Gao Cong, Xiaoli Li. Learned Index Benefits: Machine Learning Based Index
Performance Estimation. VLDB 2023

Example： Multiple query optimization

18

• Multiple query optimization [Mo, et al. SIGMOD 24]
 Featurize concurrent query plans by creating feature channels for each node
 Featurize SQL query by extracting join graph and predicate information
 Predict the cost for plan generation

JOIN

JOIN

C

A B

costJOIN

D

Model Input Model Output

Cost estimation model

share

Join Scan Share A B …

1 0 0 1 1 …

0 0 1 1 1 …

… … … … … …

Song Song Mo, Yile Chen, Hao Wang, Gao Cong, Zhifeng Bao. Lemo: A Cache-Enhanced
Learned Optimizer for Concurrent Queries. SIGMOD 2024

• Why is representation learning important?
 Non-trivial to define features from a query plan
 Difficult to deal with the tree structure of a query plan
 Input encoding is a key factor to the performance of all these methods

• Research Problem: Given a query plan, learn a vector representation to be used
as the input to a ML4DB system

19

ML4DB Foundation Research Problem

JOIN

JOIN C

A B

Vector ML4DB
System

Yue Zhao, Gao Cong, Jiachen Shi, Chunyan Miao. QueryFormer: a tree transformer model for
query plan representation. VLDB 2022.

Intermediate
nodes omitted

• Incorporate the statistics stored in a database
• Encode the tree structure of the input

 Parent-children dependency
 Long paths of information flow

20

Challenges

Example Query Plan derived
from TPC-DS query 18.

• Plug and Play for existing ML4DB works

21

System Overview

• Plug and Play for existing ML4DB works

22

System Overview

• Plug and Play for existing ML4DB works

24

System Overview

26

QueryFormer Architecture

JOIN

JOIN C

A B

• Goal: encode the tree structure of query
plan
 Parent-children dependencies
 Long information paths

• Incorporate the tree structure:
 3 new designs from vanilla Transformer

1. Height Embedding
2. Tree-Bias Attention
3. Super Node

• Methodology:
 Perform database tasks by replacing query plan representation of ML4DB work. Compare

the performance with original ML4DB works
 Tasks: cost estimation, cardinality estimation, index recommendation, learned optimizer

• Dataset: both synthetic and real workloads with different characteristics

30

Experimental Settings

Table 1: Query Plan Sizes in datasets.

• Adopt the exact setting of E2E-Cost [Ji,
S., et al. VLDB 19]

• Evaluation Metrics:
 Q-Error:

 Pearson Correlation of prediction and
labels

• Results:
 more than 40% improvement in Q-Error

when comparing both:
 QF vs E2E-Cost
 QF-Multi vs E2E-Multi

31

Experimental Results: Cost Estimation

Table 3: Cost Estimation Results.

• Adopt the exact setting of AIMeetsAI
[Bailu, D., et al. SIGMOD 19]

• Goal: to select indexes that accelerate
query execution

• Relative time:

Exec. time with indexes

Exec. time without any index

• Results:
 Better indexes are selected 20% less

execution time on average

32

Experimental Results: Index Recommendation
Low

er is better

Fig 3. Relative Execution time of index recommended.

• Adopt the exact setting of BAO
[Ryan, M., et al. SIGMOD 21]

• Goal:
 To execute a workload (2240

queries) as fast as possible

• Results:
 16% less execution time

33

Experimental Results: Optimizer

Left is better

Fig 3. Queries completed over time.

Overview of our Research on Machine Learning for Database
(ML4DB)

Cardinality Estimation
(SIGMOD’21, EBDT’21,
VLDB’22, SIGMOD’24)

Query Optimization

Multi-Query
Optimization
(SIGMOD’24)

Query Representation Learning
(VLDB’22)

ML4DB Foundation

ML-enhanced Indexes,
data partitioning

(SIGMOD’23, VLDB’23,
SIGMOD’24)

Data Access Methods

Index Selection
(VLDB’23)

Database
Testing & Admin

Database
Generation

(SIGMOD’22)

34

• Learned (spatial) indexes use machine learning models to map real
values (spatial coordinates) to storage locations, e.g., RMI, PGM,
ZM, RSMI, LISA, etc

Learned (Spatial) Index

R

R

35

Learned Indexes
 They need to replace both the index structures and query processing algorithms

currently used by the database systems. Such a radical departure -- >difficult to be
deployed in database systems.

 Technical Limitations: Type of data, Type of queries, Updates, etc.

ML Enhanced Indexes: Use ML to enhance (NOT replace) existing indexes
 RLR-Tree (SIGMOD’23): a better R-Tree for dynamic data
 Packing R-tree (SIGMOD’24): a better R-tree for bulk loading
 Learned Space-filling Curves(VLDB’23): for multiple dimensional data indexing or

partitioning.

Do not replace the index structures or the query processing algorithms

36

Learned Indexes vs. ML Enhanced Indexes

• A SFC is used to map a multi-dimensional data point to a value
• Then a one-dimensional index can be used to index the mapped values

 B+tree index, supported by many DBMS, such as PostgreSQL, DynamoDB, HBase
 Learned indexes

37

Space-Filling Curve (SFC)

(a) C-curve (b) Z-curve (c) Hilbert curve

• Each type of SFC has a
fixed mapping function

• May not fit with different
datasets/queries.

• No single SFC can dominate the performance on all datasets and query
workloads

38

Design instance-optimized SFCs

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

𝑄𝑄1 𝑄𝑄2 𝑄𝑄1 𝑄𝑄2

(a) SFC-1 works best for 𝑄𝑄1.(b) SFC-2 works best for 𝑄𝑄2.

• Design a SFC that combines the advantage of multiple SFCs and thus reach to
an optimized performance (piecewise SFC)

39

Our Idea

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1 2

3 4

5 6

7 8

9

10

11

12

13

14

15

16

𝑄𝑄1 𝑄𝑄2 𝑄𝑄1 𝑄𝑄2 𝑄𝑄1 𝑄𝑄2

(a) SFC-1 works best for 𝑄𝑄1.(b) SFC-2 works best for 𝑄𝑄2. (c) SFC-3 combines SFC-1 and
SFC-2, works best for both
queries.

Jiangneng Li, Zheng Wang, Gao Cong, Cheng Long, Han Mao Kiah, Bin Cui. Towards Designing
and Learning Piecewise Space-Filling Curves. VLDB23

• Database 𝐷𝐷
 Each data point 𝐱𝐱 ∈ 𝐷𝐷, has 𝑛𝑛 dimensions, denoted by 𝐱𝐱 = (𝑑𝑑1,𝑑𝑑2, . . . ,𝑑𝑑𝑛𝑛)

• Query Workload 𝑄𝑄
 Each query 𝑞𝑞 ∈ 𝑄𝑄, 𝑞𝑞 = (𝑥𝑥min,𝑦𝑦min, 𝑥𝑥max, 𝑦𝑦max)

• Space-Filling Curve Design for Query Processing
 Given a database 𝐷𝐷 and a query workload 𝑄𝑄, develop a piecewise SFC, aiming to optimize

the performance of an index built on the SFC values of data points in 𝐷𝐷.

40

Problem Statement

• Two preferred properties for an SFC mapping 𝑇𝑇: 𝐱𝐱 → 𝑣𝑣
 Injection property:

∀𝐱𝐱1 ≠ 𝐱𝐱2,𝑇𝑇 𝐱𝐱1 ≠ 𝑇𝑇(𝐱𝐱2)
 Monotonicity property:

𝐱𝐱′ = {𝑏𝑏1′ , … , 𝑏𝑏𝑛𝑛′ }
𝐱𝐱′′ = {𝑏𝑏1′′, … , 𝑏𝑏𝑛𝑛′′}

If 𝑑𝑑𝑖𝑖′ ≥ 𝑑𝑑𝑖𝑖′′ is satisfied for ∀𝑖𝑖 ∈ [1,𝑛𝑛]:
𝑇𝑇 (𝐱𝐱′) ≥ 𝑇𝑇 (𝐱𝐱′′)

41

Desired Properties

Monotonicity is desirable for designing window query algorithms:
It guarantees that the SFC values of data points in a query rectangle fall in the
range of the SFC values formed by two boundary points of the query
rectangle

1. How to partition the space and design an effective BMP for each
subspace?

2. How to design piecewise SFCs such that two properties hold?
3. How to design an instance-optimized piecewise SFC, given a database

and query workload?

42

Design Challenges

• The bit merging pattern (BMP, Nishimura & Yokota, SIGMOD’17) describes a
set of bit merging-based SFCs.
 The input data is first written as the binary form, then merge the bit according to the

pattern (e.g., XYXY)

43

Bit Merging Pattern (BMP)

x = (XX2, YY2)

• We propose a way of seamlessly integrating the subspace partitioning and BMP
generation.

44

Piecewise SFC Design

(a) Example of Piecewise SFC Design.

follow the left-to-right BMP design:
• choose the first bit 𝑥𝑥1 for BMP P= X???.
• Then the whole data space is partitioned

into two subspaces: Left subspace
corresponds to 𝑥𝑥1 = 0 ; right 𝑥𝑥1 = 1

• Then separately design different BMPs
for the two subspaces (𝑆𝑆1 and 𝑆𝑆2).

• …

the two desired properties

• We propose a way of seamlessly integrating the subspace partitioning and BMP
generation while ensuring the desired properties.

45

Piecewise SFC Design

(a) Example of Piecewise SFC Design.

follow the left-to-right BMP design:
• choose the first bit 𝑥𝑥1 for BMP P= X???.
• Then the whole data space is partitioned

into two subspaces: Left subspace
corresponds to 𝑥𝑥1 = 0 ; right 𝑥𝑥1 = 1

• Then separately design different BMPs
for the two subspaces (𝑆𝑆1 and 𝑆𝑆2).

• …

• We propose a way of seamlessly integrating the subspace partitioning and BMP
generation while ensuring the desired properties.

46

Piecewise SFC Design

(a) Example of Piecewise SFC Design.

follow the left-to-right BMP design:
• choose the first bit 𝑥𝑥1 for BMP P= X???.
• Then the whole data space is partitioned

into two subspaces: Left subspace
corresponds to 𝑥𝑥1 = 0 ; right 𝑥𝑥1 = 1

• Then separately design different BMPs
for the two subspaces (𝑆𝑆1 and 𝑆𝑆2).

• …

47

Piecewise SFC Design

(a) Example of Piecewise SFC Design.

• We propose a way of seamlessly integrating the subspace
partitioning and BMP generation while ensuring the desired
properties.

follow the left-to-right BMP design:
• choose the first bit 𝑥𝑥1 for BMP P= X???.
• Then the whole data space is partitioned

into two subspaces: Left subspace
corresponds to 𝑥𝑥1 = 0 ; right 𝑥𝑥1 = 1

• Then separately design different BMPs
for the two subspaces (𝑆𝑆1 and 𝑆𝑆2).

• …

• The BMTree is to model the partition and BMP design of a piecewise SFC.

48

Bit Merging Tree (BMTree)

(a) Example of Piecewise SFC Design. (b) Example of BMTree Structure.

• The BMTree is to model the partition and BMP design of a piecewise SFC.

49

Bit Merging Tree (BMTree)

(a) Example of Piecewise SFC Design. (b) Example of BMTree Structure.

• The BMTree is to model the partition and BMP design of a piecewise SFC.

50

Bit Merging Tree (BMTree)

(a) Example of Piecewise SFC Design. (b) Example of BMTree Structure.

• We model the SFC design procedure as the BMTree construction procedure.
 Each time we fill one level of BMTree with the selected bits---partition more subspaces and

generate the next level of nodes.

51

BMTree Construction

𝑥𝑥1

(1) BMTree whose root node
is filled with 𝒙𝒙𝟏𝟏

(2) Possible bit choices to fill
the two leaf nodes

1. Left: 𝑥𝑥2, Right: 𝑥𝑥2
2. Left: 𝑥𝑥2, Right: 𝑦𝑦1
3. Left: 𝑦𝑦1, Right 𝑥𝑥2
4. Left: 𝑦𝑦1, Right 𝑦𝑦1

x = (𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 , 𝒚𝒚𝟏𝟏 𝒚𝒚𝟐𝟐)

• We model the piecewise SFC design procedure as the BMTree construction
procedure
 Each time we fill one level of BMTree with the selected bits---partition more subspaces and

generate the next level of nodes.

52

BMTree Construction

𝑥𝑥1

(1) BMTree whose root node
is filled with 𝒙𝒙𝟏𝟏

(2) Possible bit choices to fill
the two leaf nodes

1. Left: 𝑥𝑥2, Right: 𝑥𝑥2
2. Left: 𝑥𝑥2, Right: 𝑦𝑦1
3. Left: 𝑦𝑦1, Right 𝑥𝑥2
4. Left: 𝑦𝑦1, Right 𝑦𝑦1

x = (𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 , 𝒚𝒚𝟏𝟏 𝒚𝒚𝟐𝟐)

• We model the piecewise SFC design procedure as the BMTree construction
procedure.
 Each time we fill one level of BMTree with the selected bits---partition more subspaces and

generate the next level of nodes.

53

BMTree Construction

𝑥𝑥2 𝑦𝑦1

𝑥𝑥1

(3) BMTree constructed one
level deeper

𝑥𝑥1

(1) BMTree whose root node
is filled with 𝒙𝒙𝟏𝟏

(2) Possible bit choices to fill
the two leaf nodes

1. Left: 𝑥𝑥2, Right: 𝑥𝑥2
2. Left: 𝑥𝑥2, Right: 𝑦𝑦1
3. Left: 𝑦𝑦1, Right 𝑥𝑥2
4. Left: 𝑦𝑦1, Right 𝑦𝑦1

x = (𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 , 𝒚𝒚𝟏𝟏 𝒚𝒚𝟐𝟐)

• We model the piecewise SFC design procedure as the BMTree construction
procedure
 Each time we fill one level of BMTree with the selected bits---partition more subspaces and

generate the next level of nodes.

54

BMTree Construction

𝑥𝑥2 𝑦𝑦1

𝑥𝑥1

(3) BMTree constructed one
level deeper

𝑥𝑥1

(1) BMTree whose root node
is filled with 𝒙𝒙𝟏𝟏

(2) Possible bit choices to fill
the two leaf nodes

1. Left: 𝑥𝑥2, Right: 𝑥𝑥2
2. Left: 𝑥𝑥2, Right: 𝑦𝑦1
3. Left: 𝑦𝑦1, Right 𝑥𝑥2
4. Left: 𝑦𝑦1, Right 𝑦𝑦1

𝑦𝑦1

𝑦𝑦2 P=XXYY

x = (𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 , 𝒚𝒚𝟏𝟏 𝒚𝒚𝟐𝟐)

Why reinforcement learning:
 Heuristic methods are difficult to be designed.
 Modeled as a sequence of actions to select bits for tree nodes
 Utilizing reinforcement learning can directly optimize the BMTree based on

the reward.

55

Use Reinforcement Learning to construct BMTree

• We leverage Monte Carlo Tree Search method to help constructing BMTree.

56

MCTS based BMTree Construction

• Experiment on PostgreSQL.

57

Comparing between SFCs

(a) I/O Cost (b) Query Latency

QUILTS, SIGMOD’17

• Two key operations of R-Tree, i.e., ChooseSubtree and Split.
 ChooseSubtree: starting from the tree root, recursively choose which child

node to insert the new data object, until a leaf node is reached.
 Split: If the number of entries in a node exceeds the capacity, the Split

operation is invoked to divide the entries into two groups.
• Variants of R-tree have different hand-crafted heuristics. But no

single heuristic rule is dominant.

• RLR-Tree: use machine learning (ML) to construct a better R-Tree
for better query efficiency in a dynamic environment.
 We do NOT learn the data distribution (CDF).
 We model ChooseSubtree and Split as two Markov Decision Processes

(MDPs) and train reinforcement learning (RL) models to learn optimal
policies.

58

Motivation: RLR-tree

Jiangneng Li, Zheng Wang, Gao Cong, Cheng Long, Han Mao Kiah, Bin Cui. Towards Designing
and Learning Piecewise Space-Filling Curves. VLDB23

Overview (Offline Training):

59

RLR-Tree Overview

We train the RL agents for ChooseSubtree and Split together to further
improve their performances.

62

RLR-Tree Enhanced Training

Overview (Index Construction & Query Processing):

63

RLR-Tree Overview

RLR-Tree performance on range queries

65

Experimental Results

RLR-Tree performance on KNN queries

66

Experimental Results

Summary

Cardinality Estimation
(SIGMOD’21, EBDT’21,
VLDB’22, SIGMOD’24)

Query Optimization

Multi-Query
Optimization
(SIGMOD’24)

Query Representation Learning
(VLDB’22)

ML4DB Foundation

ML-enhanced Indexes,
data partitioning

(SIGMOD’23, VLDB’23,
SIGMOD’24)

Data Access Methods

Index Selection
(VLDB’23)

Database
Testing & Admin

Database
Generation

(SIGMOD’22)

68

Open problems
• Foundations for ML4DB tasks

• Foundation models for ML4DB tasks
 Self-supervised
 Capability to generalize to different data
 Capability to generate across tasks

• How to handle data shift and workload shift
 Fine-tune models
 Transfer learning

• How to generate training data of high quality and of low cost

• What are important open problems in data systems?
69

References and Acknowledgement

 Jingyi Yang, Peizhi Wu, Gao Cong, Tieying Zhang, Xiao He. SAM:
Database Generation from Query Workloads with Supervised
Autoregressive Models. SIGMOD 2022.

 Yue Zhao, Gao Cong, Jiachen Shi, Chunyan Miao. QueryFormer: a tree
transformer model for query plan representation. VLDB 2022.

 Song Song Mo, Yile Chen, Hao Wang, Gao Cong, Zhifeng Bao. Lemo: A
Cache-Enhanced Learned Optimizer for Concurrent Queries. SIGMOD
2024.

 Jiachen Shi, Gao Cong, Xiaoli Li. Learned Index Benefits: Machine
Learning Based Index Performance Estimation. VLDB 2023.

 Jiangneng Li, Zheng Wang, Gao Cong, Cheng Long, Han Mao Kiah, Bin
Cui. Towards Designing and Learning Piecewise Space-Filling Curves.
VLDB 2023.

 Tu Gu, Kaiyu Feng, Gao Cong, Cheng Long, Zheng Wang, Sheng Wang.
The RLR-Tree: A Reinforcement Learning Based R-Tree for Spatial
Data. SIGMOD 2023.

 Jingyi Yang, Gao Cong. PLATON: Top-down R-tree Packing with Learned
Partition Policy. SIGMOD 2024.

70
Tu Gu

Jingyi Yang

Yue Zhao

Jiangneng Li

Songsong Mo

Peizhi Wu

Jiachen Shi

	Slide Number 1
	Overview of our Research on Machine Learning for Database (ML4DB)
	SAM: Database Generation from Query Workloads
	SAM: Database Generation from Query Workloads
	SAM: Database Generation from Query Workloads
	SAM: Database Generation from Query Workloads
	Problem Setup
	Workflow of SAM
	Evaluation on Closeness
	Evaluation on efficiency
	Overview of our Research on Machine Learning for Database (ML4DB)
	ML4DB Foundations
	Example: Cost Estimation
	Example: Index Recommendation
	Example: Index Recommendation
	Example： Multiple query optimization
	ML4DB Foundation Research Problem
	Challenges
	System Overview
	System Overview
	System Overview
	QueryFormer Architecture
	Experimental Settings
	Experimental Results: Cost Estimation
	Experimental Results: Index Recommendation
	Experimental Results: Optimizer
	Overview of our Research on Machine Learning for Database (ML4DB)
	Slide Number 35
	Learned Indexes vs. ML Enhanced Indexes
	Space-Filling Curve (SFC)
	Design instance-optimized SFCs
	Our Idea
	Problem Statement
	Desired Properties
	Design Challenges
	Bit Merging Pattern (BMP)
	Piecewise SFC Design
	Piecewise SFC Design
	Piecewise SFC Design
	Piecewise SFC Design
	Bit Merging Tree (BMTree)
	Bit Merging Tree (BMTree)
	Bit Merging Tree (BMTree)
	BMTree Construction
	BMTree Construction
	BMTree Construction
	BMTree Construction
	Use Reinforcement Learning to construct BMTree
	MCTS based BMTree Construction
	Comparing between SFCs
	Motivation: RLR-tree
	RLR-Tree Overview
	RLR-Tree Enhanced Training
	RLR-Tree Overview
	Experimental Results
	Experimental Results
	Summary
	Open problems
	References and Acknowledgement

