
A General Graph-based Model for Recommendation
in Event-based Social Networks

Tuan-Anh Nguyen Pham∗, Xutao Li∗, Gao Cong∗, Zhenjie Zhang†
∗School of Computer Engineering, Nanyang Technological University, Singapore 639798

Email: pham0070@e.ntu.edu.sg, lixutao@ntu.edu.sg, gaocong@ntu.edu.sg
†Advanced Digital Sciences Center, Illinois at Singapore Pte. Ltd.

Email: zhenjie@adsc.com.sg

Abstract—Event-based social networks (EBSNs), such as
Meetup and Plancast, which offer platforms for users to plan,
arrange, and publish events, have gained increasing popularity
and rapid growth. EBSNs capture not only the online social
relationship, but also the offline interactions from offline events.
They contain rich heterogeneous information, including multiple
types of entities, such as users, events, groups and tags, and
their interaction relations. Three recommendation tasks, namely
recommending groups to users, recommending tags to groups,
and recommending events to users, have been explored in three
separate studies. However, none of the proposed methods can
handle all the three recommendation tasks. In this paper, we
propose a general graph-based model, called HeteRS, to solve
the three recommendation problems on EBSNs in one framework.
Our method models the rich information with a heterogeneous
graph and considers the recommendation problem as a query-
dependent node proximity problem. To address the challenging
issue of weighting the influences between different types of
entities, we propose a learning scheme to set the influence
weights between different types of entities. Experimental results
on two real-world datasets demonstrate that our proposed method
significantly outperforms the state-of-the-art methods for all the
three recommendation tasks, and the learned influence weights
help understanding user behaviors.

I. INTRODUCTION

Recent years have witnessed the rapid growth of event-
based social network services (e.g., Meetup and Plancast),
which provide a new kind of social network that connects
people through events. For example, Meetup, currently has 16
million users with more than 300,000 monthly events1. On
these web services, users can create or join different social
events (e.g., dining out, playing sports, parties). To better
organize events, these services allow users to form online
groups, in which a user can publish and announce events to
other group members.

Figure 1 illustrates an example of an event-based social
network that consists of five types of entities: users, events,
groups, tags and venues, together with their relations. In
this example, Alice and Bob join the group “Sports club”
while Carol joins the group “Singles”. Group “Sports club”
held a football match in a stadium, which was participated
by both Alice and Bob; meanwhile, Carol took part in two
events, namely “Birthday” and “Hanging out”, created by
group “Singles” in a restaurant. Both groups use tag “Games”
to indicate their interests. Alice and Bob use tag “Sports”,
while Carol uses tag “Dancing”.

1http://www.meetup.com/about/

Fig. 1: An example of an event-based social network

With the rich interaction information available, one natural
question is how to make use of it to provide better services for
users. For example, several problems can be raised: 1) Which
groups would a particular user like to join? 2) Which tags
might a group choose when constructing its profiles? 3) Who
will attend an upcoming event? Answering these questions
is necessary in order to predict user activities when they
participate in an event-based social network. As a matter of
fact, these questions require us to design recommendation
systems for three specific tasks: recommending groups to
users, tags to groups and events to users.

Several studies have been conducted separately for each
of the three recommendation tasks on an event-based social
network. Zhang et al. [1] proposed a factorization model that
exploits social and location features for event-based group
recommendation. Liu et al. [2] introduced a topic model to
solve the tag recommendation problem for groups. Liu et al. [3]
used a simple graph-based approach to recommending users
for an event, which performs the information diffusion over
user network from some seed users. We observe that each
of those recommendation problems is solved by a distinct
approach, which is not applicable to the rest. In other words, a
general solution that can resolve all of those problems remains
unexplored.

In this paper, we propose a general-purpose Heterogeneous
graph-based Recommendation System model (HeteRS), which
can solve multiple tasks of recommendation for problems that
can be modeled as a heterogeneous graph. Particularly, we
construct a heterogeneous graph to model the interactions
between multiple entities (users, events, groups, and tags etc.)
in an event-based social network, where entities are repre-
sented as different types of nodes and the interactions between
them are represented as different types of edges. Moreover,
after analyzing the data in event-based-social networks, we
find some useful temporal patterns of user behaviors, and our
graph is extended to incorporate them. We then convert the
recommendation problem into a node proximity calculation
problem to some query nodes on the heterogeneous graph,
so as to accomplish the following three tasks: group-to-user
recommendation, tag-to-group recommendation and event-to-
user recommendation.

The key challenge to evaluate the node proximity lies at
that our heterogeneous graph contains multiple types of entities
and they influence each other via different types of interactions.
It is difficult to know and balance the importance of these
influences for proximity calculation. Moreover, the importance
of them may vary from one recommendation problem to
another.

Random Walk with Restart (RWR) has been applied in
many graph-based applications to calculate node proximity for
recommendations (e.g, [4], [5], [6], [7], [8]). However, RWR
is developed on univariate Markov chain for homogeneous
graphs (See more details in Section II-A). As a generalization
to univariate Markov chain, multivariate Markov chain (MMC)
[9] is developed to model the random walk process in a
heterogeneous graph [10], [11], [12]. MMC is able to explicitly
model the influences between different entities in a well-
interpretable way.

In our HeteRS, we employ MMC to calculate the node
proximity w.r.t. some query nodes in the event-based hetero-
geneous graph for recommendations. However, existing MMC
based methods need to manually set the influence weights
between different types of entities, which is tedious and makes
these methods less attractive when multiple types of entities
exist, as in our case. To overcome this problem, we propose
an optimization framework to automatically learn the influence
weights. In particular, our learning scheme tries to find the
optimal set of weights such that our model generates the
appropriate ranking over recommended items to fit the training
data. To the best of our knowledge, we are the first who
comes up with the idea of parameter learning in a MMC-
based model. In addition, since our model is based on MMC
and it may encounter the efficiency problem, we design an
approximation algorithm for better efficiency while achieving
similar accuracy.

Our contributions in this paper can be summarized as
follows:

• We propose a general model, namely HeteRS, to handle
multiple recommendation problems in an event-based social
network.

• To avoid the issue of manual parameter assignment, we
propose a learning framework to find appropriate parameters
for the model. Accordingly, the values of learned parameters

indicate the importance of different types of entities in
different recommendation tasks, giving us better understand-
ings on user behavior in an event-based social network.
• We evaluate our proposed model through comprehen-

sive experiments on real world datasets collected from
Meetup.com. The experimental results demonstrate that our
model outperforms the state-of-the-art baseline methods [1],
[2], [3], which are separately developed for each of the three
recommendation tasks, for every recommendation task.

The rest of the paper is organized as follows: after introduc-
ing related work in Section II, we present our HeteRS model.
Then, in Section IV we describe our optimization method to
learn model’s parameters and subsequently introduce the ap-
proximation algorithm in Section V. The experimental results
are shown in Section VI. Finally, we conclude this paper in
Section VII.

II. RELATED WORK

We review related work on graph-based models used in
recommender systems, and the problems of group-to-user
recommendation, tag-to-group recommendation and event-to-
user recommendation.

A. Graph-based Recommendations

Random Walk with Restart (RWR) is a widely-used graph
based recommendation technique. Its main idea is to consider
the recommendation problem as a node proximity evaluation
problem w.r.t. query inputs. Although RWR is initially pro-
posed for homogeneous graphs, it is also used for recommen-
dation problems in heterogeneous graphs, e.g., [4], [5], [6],
[7]. When considering heterogeneous graphs, RWR usually
projects them into homogeneous ones by treating all the nodes
and edges as the same type. This leads to the neglects of
differentiating influences between different types of entities.
Although some methods try to address this issue by assigning
different weights to edges of different types during the projec-
tion [5], [7], these weights are not well-explained in random
walk. For example, considering the event recommendation in
event-based social networks, assume that past events are twice
as important as groups to influence users participating a new
event. In RWR, one may want to model this by assigning twice
weights to user-event edges than user-group edges as illustrated
in Fig. 2. However, after the normalization step required by
RWR, these weights lose their original meanings and may not
play the expected roles as shown in Fig. 2. In other words,
RWR cannot explicitly measure the influence from one type
of entity to another, which makes it difficult to differentiate
the influences between entities. More importantly, RWR does
not provide a principled method to set these weights, which is
the challenge.

MMC is developed to model random walk process in het-
erogeneous graphs [10], [11], [12], where influences between
different types of entities can be explicitly modeled. However,
in all previous MMC-based methods, the transition parameters
between different types of entities are determined manually,
which makes them impracticable when there are several types
of entities, as in our case. Worse still, each recommendation
task may require a distinct parameter setting as roles of types
of entities are not the same across different problems.

(a) Before normalization (b) After normalization

Fig. 2: The effect of normalization on edge weights: a) Before
normalization, the weight of edge U-E is twice as large as that
of edge G-U; b) After normalization, two weights are similar.

In this paper, based on MMC, we propose a new learn-
ing scheme to automatically determine the influence weights
between different types of entities. Note that our approach is
different from the supervised RWR methods proposed in [13],
[14], [15] in two aspects: 1) We focus on learning transition
parameters in a MMC model while they aim to find the weight
of every individual edge. 2) Supervised RWR methods focus
on defining features for different types of edges, e.g., the num-
ber of common friends for user-user edges [14] or semantic
relatedness for tag-tag edges [13], and learning parameters for
combining these features. In contrast, our method does not
need such features and has a different focus. To the best of
our knowledge, no previous work has provided a solution to
learning parameters in a MMC-based model.

B. Recommendations in Event-based Social Networks

We review the existing work on the three recommendation
tasks in event-based social networks. Since event-based social
networks have just emerged recently, there are not many works
on this type of social network.

Group-to-user recommendation problem aims to find
groups which a user may be willing to join. Zhang et al. [1]
proposed an extended factorization model, called PTARMI-
GAN, for recommending groups to users in an event-based so-
cial network. In their method, heterogeneous information such
as locations, users’ friendships and profile tags is exploited to
learn the factorization model and recommendations are made
based factorization results.

Tag-to-group recommendation is the problem to rec-
ommend tags for user groups. Liu et al. [2] assumed that
group members have unequal roles when making a choice for
groups. They introduced a topic model called PIT, to take the
impact of group members into consideration, and applied it to
recommend tags for Meetup groups.

Event-to-user recommendation aims to find the users who
will join an upcoming event. Liu et al. [3] dealt with task
of event recommendation in an event-based social network,
although this is not the main focus of their work. Their simple
solution is constructing a user graph based on users’ friendship
and propagating preferences based on RWR. Their experiments
show that this approach beats baseline methods. However, only
user relationship information is used in their method. In this

paper, we would like to investigate whether we can enhance
the recommendation further by taking more heterogeneous
information into considerations.

III. PROPOSED MODEL

In this section, we present our proposed method called
HeteRS. We first define a heterogeneous graph built from an
event-based social network. Then, the graph is extended to
incorporate implicit patterns of user behaviors from temporal
aspect. Finally, we introduce how to accomplish multiple
recommendation tasks based on the constructed graph.

A. Event-based Social Network Graph

In this subsection, we give the definition for our event-
based social network graph.

Definition 1 (Event-based Social Network Graph). Let U =
{u1,u2,...,u|U |}, E = {e1,e2,...,e|E|}, G = {g1,g2,...,g|G|},
T = {t1,t2,...,t|T |} and V = {v1,v2,...,v|V |} be the set of
users, events, groups, tags and venues, respectively, and R =
{〈U,E〉, 〈E,G〉, 〈E, V 〉, 〈U,G〉, 〈U, T 〉, 〈G,T 〉} be the set of
types of relations. The Event-based Social Network Graph
is defined as a directed weighted graph G = (V, E), where
the node set V = U ∪ E ∪ G ∪ T ∪ V and the edge set
E = {〈m,n〉|m ∈ M ∧ n ∈ N ∧ {〈M,N〉, 〈N,M〉} ∩
R 6= ∅ ∧ m has a relation with n}. Let AMN ∈ R|N |×|M |,
({〈M,N〉, 〈N,M〉} ∩ R 6= ∅), denote the adjacency matrix
representing the relations (interactions) from nodes of type M
to the ones of type N . Then AMN (n,m) = 1, if m ∈M∧n ∈
N ∧ 〈m,n〉 ∈ E , and 0 otherwise.

Note that we only have the adjacency matrices AMN

for every pair of types M and N that have a relation, i.e.,
{〈M,N〉, 〈N,M〉} ∩ R 6= ∅, and the adjacency matrices
corresponding to other pairs of types do not exist, e.g., AUV

and AV U .

The graph consists of the explicit information extracted
from the event-based social network data; however, after ana-
lyzing the dataset, we found that user behaviors follow some
hidden temporal patterns. These key observations motivate us
to extend the graph to incorporate useful implicit information,
which will be introduced in the next subsection.

B. Temporal Factors

Time plays an important role when users decide to join an
event. Liu et al. [3] found that Meetup’s event time is peaked
at around 8pm on weekdays and distributed more evenly at
weekends. This is because most of the events in Meetup are
informal (e.g., dining out, going to cinema), and users usually
join events outside of working hours. To further investigate
the temporal factors, we consider the time duration (in days)
between two successive events of each user in New York
City and then aggregate the durations of all users to depict
the histogram in Fig. 3. We note that we have made similar
observation on the data in other cities.

From Fig. 3, we have two key observations. First, there
is a peak every 7 days in the histogram, e.g., we observe
peaks at 7, 14, 21, 28, etc. This means most of users take
part in events with a weekly periodic schedule. Second, we

Fig. 3: Duration between two consecutive events of users in
New York City

observe that the number of event pairs deceases as the duration
increases in Fig. 3. This means users mostly join two events of
their interests in a short time period. Both observations reflect
the implicit patterns of user behaviors in event-based social
networks, which should be considered in our heterogeneous
graph for better modeling the data.

To exploit the weekly periodic patterns, we introduce a new
type of nodes, namely session node. In particular, if a user u
has joined an event in day d of week (e.g., Monday), a session
node s(u, d) is created and linked to that event. Apparently,
a user may have several (at most 7) session nodes, each of
which represents his/her activities in one certain day of week.
Following this extension, in Fig. 1, assume that events e1 and
e3 were at the same day d1, and e2 was held on day d2,
then for each participant of events we create corresponding
session nodes as shown in Fig. 4. Our idea of creating session
nodes is motivated by previous works: Xiang et al. [16] created
session nodes for exploiting long-term and short-term temporal
properties, and Yuan et al. [17] used session nodes to represent
users’ check-ins interest at different time. Unlike those works,
our session nodes are employed to exploit the correlations
between events, that is, we consider the events connected to
the same session node are similar to each other, because they
are shared by the same user at the same day of week. Note
that we do not create one session node for a certain day of
the week and link it to all events held at that day, because in
such case a session node may be shared by many events that
are totally unrelated to each other, which will result in noisy
edges in our graph.

The short-time period behavior is incorporated by weight-
ing edges. As mentioned above, there is a higher chance that a
user participates in an event if he/she already joined an event
lately. It means that recent events tend to be more important
than earlier ones. To capture this, a decay function ft

(
tmj

)
is

used to define the weight of event j taking place at time tmj :

ft(tmj) = exp(−η(tmc − tmj)), (1)

where tmc− tmj is the time difference (in days) between the
event j and the last event c in the dataset, and η is a parameter
to control the decay rate over time. A larger η will give smaller
weights for events in the distant past. This weighting scheme
means the all the adjacency matrices related to events should
be updated.

Fig. 4: An example of adding session nodes to the graph (other
nodes are not shown)

Overall, we define a new graph by extending EBSN to
utilize the temporal effects on user behaviors.

Definition 2 (EBSN Graph with temporal effects). Let S =
{s1,s2,...,s|S|} be the set of session nodes. The EBSN graph
with temporal effects G′ = (V ′, E ′) is an extension of EBSN
graph G = (V, E) as follows:

• V ′ = V ∪ S, and R′ = R∪ {〈E,S〉}
• E ′ = E ∪ {〈e, s〉, 〈s, e〉|e ∈ E ∧ s ∈ S ∧ e belongs to s}
• ANE(e, n) = ft(tme), if 〈n, e〉 ∈ E ′, and 0 otherwise.

When we mention EBSN graph hereinafter, it refers to the
EBSN graph with temporal effects, if there is no explanation.

C. Recommendation on EBSN Graphs

We next describe how to perform a recommendation task
on our graph. Our idea is to transform the recommendation
problem into node proximity calculation problems w.r.t. some
query nodes, and then use multivariate Markov chain to solve
it. We choose the task of recommending groups to users as the
example to introduce our method, and other recommendation
problems can be solved in the similar way.

Definition 3 (Group-to-user recommendation). Given a user u,
group-to-user recommendation is the problem to find groups
that u is likely to join.

Now we describe how to use EBSN graph to recommend
groups for a user. As our method is based on MMC, we first
define the transition matrices.

Definition 4 (Transition matrix). Transition matrix PMN

({〈M,N〉, 〈N,M〉} ∩ R′ 6= ∅) is obtained by normalizing
adjacency matrices AMN by columns. PMN handles dangling
nodes, i.e., PMN (n,m) = 1/|N |,∀n for each m such that∑|N |
n AMN (n,m) = 0.

For EBSN graph, there are multiple transition matrices,
each of which corresponds to a relation from one to another
type of entities. Next, we consider how to construct query
vector for relevant node given a user.

Definition 5 (User query vector). Given a user u , we define
the user query vector as qu ∈ R|U |, where qu(i) = 1 if i = u,
0 otherwise.

For tag-to-group recommendation, we consider to recom-
mend tags given a group g, and the query vector qg ∈ R|G| is
defined similarly. In event-to-user recommendation, given an
upcoming event, we aim to find the potential users who are
interested in it. Following [3], we assume that we know some
seed users who first responded to join the event. Moreover,
when a new event is published in EBSN, the corresponding
time, venue and group are always accompanied. Therefore,
we have multiple query vectors, instead of one as in other
two recommendation problems, qu ∈ R|U |, qg ∈ R|G|,
qv ∈ R|V | and qs ∈ R|S| corresponding to input event’s seed
users, group, venue and user sessions, where user sessions are
constructed from seed users and day of the event. Note that
all the query vectors must be probability vectors, i.e., the sum
of each vector is 1.

With the transition matrices and user query vector, we are
able to simulate a random walk process by using MMC on the
heterogeneous graph to calculate the proximity of nodes. We
establish the following equations:

u(t+1) = αEUPEUe
(t) + αGUPGUg

(t) (2)

+ αTUPTUt
(t) + (1− αEU − αGU − αTU)qu

e(t+1) = αUEPUEu
(t) + αGEPGEg

(t) (3)

+ αV EPV Ev
(t) + (1− αUE − αGE − αV E)PSEs

(t)

g(t+1) = αEGPEGe
(t) + αUGPUGu

(t) (4)

+ (1− αEG − αUG)PTGt
(t)

t(t+1) = αUTPUTu
(t) + (1− αUT)PGTg

(t) (5)

s(t+1) = PESe
(t) (6)

v(t+1) = PEV e
(t) (7)

where

• u(t), e(t),g(t), t(t), s(t),v(t) are distribution probability vec-
tors representing the probabilities that users, events, groups,
sessions and venues are visited at time t, respectively.

• αMN ({〈M,N〉, 〈N,M〉} ∩ R′ 6= ∅, αMN > 0 and∑
M αMN ≤ 1) denotes the transition weight (or influence

weight) from nodes of type M to nodes of type N .

Equations (2)-(7) model how the probabilities change for
different types of nodes after each step of random walk
transition on our EBSN graph. We can see from the equations
that αMN explicitly controls how much probability (influence)
one type of nodes receive from the other types of nodes. For
example, in Eq. (2), user nodes receive αEU probability from
event nodes, and αGU probability from group nodes, αTU
probability from tag nodes and (1 − αEU − αGU − αTU)
from query user node. The explicit controllability benefits from
the fact that PEU , PGU and PTU are transition matrices and
e(t), g(t) and t(t) are probability distribution vectors, and as
a result their products are still probability distribution vectors.
This explicit controllability is not only useful to explain the
model, but important to reveal the roles of different entities in
different recommendation tasks after learning αMN . However,
if we project the graph into homogeneous graph and apply
traditional univariate random walk, as shown in Section II, we
cannot obtain the explicit controllability.

After solving the stationary probability vectors from Eqs.
(2)-(7), the recommendations can be made by ranking the

groups based on g. We note that, without considering the
query inputs, the model degenerates into the original MMC
in [9]. The query vectors are introduced into the model to
produce “personalized” results, the idea of which is similar
to RWR. When considering tag-to-group recommendation,
we incorporate the group query vector qg into Eq. (4) and
remove the user query vector qu from Eq. (2). For event-to-
user recommendation, we can perform similar modifications
to incorporate query vectors qu,qg,qv,qs into Eqs. (2)-(7).

Theorem 1. If the EBSN graph is connected, probability
vectors in Eqs. (2)-(7) uniquely converge to stationary vectors
as t goes to infinity.

Proof: First, we rewrite Eqs. (2)-(7) as follows:

r(t+1) = Mr(t) + q (8)

where:

r =
(
u>, e>,g>, t>, s>,v>

)>
(9)

M =

0 αEUPEU · · · 0

αUEPUE 0 · · · αV EPV E
...

...
...

...
0 PEV · · · 0

 (10)

q =
(
αUUq

>
u ,0

>,0>,0>,0>,0>
)>

(11)
αUU = 1− αEU − αGU − αTU
αSE = 1− αUE − αGE − αV E
αTG = 1− αEG − αUG
αGT = 1− αUT

Note that M is not a stochastic matrix. Let Λ be the matrix
containing parameters from M:

Λ =

0 αEU · · · 0

αUE 0 · · · αV E
...

...
...

...
0 1 · · · 0

We can see that Λ is a sub-stochastic matrix, and thus

the spectral radius (maximum of the absolute eigenvalues) of
Λ is strictly smaller than 1, denoted by ρ(Λ) = |λ| < 1.
We can also know λ > 0 because Λ is a nonnegative
and irreducible matrix (there is always a path from one
type to another type of entities, so Λ is irreducible). Then
by Perron-Frobenius Theorem, there exists a positive vector
z = (zU , zE , zG, zT , zS , zV)> such that z>Λ = λz>. We note
that 1>|N |PMN = 1>|M | where 1|M | is the vector with size
|M | of all ones. Then it is easy to show that (zU1

>
|U |, zE1

>
|E|,

. . . , zV 1
>
|V |)M = λ(zU1

>
|U |, zE1

>
|E|, . . . , zV 1

>
|V |), hence λ

is an eigenvalue of M and its corresponding eigenvector is
positive. Since the EBSN graph is connected, M is a non-
negative and irreducible matrix. Based on Perron-Frobenius
Theorem, we know that only eigenvectors associated with the
spectral radius of a nonnegative and irreducible matrix are
positive, and thus we have ρ(M) = λ.

Suppose r(0) = π, we have r(1) = Mπ+q, r(2) = M2π+
Mq+q, . . . , r(t) = Mtπ+

∑t−1
k=0 M

kq. Since ρ(M) = λ < 1,

we have limt→∞Mt = 0 and limt→∞
∑t−1
k=0 M

k = (I −
M)−1. So r(t) finally converges to r∗ = (I−M)−1q.

Generally, our constructed graph may not be connected.
However, there usually exist dangling nodes in our graph, for
example, considering the user-group interaction, if a user does
not join any group, he/she is then a dangling node. According
to definition 4, we consider under this circumstance that he/she
is connected to all group nodes. This operator for dangling
nodes usually makes our EBSN graph be connected. Therefore
we can obtain the stationary probability vectors by iteratively
running Eqs. (2)-(7) until it converges.

IV. OPTIMIZATION APPROACH FOR PARAMETER
LEARNING

From Eqs. (2)-(7), we can see the transition weights
αMN play an important role in producing the final solution,
as they control how much probability one type of entities
receives from others. In this section, we consider to learn them
from training data. To this end, we first design an objective
function on αMN , and then propose a learning algorithm to
optimize it. Again, we use group-to-user recommendation task
as the example to illustrate our learning method, and for other
recommendation problems the learning process is similar.

A. Objective Function

We follow the Bayesian Personalized Ranking (BPR) op-
timization framework [18] to construct our objective function.
In group-to-user recommendation, given a user, we consider
groups which he/she already joined as positive groups, denoted
by the set PG, while the ones that the user did not join as
negative groups, denoted by NG. In other words, the whole
group set consists of two parts: G = PG ∪ NG. Then the
appropriate parameters αMN of Eqs. (2)-(7) should rank all
the positive groups higher than negative groups, i.e., positive
groups should have higher probability than negative ones. To
model this, we design the following AUC (Area Under the
ROC Curve) objective to be maximized, where we assume
there are m instances {< uk, PGk >}mk=1:

max
α

Obj(α) =

m∑
k=1

∑
i∈PGk

∑
j∈NGk

1(g(i)− g(j))

|PGk| |NGk|
,

(12)
where NGk = G−PGk and 1(.) is an indicator function that
equals to 1 if g(i) > g(j), and 0 otherwise. As the indicator
function 1(.) is not differentiable, it is usually approximated
by sigmoid function:

σ(x;β) =
1

1 + e−βx
, (13)

where the parameter β controls the approximate error, and is
set empirically during the training process. Substituting it into
Eq. (12) and considering in log form as in [1], we obtain a
new objective function as follows:

max
α

Obj(α) =

m∑
k=1

∑
i∈PGk

∑
j∈NGk

lnσ(g(i)− g(j))

|PGk| |NGk|
.

(14)

B. Solving the Optimization Problem

To find parameters α that maximize the objective function
in Eq. (14), we adopt stochastic gradient descent (SGD)
algorithm. In SGD, the parameters are step by step updated
based on one training instance, instead of all training data as
in gradient descent. Therefore, SGD is more suitable when the
training data is large. Specifically, for each training instance,
its derivative is calculated and the parameters α are updated
by moving along the ascending direction of the gradient as
follows:

α← α + lr
∂Objk(α)

∂α
, (15)

where Objk(α) is the objective function for k-th training
instance:

Objk(α) =

∑
i∈PGk

∑
j∈NGk

lnσ(g(i)− g(j))

|PGk| |NGk|
. (16)

Accordingly, we have the partial derivatives of Objk(.)
w.r.t. α as:

∂Objk(α)

∂α
=

∑
i∈PGk

∑
j∈NGk

∂ lnσ(δij)
∂δij

(∂g(i)∂α −
∂g(j)
∂α)

|PGk| |NGk|
,

(17)
where δij = g(i) − g(j). From Eq. (13), we easily have
∂ lnσ(δij)/∂δij = β(1 − σ(δij)). In the implementation, we
set ∂ lnσ(δij)/∂δij = (1−σ(δij)) because β can be integrated
into learning rate lr.

The remaining issue is how to compute the derivative
∂g(i)/∂α. Taking the derivatives w.r.t. each parameter αMN

on the both sides of Eq. (4), we can get:

∂g

∂αEG
= PEGe−PTGt (18)

∂g

∂αUE
= αEGPEG

∂e

∂αUE
(19)

= αEGPEG(PUEu−PSEs)

∝ PEG(PUEu−PSEs)

∂g

∂αEU
= αUGPUG

∂u

∂αEU
(20)

= αGUPUG(PEUe− qu)

∝ PUG(PEUe− qu)

∂g

∂αUT
= αTGPTG

∂t

∂αUT
(21)

= αTGPTG(PUTu−PGTg)

∝ PTG(PUTu−PGTg)

Due to the space limitation, we only show derivatives
∂g/∂α w.r.t. some parameters αMN ; however, the remaining
ones can be derived in the similar way. Note that, by definition,
parameters α must be positive, so we set a lower bound γ
for all transition parameters α. Whenever a parameter αMN

becomes smaller than γ, which is 0.01 in our implementation,
its value is set to γ. Moreover, when the sum of all transition
parameters αMN to type N is not 1, we normalize those
parameters so that their sum equals to 1.

Based on the gradients derived above, we can learn the
optimal parameters α, and the learning scheme is summarized
in Algorithm 1.

Algorithm 1: Learning process
Input: m training instances, and learning rate lr
Output: optimal α
begin

1 t = 0;
2 Initialize α(0);
3 while Obj(α) has not converged do
4 Randomly shuffle the m training instances;
5 foreach training instance k do
6 Compute stationary vectors u, e,g, t, s,v by

iteratively executing Eqs. (2)-(7);
7 Compute ∂g/∂α based on Eqs. (18)-(21);
8 Update α : α(t+1) = α(t) + lr ∂Objk(α

(t))
∂α ;

9 t = t+1;

V. APPROXIMATION ALGORITHM

Another major issue that HeteRS may encounter is effi-
ciency. To make a recommendation, our model needs to itera-
tively execute Eqs. (2)-(7) until probability vectors converge.
The time complexity of this process is O(tn), where n is
number of edges (represented by nonzero values in transition
matrices) and t is number of iterations. Obviously, when the
graph becomes too large, the computation is expensive, which
is a common problem of random walk based approaches. To
overcome this problem, we propose an approximation algo-
rithm for HeteRS, which could yield much better efficiency
without sacrificing much accuracy.

In Theorem 1, we prove that r(t) = Mtπ+
∑t−1
k=0 M

kq =∑t−1
k=0 M

kq. In other words,

r = (I + M + M2 + M3 + . . .)q (22)

Equation (22) gives us an idea to design an approximation
algorithm. Since p(k) = Mkq represents the preferences of
all nodes in the graph after k steps of preference propagation
starting from query nodes, and p(k) can be computed directly
from p(k−1) (p(k) = Mp(k−1)), we may simulate the process
of propagating preferences over our constructed graph to
estimate r, which is shown in Algorithm 2.

Particularly, we maintain a queue for nodes to be visited,
and it initially contains query nodes (line 4). Then, each time a
node i is taken from the queue, we send to each of i’s neighbors
j an amount of preference M(j, i)×p(i), where p(i) is current
preference of i (line 10-11), and put j into the queue if it is not
in (line 13-14). Each time a node j receives preference from
other node, we update the accumulating preference vector r
in the corresponding position so that r(j) contains the total
amount of preference that j receives during the process (line
12). When the preference of a node is below a threshold ε, we
ignore this node and do not send any value to its neighbors
(line 8). The algorithm is terminated when there is no any node
to be visited, i.e., the queue is empty, and r is returned as the
result.

Compared to the iterative algorithm, the approximation one
is more efficient because iterative method takes into account all
nodes, most of which are irrelevant nodes, while approximation

Algorithm 2: Approximation algorithm
Input: Matrix M and query nodes {qi}
Output: Score vector r
begin

1 Initialize q for query nodes {qi} as in Eq. (11);
2 r = q; \\accumulating preference vector;
3 p = q; \\current preference vector;
4 Q := {qi}; \\queue of nodes to be visited;
5 while Q is not empty do
6 i = Q.pop();
7 if p(i) < ε then
8 continue;
9 foreach j of i’s neighbors do

10 w = M(j, i)× p(i);
11 p(j) = p(j) + w;
12 r(j) = r(j) + w;
13 if j /∈ Q then
14 Q.push(j);

15 p(i) = 0;
16 return r;

algorithm exploits local propagation, and it rarely goes too
far from query nodes. Through our experiments, it is shown
that the approximation algorithm is significantly faster than
iterative method while achieving similar accuracy.

Note that although our approximation algorithm is similar
to the Particle Filtering heuristic proposed in [19], our algo-
rithm is motivated from the analysis of theoretical solution in
Eq. (22), where we cutoff small terms according to Eq. (22)
to obtain an approximation solution, and Particle Filtering is
derived from Monte Carlo simulation of random walk.

VI. EXPERIMENTS

A. Dataset Description

We crawl meetup.com to construct two datasets for New
York City (NYC) and state of California (CA) respectively
during the period from Jan. 1st to Dec. 31st 2012. For pre-
processing, we keep users who joined at least 5 events, events
with at least 5 participants, and groups with more than 20
events. The dataset statistics for both regions are summarized
in Table I2.

Subsequently, we randomly select 20% groups of each user
and 20% tags of each group as test sets for the tasks of group-
to-user and tag-to-group recommendation, respectively. The
remaining data will be used to form our EBSN graph. To learn
the parameters for HeteRS in group-to-user recommendation
problem, we further select 10% groups from each user as tun-
ing set and remove corresponding user-group edges from the
EBSN graph. The tuning set for tag-to-group recommendation
is built in the same way. For event-to-user recommendation,
the construction is different because events are time related. In
particular, we remove events in the last 3 months of training
set, i.e., Oct. 1st - Dec. 31st, to build the tuning set. For the
test set, we extract from the data events held after training

2The datasets are available at http://www.ntu.edu.sg/home/gaocong/datacode.htm

TABLE I: DATASET STATISTICS

Dataset NYC CA

Events 9,549 15,588

Users 46,895 59,989

Groups 398 631

Tags 15,819 21,228

Venues 2,396 4,507

Avg. Events per month 795.75 1299

Avg. Participants for an event 17.65 13.68

Avg. Events for a user 3.59 3.55

Avg. Members for a group 382.71 256.76

Avg. Groups joined by a user 3.16 2.74

Avg. Tags for a group 10.62 10.17

Avg. Tags for a user 14.44 18.42

set’s last timestamp (Dec 31st 2012) and joined by at least 5
users in the training set. We use events in first month (1st-
month test data) to compare the performances of different
event-to-user recommendation methods, and use test data sets
in different months, e.g., 1st-month, 3rd-month and 6th-month
test data, to illustrate the effect of temporal factor on user’s
event participation behaviors.

B. Evaluation Metrics

For evaluation, we use two metrics: precision and recall,
denoted by p@N and r@N, respectively, where N is number of
recommendation results. In particular, the precision and recall
of each test case are computed and the overall precision and
recall are obtained by averaging these scores of all test cases.

C. Baseline Methods

Besides common baseline methods, we compare HeteRS
with the state-of-the-art methods developed for each of the
three recommendation problems.

Group-to-user recommendation and Tag-to-group recom-
mendation:

• CF: This is user-based Collaborative Filtering method. For
group-to-user recommendation, the user similarity is calcu-
lated based on the matrix AGU . Similarly, for tag-to-group,
the group similarity is based on ATG.

• BPR: The Bayesian Personalized Ranking [18] based matrix
factorization method is performed on matrices AGU and
ATG, respectively for the two tasks, and recommendations
are made based on the factorization results.

• RWR: For group-to-user recommendation, Random Walk
with Restart is run on a group-group interaction graph
weighted by number of common users, where the groups of
each test user are treated as query nodes. The tag-to-group
recommendation is performed similarly.

• PTARMIGAN: As discussed in Section II, this is the state-
of-the-art method [1] for group-to-user recommendation.

• PIT: As discussed in Section II, this is the state-of-the-art
method [2] for tag-to-group recommendation.

Event-to-user recommendation:

• CF: CF calculates the similarity between a candidate user
and the given event’s seed users based on AUE , then returns
top-N most similar users as results.

• BPR: Based on BPR criteria, matrix factorization method is
performed on a user-user matrix constructed by the number
of common events between users. Similarity between two
users is computed by using their latent features.
• RWR: This method is the state-of-the-art for this task [3],

which performs RWR on a weighted user-user graph to
make recommendation, and seed users are used as query
nodes.
• tRWR: This is a variation of RWR where the event time

information is incorporated into edges using Eq. (1).

Finally, we consider two other methods derived from our
proposed model:

• full RWR: This method performs RWR on our constructed
heterogeneous graph, and it treats the different types of
edges (and nodes) in the same way.
• uni HeteRS: This method is HeteRS without parameter

learning part. In this method, parameters in the same equa-
tion, i.e. {αiN}∀i∈{U,E,G,T,V,S}, are assigned with values
uniformly. We compare with this variation of our method to
evaluate the effectiveness of our learning process.

D. Parameter Settings

There are three parameters in HeteRS: time-decay η, error
approximation β and learning rate lr. Time-decay parameter η
defines the decrement rate of an event’s importance in terms of
their time spans to now, and is set to 0.03 in all experiments.
Parameter β in Eq. (13) controls the error of approximating
1(·). The bigger β is, the better Eq. (13) approximates the in-
dicator function. However, when β gets too large, the gradient
at 0 tends to be infinity, which causes a numerical problem.
When β gets too small, Eq. (13) fails to approximate the
indicator function, and maximizing Eq. (14) would not lead to
the optimization of the AUC. One suggestion is to set the value
proportional to the total number of items to be recommended,
because more items always mean bigger |PG||NG| and the
gradient Eq. (17) is divided by |PG||NG|. In such case, using
bigger β is more reasonable. By using tuning set, we set β to
103 for event-to-user and group-to-user recommendation, and
set β to 104 for tag-to-group recommendation. Learning rate
lr relies on β, and is used to balance between convergence
and the speed of learning. We set lr to 0.1 for event-to-
user and group-to-user recommendation and to 1 for tag-to-
group recommendation. For each recommendation task, we
train our model with 50 iterations, as we observe that after
30-35 iterations the objective function becomes stable.

All the parameters of baseline methods are empirically set
to optimal values on the tuning sets.

E. Group-to-user Recommendation

Figure 5 shows the results on group-to-user recommen-
dation problem. In this problem, the input of each test is a
user. We observe that our method HeteRS outperforms state-
of-the-art PTARMIGAN, which also exploits heterogeneous
information, significantly on both datasets. For example, Het-
eRS outperforms PTARMIGAN by 34% and 39% for p@5
and r@5, respectively, on CA dataset, and the improvement is
statistical significant (p-value < 0.01). This may be because
HeteRS represents the interactions between different entities

(a) Precision@N - NYC (b) Recall@N - NYC (c) Precision@N - CA (d) Recall@N - CA

Fig. 5: Performance of methods in group-to-user recommendation

(a) Precision@N - NYC (b) Recall@N - NYC (c) Precision@N - CA (d) Recall@N - CA

Fig. 6: Performance of methods in tag-to-group recommendation

(a) Precision@N - NYC (b) Recall@N - NYC (c) Precision@N - CA (d) Recall@N - CA

Fig. 7: Performance of methods in event-to-user recommendation (1st-month test set)

better than the linear latent factor model in PTARMIGAN.
Moreover, HeteRS is significantly better than full RWR on
both datasets, which demonstrates the effectiveness of our
model on heterogeneous graphs. On the other hand, HeteRS
always achieves better results than uni HeteRS, which means
that our learning scheme is necessary for our model to obtain
the better performance. Finally, we can see that full RWR
outperforms RWR on both datasets, because the former is
performed on a heterogeneous graph. The performance of CF
and BPR is also poor, and comparing all approaches we find
the methods that can take advantage of additional information,
e.g. tags, events, etc., are able to produce better results than
others.

F. Tag-to-group Recommendation

This task takes a group as input and returns the most likely
tags the group may use. Figure 6 shows the results of different
methods for this recommendation problem. From the figure, we

observe that HeteRS outperforms the state-of-the-art baseline
PIT and other methods, by at least 90% on both datasets
in terms of p@5 and the p-value of t-test is smaller than
0.01. This could be because HeteRS benefits from exploiting
additional information including tags from group members or
from participants of group events, while the other baseline
methods except for full RWR do not. This also explains why
full RWR yields good performance compared to the other
baselines since full RWR also uses all the different types of
information to make recommendations. We also observe that
PIT performs worse than other baselines. It could be because
groups in Meetup are usually large, in which most users have
limited historical data (e.g., only participate in one group).
Therefore, the impacts learned from PIT for these users are
not reliable, which results in the poor performance of PIT.
The results of uni HeteRS are significantly worse than those
of HeteRS and even worse than the baseline method full RWR.
This means that if we do not carefully set parameters for our
model, its performance could be diminished dramatically.

(a) Precision@5 - NYC (b) Recall@5 - NYC

Fig. 8: Performance of three event-to-user recommendation
methods RWR, full RWR and HeteRS with different number
of seed users on NYC dataset

(a) Precision@5 - NYC (b) Recall@5 - NYC

Fig. 9: Performance of event-to-user recommendation methods
on test sets in different months on NYC dataset

G. Event-to-user Recommendation

The seed users, group, venue and day of the week of each
test event are taken as inputs, and users who are interested in
the event are targets.

1) Recommendation Results: The results are shown in Fig.
7. In this experiment, the number of seed users is set to 5.
We observe from this figure that, the state-of-the-art baseline
RWR always has better performance than CF and BPR. On the
other hand, tRWR, full RWR, uni HeteRS and HeteRS always
outperform CF, BPR and RWR, because they take the events’
importance into account while the others do not. In particular,
HeteRS outperforms RWR by 23% and 16% on NYC and CA
data, respectively, in terms of p@5. Moreover, HeteRS always
achieves better results than tRWR, which cannot exploit the
periodical behavior patterns of users as HeteRS does. The
effect of this factor is analyzed in more detail in Section
VI-H. In this experiment, full RWR performs well, which
again confirms the benefits of using additional information
to produce better recommendation results. On NYC dataset,
HeteRS outperforms the second best method full RWR with
p-value < 0.05, which is statistically significant. However,
the difference between two methods on CA dataset is less
significant, which could be because user behaviors in CA are
less periodical than in NYC (more details in Section VI-H).

2) Number of seed users: In this experiment, we investigate
how the number of seed users affects the recommendation
results. Particularly, we vary the number of seed users for each
event from 1 to 7 and test the performances of three recommen-

(a) NYC (b) CA

Fig. 10: Performance of HeteRS and its variants in event-to-
user recommendation task

dation methods, namely RWR, full RWR and HeteRS. To use
the same test set for all cases, we remove first 7 users of each
user and keep the remaining users as the test set. The results
of p@5 and r@5 on NYC dataset are shown in Fig 8. As we
can see, the performance of HeteRS is almost unchanged for
different numbers of seed users, i.e., HeteRS is not sensitive to
the number of seed users. In contrast, the results of the other
two methods change considerably and they perform the best
in 5-seed user case.

3) Temporal effect: This set of experiments is to study the
temporal effect on event-to-user recommendation.

First, we report p@5 and r@5 on the 1st-, 3rd- and 6th-
month test sets of the NYC dataset in Fig. 9; the results on
CA dataset are qualitatively similar and are ignored due to the
space limitation. From Fig. 9, we observe that as time goes
on, the performance of all methods decrease. The results are as
expected since the users’ interests may change over time and
they may know more friends over time and join their group
events. As a result, it is more difficult to predict participants
for events far from now.

Second, we investigate how our two modifications to the
original EBSN graph in Section III-B affect the performance of
HeteRS. In particular, we test HeteRS on two modified graphs:
one graph does not have session nodes but still uses the time-
weighted function Eq. (1) for edges connecting to events, and
the other uses session nodes but does not weight events’ edges.
The comparison results are shown in Fig. 10. We observe the
performances of HeteRS on two new graphs are worse than on
full EBSN graph, which demonstrates HeteRS is able to take
advantages of two temporal aspects of user behaviors. The
improvement of HeteRS is significant than other two variants
with p-value less than 0.01.

H. Interpretation of Transition Parameters

In all these experiments, HeteRS works better than
uni HeteRS. This demonstrates that our parameter learning
process is necessary and useful. In this subsection, we inves-
tigate the transition parameters αMN to examine the roles of
different types of entities in our recommendation problems.
Due to the space limitation, we only show the values of learned
parameters for event-to-user recommendation problem on both
NYC and CA datasets and for group-to-user recommendation
problem on NYC dataset in Table II.

TABLE II: TRANSITION PARAMETERS

αMN Recommendation problems

M N
Event-to-user rec.

NYC
Event-to-user rec.

CA
Group-to-user rec.

NYC
G E 0.34 0.44 0.38
S E 0.44 0.37 0.25
U E 0.11 0.10 0.12
V E 0.11 0.09 0.25
E G 0.01 0.01 0.27
T G 0.01 0.01 0.31
U G 0.01 0.01 0.42
qg G 0.97 0.97 N/A
E S 0.88 0.73 N/A
qs S 0.12 0.27 N/A
G T 0.72 0.83 0.65
U T 0.28 0.17 0.35
E U 0.33 0.37 0.11
G U 0.50 0.43 0.11
T U 0.16 0.19 0.05
qu U 0.01 0.01 0.73
E V 0.99 0.80 N/A
qv V 0.01 0.20 N/A

From Table II, for event-to-user recommendation problem
on NYC, we observe that the value of αSE is the largest,
0.44, among those of transition parameters from other types
to event type E, which means that users in NYC tend to join
events periodically. On the other hand, parameter αSE has
smaller value in CA dataset, which indicates that the user
activities in CA is less periodical than in NYC. This could be
the reason why the improvement we achieved in event-to-user
recommendation on CA dataset is less significant than on NYC
dataset. On both datasets, the location information plays a
minor role as the weight αV E is small, 0.11 for NYC and 0.09
for CA dataset. By analyzing data, we observe that two events
held in the same venue always belong to the same group. This
means that the role of locations is already contained by that of
groups. Moreover, most of the new events take place in new
venues, and this makes the location information less useful. For
group-to-user recommendation, we can see that the weights
for nodes of type G largely come from those of U. Hence, we
mostly rely on similar users when recommending groups to a
target user. Note that the value of αTG is high, i.e. tags have a
large role in group-to-user recommendation. Also, we can see
that the weight of T is mainly contributed by both G (αGT
is 0.65) and U (αUT is 0.35). These observations are because
users usually choose groups with the same topics (represented
by tags) as their current groups or their interests.

I. Approximation Method

In Section V, we propose an approximation method for
HeteRS. We evaluate the efficiency of HeteRS with approxima-
tion method (Approximation HeteRS) by comparing with the
one using iterative method (Iterative HeteRS) in this section.
Note that in previous experiments, we use iterative method for
HeteRS.

1) Parameter Setting: The approximation method has only
one parameter: the preference threshold ε, which is the min-
imum preference a node needs to propagate to its adjacent
nodes. If a node has preference smaller than ε, it will be
ignored and no preferences are sent to its neighbors. There
is a trade-off between the accuracy and the running time

when setting ε: if we set ε large, the preference propagation
process stops early, and only a small fraction of nodes get
values; hence, the running time is short but the accuracy may
be low. Figure 11 shows the performance of Approximation
HeteRS in terms of p@5, r@5 and total running time in
three recommendation problems on CA dataset with different
preference threshold ε. We can see that when ε becomes larger,
the running time is shorter, while the accuracy decreases.
The precision and recall of Approximation HeteRS become
stable when ε is smaller than 10−3 and 10−2 in tag-to-group
and event-to-user recommendation, respectively. The accuracy
of Approximation HeteRS in group-to-user recommendation
still increases when ε is below 10−3; however, it suffers
from significant increase in running time. In the rest of the
experiments, we set ε to 10−3 because Approximation HeteRS
balances well between accuracy and running time.

2) Experiment for Scalability: To evaluate the scalability
of the proposed algorithms with the size of EBSN graph, we
use training sets of different sizes, i.e., 6-month, 12-month
and 18-month training sets that include events in last 6, 12
and 18 months respectively. Figure 12 shows the results of
both Iterative and Approximation HeteRS in terms of p@5 and
total running time on CA of different sizes. The total number
of nodes/edges of EBSN graphs corresponding to 6-month,
12-month and 18-month training sets is 48K/1M, 102K/2.4M
and 136K/3.3M, respectively. From Fig. 12, it is observed
that Approximation HeteRS is always at least 3 times faster
than Iterative HeteRS in all recommendation problems, and the
improvement is almost an order of magnitude on the largest
EBSN graph. When the size of training data, i.e., the EBSN
graph, becomes larger, the computation time of both algo-
rithms scales well, but Approximation HeteRS scales much
better. We also observe that Approximation HeteRS achieves
similar accuracy as Iterative HeteRS, and it even produces
better results in tag-to-group recommendation problem. This
improvement probably comes from the locality property of our
approximation method: it rarely reaches nodes that are far from
query node, hence reducing the number of irrelevant nodes
in final results. Overall, the proposed approximation method
greatly improves the efficiency of HeteRS while achieving
similar accuracy as Iterative HeteRS.

Compared to Random Walk-based methods, e.g.,
full RWR, uniHeteRS, the Approximation HeteRS achieves
similar efficiency improvement as the running time of those
methods are roughly equal to that of Iterative HeteRS. Other
baselines, e.g., CF, BPR and RWR, always have shortest
response time; their accuracy, however, is considerably worse,
as shown in Figs. 5-7. Due to the space limitation, we do not
show the comparison results of Approximation HeteRS with
other methods.

VII. CONCLUSION

In this paper, we introduce a general model to solve multi-
ple recommendation problems in heterogeneous networks like
event-based social networks. First, we transform the recom-
mendation problems into node proximity calculation problem
w.r.t. query inputs on a heterogeneous graph, and employ
multivariate Markov chain to solve it. Then, we propose an
optimization scheme to learn transition parameters for our
model. The learned parameters not only enable our model to

(a) Group-to-user recommendation (b) Tag-to-group recommendation (c) Event-to-user recommendation

Fig. 11: Performance of Approximation HeteRS with different parameter ε on CA dataset

Fig. 12: Comparison between Iterative and Approximation HeteRS in terms of effectiveness and efficiency on CA dataset

achieve superior performance, but also help us to understand
roles of different types of entities in each recommendation
problem. The experimental results on two real-world datasets
demonstrate the proposed model outperforms the state-of-the-
art methods and other baselines in all recommendation tasks.
In the future, we will evaluate the performance of the proposed
model for the recommendation problem in other heterogeneous
networks.

ACKNOWLEDGMENT

This work is supported in part by a grant awarded by a
Singapore MOE AcRF Tier 2 Grant (ARC30/12).

REFERENCES

[1] W. Zhang, J. Wang, and W. Feng, “Combining latent factor model
with location features for event-based group recommendation,” in KDD.
ACM, 2013, pp. 910–918.

[2] X. Liu, Y. Tian, M. Ye, and W.-C. Lee, “Exploring personal impact for
group recommendation,” in CIKM. ACM, 2012, pp. 674–683.

[3] X. Liu, Q. He, Y. Tian, W.-C. Lee, J. McPherson, and J. Han, “Event-
based social networks: linking the online and offline social worlds,” in
KDD. ACM, 2012, pp. 1032–1040.

[4] I. Konstas, V. Stathopoulos, and J. M. Jose, “On social networks and
collaborative recommendation,” in SIGIR. ACM, 2009, pp. 195–202.

[5] S. Lee, S.-i. Song, M. Kahng, D. Lee, and S.-g. Lee, “Random walk
based entity ranking on graph for multidimensional recommendation,”
in RecSys. ACM, 2011, pp. 93–100.

[6] J. Tang, S. Wu, J. Sun, and H. Su, “Cross-domain collaboration
recommendation,” in KDD. ACM, 2012, pp. 1285–1293.

[7] H. Wang, M. Terrovitis, and N. Mamoulis, “Location recommendation
in location-based social networks using user check-in data,” in SIGSPA-
TIAL. ACM, 2013, pp. 364–373.

[8] H. Cheng, P.-N. Tan, J. Sticklen, and W. F. Punch, “Recommendation
via query centered random walk on k-partite graph,” in ICDM 2007.
IEEE, 2007, pp. 457–462.

[9] W.-K. Ching and M. K. Ng, “Multivariate markov chains,” Markov
Chains: Models, Algorithms and Applications, pp. 141–169, 2006.

[10] X. Jiang, X. Sun, and H. Zhuge, “Towards an effective and unbiased
ranking of scientific literature through mutual reinforcement,” in CIKM.
ACM, 2012, pp. 714–723.

[11] H. Sayyadi and L. Getoor, “Futurerank: Ranking scientific articles by
predicting their future pagerank,” in SDM. SIAM, 2009, pp. 533–544.

[12] M. Jiang, P. Cui, F. Wang, Q. Yang, W. Zhu, and S. Yang, “Social
recommendation across multiple relational domains,” in CIKM. ACM,
2012, pp. 1422–1431.

[13] W. Feng and J. Wang, “Incorporating heterogeneous information for
personalized tag recommendation in social tagging systems,” in KDD.
ACM, 2012, pp. 1276–1284.

[14] L. Backstrom and J. Leskovec, “Supervised random walks: predicting
and recommending links in social networks,” in WSDM. ACM, 2011,
pp. 635–644.

[15] B. Gao, T.-Y. Liu, W. Wei, T. Wang, and H. Li, “Semi-supervised
ranking on very large graphs with rich metadata,” in KDD. ACM,
2011, pp. 96–104.

[16] L. Xiang, Q. Yuan, S. Zhao, L. Chen, X. Zhang, Q. Yang, and
J. Sun, “Temporal recommendation on graphs via long-and short-term
preference fusion,” in KDD. ACM, 2010, pp. 723–732.

[17] Q. Yuan, G. Cong, and A. Sun, “Graph-based point-of-interest rec-
ommendation with geographical and temporal influences,” in CIKM.
ACM, 2014, pp. 659–668.

[18] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr:
Bayesian personalized ranking from implicit feedback,” in UAI. AUAI
Press, 2009, pp. 452–461.

[19] N. Lao and W. W. Cohen, “Fast query execution for retrieval models
based on path-constrained random walks,” in KDD. ACM, 2010, pp.
881–888.

