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Abstract—Massive amount of data that are geo-tagged and
associated with text information are being generated at an
unprecedented scale. These geo-textual data cover a wide range
of topics. Users are interested in receiving up-to-date tweets such
that their locations are close to a user specified location and their
texts are interesting to users. For example, a user may want to be
updated with tweets near her home on the topic “food poisoning
vomiting.” We consider the Temporal Spatial-Keyword Top-k
Subscription (TaSK) query. Given a TaSK query, we continuously
maintain up-to-date top-k most relevant results over a stream of
geo-textual objects (e.g., geo-tagged Tweets) for the query. The
TaSK query takes into account text relevance, spatial proximity,
and recency of geo-textual objects in evaluating its relevance with
a geo-textual object. We propose a novel solution to efficiently
process a large number of TaSK queries over a stream of geo-
textual objects. We evaluate the efficiency of our approach on
two real-world datasets and the experimental results show that
our solution is able to achieve a reduction of the processing time
by 70–80% compared with two baselines.

I. INTRODUCTION

Massive amount of data that contain both text information
and geographical location information are being generated at
an unprecedented scale on the Web. For example, Tweets,
each containing up to 140 characters, can be associated with
locations, which may be coordinates (latitude and longitude)
or semantic locations; and some social photo sharing websites
(e.g., Flickr) contain photos with both descriptive tags and
geographical information. As another example, check-ins or
reviews in location based social networks (e.g., Foursquare)
contain both text descriptions and locations of points of interest
(POIs). We refer to such data with both textual content and
geographical content as geo-textual objects.

These geo-textual objects can be modeled as continuously
arriving streams, and many real-world applications can benefit
from a publish/subscribe system for streams of such geo-
textual objects. The first example is annotation of POIs. Social
updates (e.g., Tweets) often offer the quickest first-hand reports
of news events [24], comments and reviews, indicating the
public view, business promotion information, etc. In order to
provide users a better service, a POI service provider (e.g.,
Yelp) may want to annotate each POI with its up-to-date
relevant tweets in terms of both text relevance and spatial
proximity. In addition, a manager for a POI may be interested
in up-to-date tweets whose locations are close to each POI
and whose text is relevant to the description of the POI. The
second example application is that Groupon customers register
their locations and keywords of their interests, and Groupon
pushes to customers the Groupon messages whose locations
are close to customers’ locations and whose text is relevant to
their interest keywords. As another example, users on Twitter

want to be updated with tweets near their home on a topic
(e.g., food poisoning vomiting). In these applications, user
would prefer to be updated with a few most relevant tweets
in terms of distance, text relevance, and recency, rather than
being overwhelmed by a large number of tweets.

The existing publish/subscribe systems for streams of geo-
textual objects [4], [13], [26] allow users to receive up-to-date
geo-textual objects whose locations have spatial overlap with a
user specified region and texts contain the user specified key-
words. In these systems [4], [13], [26], both the user specified
spatial region and the user specified keywords in a subscription
query perform as boolean filters. Such subscription query has
two problems: (1) A subscriber may receive very few matching
geo-textual objects or may be overwhelmed by a huge volume
of matching objects, depending on the specified query region
and query keywords; (2) It may be difficult for a subscriber to
specify the query keywords, and especially the size of a spatial
region when they are used as boolean filters. For example, a
larger region may result in too many results while a small one
may result in no result.

To address these issues, in this work we consider the top-
k subscription query, for which we rank-order geo-textual
objects and return only the top-ranked objects. The rationale
behind is analogous to the reason that search engines rank-
order documents matching a query rather than employ the
boolean retrieval model (e.g., the resulting number of matching
documents of a boolean filter can far exceed the number a
human user could possibly sift through [19]). The recently
proposed publish/subscribe system for tweets [24] returns a
subscriber top-k tweets that are ranked based on both keyword
relevance and recency. However, it does not consider the spatial
information.

In this paper, we propose a new type of top-k subscription
query, which is referred to as Temporal Spatial-Keyword Top-k
Subscription (TaSK) query, where TaSK queries are treated as
subscriptions and geo-textual objects are published items in the
publish/subscribe system. The TaSK query takes into account
the following three aspects in evaluating its relevance with a
geo-textual object: (1) Text relevance; (2) Spatial proximity;
(3) Recency of geo-textual object. The TaSK query contin-
uously maintains its up-to-date top-k results over a stream
of geo-textual objects (e.g., tweets with locations). A TaSK
query is triggered by a new published item (e.g., a tweet with
location) only if the new tweet scores higher than the current
k-th top result tweet.

Challenges: We aim at maintaining the up-to-date top-k
results for a large number of TaSK queries, which arrive as a
stream, over a stream of geo-textual objects. A straightforward



approach would work as follows: for each new geo-textual
object o we compute its ranking score w.r.t. each TaSK query
q; If the score is larger than the ranking score of the current
kth result of q, o becomes a result and is used to update the
current top-k results for q. Note that the ranking score of each
object in the top-k results of q declines over time and we need
to recompute them each time when a new object arrives. The
straightforward approach is computationally expensive when
the number of queries is large or the geo-textual objects arrive
at a high rate. Hence, we need a more efficient mechanism to
handle TaSK queries over geo-textual data stream.

We find that an underlying idea of many publish/subscribe
systems and continuous query processing systems (e.g., [1],
[24], [27]) is to group similar subscription queries such that
they can be evaluated simultaneously for a new published
object (more discussion can be found in Section III), thus
improving the performance of query processing. However, it
is challenging to achieve the similar optimization for TaSK
queries. In this paper, we propose an approach including
the following key techniques to representing, grouping, and
indexing TaSK queries such that each group of queries can be
processed simultaneously for a new geo-textual object.

(1) We propose a new concept Conditional Influence Re-
gion (CIR) to represent the TaSK query, and utilize CIR to
design a filtering condition of a TaSK query w.r.t. a spatial
cell to determine whether a new object is a result of the
query. Based on this, we develop an approach to grouping
and indexing TaSK queries and generating filtering conditions
for each group of queries such that they can be evaluated
simultaneously. (Section IV)

(2) We develop an algorithm for making use of the filtering
conditions (of each group of queries on each spatial cell) to
efficiently retrieve the TaSK queries that have a new geo-
textual object as one of their top-k results. (Section V)

(3) In our method, each TaSK query needs to be associated
with a set of non-overlapping spatial cells that can cover the
whole spatial area. To select a set of cells for better perfor-
mance, we propose a cost model based approach. (Section VI)

In summary, the paper’s contributions are twofold. First,
we define the TaSK query and present the first study on
the problem of maintaining the up-to-date results for a large
number of TaSK queries over a stream of geo-textual objects.
In particular, we propose a novel approach comprising the
aforementioned key techniques. Second, we conduct an exten-
sive experimental study for evaluating the paper’s proposals on
real-world datasets of a large scale, collected from FourSquare
and Twitter. The experimental results suggest that our proposed
algorithm is able to achieve a reduction of the processing time
by 70% to 80% compared with two baselines developed based
on existing techniques.

II. PROBLEM STATEMENT

We define the geo-textual object and the Temporal Spatial-
Keyword Top-k Subscription (TaSK) query.

Definition 1: Geo-Textual Object. A geo-textual object is
represented with a triple o = ⟨ψ, ρ, tc⟩, where ψ is a set of
keywords, ρ is a location point with latitude and longitude,
and tc is the creation time of object o. 2

In this paper, we consider a stream of geo-textual object
data. For example, it can be geo-tagged tweets in Twitter,
geo-tagged photos with tags in Flickr, check-ins with text
descriptions in Foursquare, geo-tagged webpages, etc.

Intuitively, given a stream of geo-textual objects, a TaSK
query is to continuously retrieve k objects over time such that
these objects are relevant to the query keywords, their locations
are close to the query location, and they are fresh. Note that
in addition to text relevance and spatial proximity, recency is
important for geo-textual data streams. For example, tweets
are often tied to some event and their relevance to a query
declines as time passes [24].

Definition 2: Temporal Spatial-Keyword Top-k Subscrip-
tion (TaSK) Query. A TaSK query q = ⟨ψ, ρ, k, α⟩, where
ψ is a set of query keywords, ρ is the query location, k is
the number of results to be maintained, and α ∈ [0, 1] is a
preference parameter that balances the importance between
distance proximity and text relevance, aims to continuously
feed the user with new geo-textual objects whose temporal
spatial-keyword scores are ranked within the top-k. The tem-
poral spatial-keyword score of a geo-textual object o at time
te is defined as follows.

Stsk(q, o, te) = Ssk(q, o)·St(o.tc, te), (1)

where Ssk(q, o) computes the spatial-keyword relevance be-
tween query q and object o and St(o.tc, te) computes the
object recency. Following previous work (e.g., [5], [6], [15],
[22], [30]) we compute the spatial-keyword relevance Ssk(q, o)
between q and o as follows.

Ssk(q, o) = α · Sp(dist(q.ρ, o.ρ)) + (1− α) ·TRel(q.ψ, o.ψ), (2)

where Sp(dist(q.ρ, o.ρ)) is the spatial proximity score of
the distance between query q and object o, TRel(q.ψ, o.ψ)
indicates the text relevance between q and o. 2

Example 1: Consider the annotation application in Section
I. Each POI (e.g., coffee shop) will correspond to a TaSK
query, where the location of the POI is the query location q.ρ
and its text description (e.g., coffee, espresso, mocha, green tea
latte) corresponds to the query keywords q.ψ, and we want to
continuously feed each POI with the top-k tweets with the
highest temporal spatial-keyword scores. 2

Note that all the textual, spatial, and temporal information
are important in continuously retrieving top-k results. If we
ignore the spatial (or temporal) aspect in the ranking function,
even if users can get tweets that are relevant to the query
keywords, their distances may be faraway from the query
location (or they are not the most recent).

The spatial proximity score is calculated by the normalized
Euclidian distance: Sp(dist(q.ρ, o.ρ)) = 1-dist(q.ρ,o.ρ)distmax

,where
dist(q.ρ, o.ρ) is the Euclidian distance between q and o,
and distmax can be the maximal possible distance in the
spatial area. The text relevance can be computed using any
information retrieval model in our method. We use language
models [6] in this work, described as follows:

TRel(q.ψ, o.ψ) =
∏
w∈q.ψ

PS(o.ψ,w), (3)



where PS(o.ψ,w) is the partial score of text relevance for o.ψ
w.r.t. keyword w, which is computed as follows:

PS(o.ψ,w) = (1− λ)Num(o.ψ, w)

|o.ψ| + λ
Num(Coll, w)

|Coll| ,

where Num(o.ψ, w) indicates the count of w in o.ψ,
Num(Coll, w) represents the count of w in the object col-
lection Coll, and λ is a smoothing parameter of the Jelinek-
Mercer smoothing method.

The recency of object o is calculated by the following
exponential decay function:

St(o.tc, te) = D−(te−o.tc), (4)

where D is base number that determines the rate of the recency
decay. The function is monotonically decreasing with te−o.tc.
It is introduced in [14] and is applied (e.g., [2], [16], [24]) as
the measurement of recency for stream data. Based on the
experimental studies [7], the exponential decay function has
been shown to be effective in blending the recency and text
relevancy of objects.

Property: Our scoring method is general and guarantees
that the relative ranking of two different objects w.r.t. a query is
consistent over time, i.e., if Stsk(q, oj , t) > Stsk(q, ok, t), then
∀∆t > 0 we have Stsk(q, oj , t+∆t) > Stsk(q, ok, t+∆t).

This property indicates that we need not re-rank query
results over time. However, the difficulty is that the absolute
ranking scores of the objects in top-k results will decrease over
time, which may affect the judgment of whether a new object
can be one of the results.

In our applications, the typical arrival rate of geo-textual
objects (e.g., tweets) is in the scale of millions a day, while
new TaSK queries are added at the rate of tens of thousands a
day, and we may serve millions of TaSK queries at one time.
We thus aim to develop a scalable solution to maintain the up-
to-date results for a large number of TaSK queries over a data
stream of geo-textual objects. Millions of TaSK queries can
easily fit into the available memory of modern servers. Hence,
our solution is developed under this setting. In the rare case
that the TaSK queries cannot fit into memory, we can employ
our proposed solution on multiple servers, each handling a
subset of TaSK queries independently.

III. FRAMEWORK OVERVIEW

As mentioned in Section I, an underlying idea of many
publish/subscribe systems is to group similar subscription
queries such that they can be evaluated simultaneously for a
new published object. For example, XFilter [1] employs Non-
deterministic Finite Automaton (NFA) to represent multiple
XPath subscription queries so that they can be evaluated
simultaneously; Shraer et al. [24] propose an approach to
grouping text subscription queries such that they can be
evaluated simultaneously; In the continuous k nearest neighbor
(CkNN) queries [20], each query is represented by a circular
influence region with the query location as the center and the
distance from the query location to its kth nearest object as
the radius, and queries whose influence regions fall in the
same spatial region are grouped together so that they can be
processed simultaneously.

Motivated by these systems, we also expect to design
an approach to grouping TaSK queries such that queries in
one group can be evaluated simultaneously, thus reducing the
computation of query processing. Moreover, the overhead of
updating query groups should be small since TaSK queries
arrive and expire as a stream. However, it is challenging to
develop such an approach for TaSK queries, each of which
has its own location, keywords, and preference parameter (α),
and the temporal spatial-keyword score of a current top-k result
of a query decreases over time.

To address the challenge, we propose the concept of Con-
ditional Influence Region (CIR) to represent each TaSK query,
and based on CIRs we develop an efficient mechanism to group
queries such that each group can be handled simultaneously.
Based on the grouping mechanism, we develop an algorithm
for efficiently maintaining the up-to-date top-k results for each
TaSK query over geo-textual object stream. Here we index
queries instead of geo-textual objects, and run geo-textual
objects as queries on that index.

Figure 1 shows our proposed architecture for processing
TaSK queries. A user may issue a query or generate a geo-
textual object in the system. When our system receives a TaSK
query, a complementary index—the object index component is
used to initialize the top-k result when a new query arrives.
The initialization is optional. Next, the query is represented
as CIR and it is grouped and indexed by the query index
component, utilizing the component of cost model for query
insertion. The query table maintains the basic information of
all queries (including query location, query keywords, query
preference parameter α) and their current results with ranking
scores. When a new geo-textual object arrives, the query index
is utilized to find the queries whose top-k results include the
new object, and their top-k results are updated and pushed to
the users who issue these queries.

The concept of CIR, the approach to grouping and indexing
TaSK queries, the algorithm for processing geo-textual objects
on the query index, and the algorithm of query insertion are
the techniques we develop in this paper. For object index, we
can use any of the existing index structures (e.g., [30]).

Figure 1. Architecture for Processing TaSK Queries

IV. REPRESENTING AND GROUPING TaSK QUERIES

We propose a novel approach to representing, grouping,
and indexing TaSK queries such that each group of queries
can be processed simultaneously for a new geo-textual object.
We first propose the concept of Conditional Influence Region
(CIR for short) to represent the TaSK query (Section IV-A).



Based on CIRs, we develop an approach to deriving a filtering
condition of a TaSK query w.r.t. a spatial region, and show how
to use the filtering condition to determine whether a new object
falling in the region is a result of the query (Section IV-B).
Finally we develop an approach to grouping and indexing
TaSK queries and generating filtering conditions for each
group of queries (Section IV-C).

A. Conditional Influence Region (CIR)

We propose the concept of Conditional Influence Region
(CIR) to represent the TaSK query. The idea of CIR is inspired
by the influence region technique for processing continuous
k nearest neighbor (CkNN) queries [20] (as discussed in
Section III). Each CkNN query is represented by a circular
influence region with the query location as the center and the
distance from the query location to its kth nearest object as
the radius. The influence region plays the role of a filtering
condition: If a spatial object falls in the influence region of a
query, the object becomes a result of the query; otherwise, it
cannot be a result.

However, we have no way to generate an influence region
for a TaSK query. This is because the ranking score of an
object for a TaSK query relies not only on the spatial prox-
imity, but also on the text relevance and the time gap between
the object creation time and current time. We propose the
conditional influence region (CIR) to help process the TaSK
query. Given a query q, we define its CIR to be conditional
on: (1) The text relevance score tr; (2) The timestamp t; (3)
The current k-th result of q (Rq[k]). That is, for query q, we
generate CIRs with different radii, each denoted by CIq(tr, t).
Intuitively, given a new geo-textual object o arriving at time
t, of which text relevance to q is tr, o becomes a top-k result
of q iff o falls in the CIR CIq(tr, t). Table I summarizes the
notations frequently used in the rest of this paper.

Definition 3: Conditional Influence Region (CIR). Let
CIq(tr, t) be the CIR of q w.r.t. time t and text relevance score
tr, and rq(tr, t) be the radius of CIq(tr, t). Based on Defini-
tion 2 the relationship among t, tr, Rq[k], and Sp(rq(tr, t))
can be expressed by Equation 5.

Stsk(q,Rq[k], t) = α · Sp(rq(tr, t)) + (1− α) · tr (5)

2

Table I. SUMMARY OF NOTATIONS

Notation Description
CIq(tr, t) CIR of q w.r.t. time t and text relevance score tr
rq(tr, t) radius of CIq(tr, t)

Sp(rq(tr, t)) the spatial proximity score of rq(tr, t)
Rq a list of top-k result of q sorted by Stsk
Rq[k] the k-th result of query q
Rq[k].tc the creation time of Rq[k]

distmin(q, c) the minimum distance between q and cell c
minD(q, c) spatial proximity score of distmin(q, c)
minT(q, c) minimum conditional text score w.r.t. q and c

From Equation 5, we can see that rq(tr, t) increases as the
time t goes by, and a larger value of tr results in a larger
rq(tr, t). Example 2 demonstrates the CIRs given q.

Example 2: Let tr0 and tr1 be the text relevance of geo-
textual object o0 and o1 to query q, respectively, and tr0 <

tr1. Let t0 and t1 be two timestamps and t0 < t1. Figure 2
illustrates the CIRs of query q under different timestamps and
different values of text relevance.

We observe that radius becomes larger as time passes and
a larger value of tr corresponds to a larger radius. Object o0
falls outside both CIq(tr0, t0) and CIq(tr0, t1). Hence, o0 is
not a result of q at both time t0 and time t1. Object o1 falls
outside CIq(tr1, t0) but inside CIq(tr1, t1). Therefore, o1 is a
result of q at time t1 but o1 is not a result of q at time t0. 2

q

o1
o0 Clq (tr0 , t0)

Clq (tr0 , t1)Clq (tr1 , t1)
Clq (tr1 , t0)

Figure 2. CIRs of q

q

c

CIq (tr , t)

(a) q.ρ ∈ c

q

c

minD (q , c)

minCIq (tr , t)

(b) q.ρ ̸∈ c

Figure 3. CIRs given q and c

B. Storing a TaSK Query with Filtering Condition

We first propose the method of deriving a filtering condition
of a TaSK query w.r.t. objects falling in a spatial cell based
on the concept of CIR, and then we develop an approach to
associating a TaSK query and its filtering conditions with a
spatial index. These techniques lay the foundation of our ap-
proach to grouping queries and generating a filtering condition
of a group of queries (to be presented in Section V).

1) Deriving filtering conditions of a TaSK query: Accord-
ing to Definition 3, the radii of CIRs of a query q depend on:
(1) The temporal spatial-keyword score between q and its kth
result (in Rq); (2) The text relevance between q and a new
geo-textual object o; (3) The arrival time of o. This renders it
inapplicable to generate a CIR for q and then use the region as
filtering condition to decide whether a new geo-textual object
is a result of q (in the similar way as the influence region is
used for the CkNN query [20]).

To this end, we propose a novel way of generating CIRs
and deriving their corresponding filtering conditions for a
TaSK query with respect to a spatial cell. Our idea comprises
three steps, which are detailed as follows.

Step 1: Given a spatial cell c and a TaSK query q, we
generate the minimum circle, denoting minCIq, whose ra-
dius distmin(q, c) is the minimum distance between q and
c. Let minD(q, c) represent the spatial proximity score of
distmin(q, c). Formally, we have

minD(q, c) = Sp(distmin(q, c)). (6)

Note that when q is located in c, the radius denoted by
minD(q, c) is 0; Figure 3(a) illustrates the case when q is
located within c and Figure 3(b) illustrates the case when q is
not located within c.

Step 2: Based on the circle generated in Step 1, we generate
a CIR. Here we know the spatial proximity score of radius
(minD(q, c)), the current time tcur, and the current kth result
object of q (Rq[k]), and we want to compute the current
corresponding text relevance score, which is called minimum
conditional text score.



Definition 4: Minimum Conditional Text Score. Given
query q, cell c, the kth result object Rq[k], and minD(q, c),
based on Equation 5, the corresponding text relevance score
at current time (tcur) is computed by

minT(q, c) =
Stsk(q,Rq[k], tcur)

1− α − α ·minD(q, c)

1− α , (7)

2

Step 3: This step utilizes the minimum conditional text score to
check whether a new geo-textual object o is a result for query
q if o falls in the spatial area of c. With the scores computed
in Definition 4, we have the following lemma to determine
whether o is a result.

Lemma 1: Let o be a new geo-textual object located in
the spatial cell c. We have: (1) when TRel(q.ψ, o.ψ) ≤
minT(q, c), o is not a result of q; and (2) when
TRel(q.ψ, o.ψ) > minT(q, c), o may be a result of q.

Proof: If TRel(q.ψ, o.ψ) ≤ minT(q, c), then we have
Stsk(q,Rq[k], tcur) ≥ (1− α)TRel(q.ψ, o.ψ) + α ·minD(q, c).

Since ∀o.ρ ∈ c, Sp(dist(q.ρ, o.ρ)) ≤ minD(q, c), we have:
Stsk(q,Rq[k], tcur) ≥ (1−α)TRel(q.ψ, o.ψ)+α·Sp(dist(q.ρ, o.ρ)).

Thus o cannot be a result of q. 2

Lemma 1 offers a filtering condition of query q for objects
falling in cell c. Specifically, for a new geo-textual object o
falling in cell c, we can apply Lemma 1 to check whether each
of the queries stored in c will let o become a result.

2) Associating a TaSK query with a spatial index: In last
subsection, we present an approach to deriving a filtering
condition of a TaSK query w.r.t. objects falling in a cell
based on CIRs, and the filtering condition enables us to check
whether an object falling in the cell is a result of the query.
However, a new geo-textual object may fall in any cell in the
spatial area. Hence, to utilize Lemma 1 to handle all incoming
geo-textual objects, we need to find a set of spatial cells
that can cover the whole spatial area, and for each query we
maintain its corresponding minimum conditional text score in
each cell. Also, we need a spatial indexing structure to organize
the cells, queries, and corresponding conditional text scores.

We choose the Quad-tree for the purpose. The reason is
that Quad-tree is more suitable for update-intensive applica-
tions [11] compared with R-tree based indices, which will
incur additional cost for maintaining the MBRs when new
queries arrive.

For each query q, we select a set of non-overlapping cells
from different levels of the Quad-tree that together cover the
whole spatial area; q is associated with each of the selected
cells, and for each selected cell c, we generate corresponding
minT(q, c). Figure 4 exemplifies the set of Quad-tree cells
(crossed by “X”) associated with q0. The problem of selecting
a set of cells in the Quad-tree for a query will be discussed in
Section VI.

3) Storing a TaSK query and its minimum conditional text
score: The next problem is that, given a query q and one of
its selected cells c, how to store the minimum conditional text
score (minT(q, c)).

Our basic idea is to separately store each component of
minT(q, c) according to: (1) Whether it is time-dependent; (2)
Whether it is cell-dependent.

According to Equation 7, minT(q, c) is computed by
the following two parts: (1) 1

1−αStsk(q,Rq[k], tcur) =
1

1−αSsk(q,Rq[k]) ·D−(tcur−Rq [k].tc); and (2) α
1−αminD(q, c).

We note that part (1) is time-dependent but cell-
independent, while part (2) is time-independent but cell-
dependent. In the rest of the paper, we use S̃(q,Rq[k]) and
minD̃(q, c) to denote 1

1−αSsk(q,Rq[k]) and α
1−αminD(q, c)

respectively. Since part (1) is time-dependent, we separately
store S̃(q,Rq[k]) and Rq[k].tc. Then given tcur, part (1)
can be computed through S̃(q,Rq[k]) and Rq[k].tc. We also
maintain two types of query tables: (1) Local query table,
which is separately maintained by each Quad-tree cell c, is
used for storing the cell-dependent component – minD̃(q, c);
(2) Global query table, which is used for storing the cell-
independent components – S̃(q,Rq[k]) and Rq[k].tc. Note that
the global query table also stores q.α, q.ρ, and the current
results for each q.

Example 3: Consider three TaSK queries, q0, q1, and q2,
and a Quad-tree cell c, which is colored as grey in Figure 5,
where q0.ρ ∈ c, q1.ρ ̸∈ c, and q2.ρ ̸∈ c. The information for
the three queries, the global query table, and the local query
table for cell c are exemplified in Figure 5. 2

C. Grouping and indexing TaSK Queries

Based on the techniques in the last two subsections, we
propose a new mechanism to group and index TaSK queries
in each cell, as well as generate a filtering condition for
a group such that the queries in a group can be processed
simultaneously.

Our high-level structure in each cell is an inverted file [19].
With the inverted file, for a geo-textual object we only need
to consider the queries containing at least one keyword in
the object since the object that does not contain any query
keyword will not be a result of the query. Nevertheless, it
is still inefficient of checking on each posting (query) in the
postings lists [19] of each word contained in the object.

To enable group filtering in a postings list for processing
queries in a group simultaneously, we propose a technique to
group the postings in each postings list into blocks, each of
which contains a specified number of postings, and propose an
approach to estimating the lower bound of minT for a block.
The bound can be used to generate the filtering condition
of a block w.r.t. each new object. However, it is non-trivial
to derive such a tight bound for a block. The challenge is
that the value of minT is determined by each TaSK query,
and different queries may have different location, keyword,
preference parameter (α), and the top-k result set. To address
the challenge, we propose an efficient method for estimating
lower bounds of minT, and we develop the spatial-aware block
structure to optimize the estimation of the lower bounds.

1) Estimating lower bounds of minT: Recall that
minT(q, c) is computed by two parts, one is time-dependent
and the other is time independent. So we are unable to acquire
the exact current minimum minT(q, c) in bi unless we compute
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minT(q, c) for each q ∈ bi at the current time, which is
what we want to avoid. Consequently, given a block bi, we
compute the lower bound of minT(q, c) for all q ∈ bi by
computing the minimum value of 1

1−αStsk(q,Rq[k], tcur) and
the maximum value of α

1−αminD(q, c) respectively for all
q ∈ bi, and combining them based on Equation 7.

However, the challenge here is that different queries in
bi may have different values of Rq[k].tc, which is called
the the base time of q, and thus we still have to retrieve
Rq[k].tc for all q ∈ bi for computing the minimum value of
1

1−αStsk(q,Rq[k], tcur) in bi. To address the problem, our idea
is to unify different values of base time of all queries in a block
to be a uniform base time, which is denoted by tb. In particular,
for each query q we compute the equivalent spatial-keyword
score of Ssk(q,Rq[k]) at the base time tb, rather than at the
creation time of Rq[k] (Rq[k].tc). We next introduce how to
compute equivalent spatial-keyword score.

Definition 5: Equivalent Spatial-Keyword Score. Let q be
a TaSK query, the equivalent spatial-keyword score between
q and Rq[k] at time tb is computed by:

Sbsk(q,Rq[k], tb) = Ssk(q,Rq[k]) ·DRq [k].tc−tb (8)

2

Example 4: Figure 6 illustrates the variation of
Stsk(q,Rq[k], tcur) w.r.t. the current time. t−cur denotes
the timestamp just before the current time and t+cur represents
the timestamp just after the current time. tb is the unified
base time. Sbsk(q,Rq[k], tb) is the equivalent spatial-keyword
score for q at tb. When a new object o arrives at tcur, we use
Sbsk(q,Rq[k], tb) to compute Stsk(q,Rq[k], tcur) as follows
according to Definition 5:

Stsk(q,Rq[k], tcur) = Sbsk(q,Rq[k], tb) ·D−(tcur−tb)

Then we find that Stsk(q, o, tcur) > Stsk(q,Rq[k], tcur), and
thus o becomes a result of q and we update Sbsk(q,Rq[k], tb).

2

Based on Equations 7 and 8, we compute minT(q, c) as
follows:

minT(q, c) =
Sbsk(q,Rq[k], tb) ·D−(tcur−tb)

1− α − α ·minD(q, c)

1− α ,

Hence, we have the following lemma for estimating the lower
bound of minT(q, c).

Lemma 2: Given a block bi, let bi.minT be the minimum
value of minT(q, c) for all q ∈ bi, bi.minS be the minimum
value of 1

1−αSbsk(q,Rq[k], tb) for all q ∈ bi, and bi.minD

be the maximum value of minD̃(q, c) for all q ∈ bi, then

bi.minS ·D−(tcur−tb) − bi.minD can be the lower bound of
bi.minT . Specifically, we have:

bi.minT ≥ bi.minS ·D−(tcur−tb) − bi.minD (9)

Proof: Given a block bi, assume that qm ∈ bi s.t. ∀q ∈ bi,
minT(qm, c) ≤ minT(q, c). We have

bi.minT =
1

1− αSbsk(qm, Rqm [k], tb)·D−(tcur−tb)−minD̃(qm, c).

Since 1
1−αSbsk(qm, Rqm [k], tb) ≥ bi.minS and

minD̃(qm, c) ≤ bi.minD, we have Equation 9. 2

2) Spatial-aware block structure: We proceed to present
our proposed spatial-aware block structure for organizing
postings lists. To filter as many blocks as possible in each
postings list when a new geo-textual object arrives, we want
to acquire a relatively tight lower bound for each block. If
we can organize queries such that queries in a block have
similar values of minT, it is more likely that we can estimate
a tighter lower bound for minT. To achieve this, we partition
the queries associated with cell c based on their corresponding
minD̃(q, c), which is invariable w.r.t. both the time and the
kth result Rq[k]. Specifically, in each cell c queries are first
partitioned by the minD̃-buckets (Definition 6), then queries
in each bucket are indexed by a block based inverted file.

Definition 6: minD̃-Bucket. We use minD̃-buckets to or-
ganize blocks in a cell. Each minD̃-bucket (“bucket” for short)
corresponds to a score interval of minD̃, and is associated with
an order number r. Namely, the rth bucket Br corresponds to
the following interval: [r · ∆D, (r + 1) · ∆D), where ∆D
is a specified parameter indicating the range of minD̃ in a
bucket. A query q is in bucket Br if: r ·∆D ≤ minD̃(q, c) <
(r + 1) ·∆D. 2

…

…

Figure 7. Structure of Spatial-Aware Block Based Inverted File

Figure 7 illustrates the structure of the spatial-aware
block based inverted file. The TaSK queries are firstly par-
titioned into a pre-specified number of buckets based on their
minD̃(q, c). For each bucket Bi, a separate block based
inverted file is maintained where the queries in each list are
sorted according to their query ids in ascending order. Each
block bi contains at most pmax queries, where pmax is a
specified parameter. Each posting of a query just stores its



query id. To compute the lower bound based on Lemma 2,
we augment each block bi with the following values: (1)
bi.minID and bi.maxID, which respectively indicate the
minimum and maximum ids of queries in bi; (2) bi.minS,
which is the minimum value of 1

1−αSbsk(q,Rq[k], tb) for
all q ∈ bi; (3) bi.minD, which is the maximum value of
minD̃(q, c) for all q ∈ bi (the maximum value of minD̃(q, c)
corresponds to the minimum distance between q and c).

V. ALGORITHM FOR PROCESSING TaSK QUERIES

We proceed to present the algorithm for processing and
updating indexed TaSK queries. Recall that each query q is
associated with a set of non-overlapping cells that cover the
whole space. Hence given a query q, for any location ρ in
the space there must exist a cell c s.t. ρ ∈ c and c contains
q’s posting. Consequently, when a new geo-textual object o
arrives, we only traverse the inverted file in the cells whose
areas cover o.ρ.

Based on the filtering condition of a block w.r.t. each new
object, we propose an algorithm for traversing the inverted file
with forward skipping. Our high-level idea is as follows. For a
cell containing object o we traverse its postings lists of all the
words contained in o simultaneously based on the Document-
at-a-Time (DAAT) technique [19]; for each postings list we
maintain a cursor that specifies the query id we currently visit.
Since the query ids are sorted in ascending order within each
minD̃-bucket, the queries whose ids are smaller than the id
at the cursor position of the postings list of keyword w may
belong to two cases: (1) they have been evaluated; or (2) they
do not contain w. For each block bi from the postings lists of
words in object o, we generate a filtering condition (Lemma 3)
to check whether bi can be safely filtered without evaluating
each individual query in bi.

Lemma 3: Let o be a geo-textual object, bi be a block in
bucket B in the postings list of keyword w′ (w′ ∈ o.ψ), and
So
bi

be the subset of o.ψ such that So
bi
= {w|w ∈ o.ψ∧pwc,B ≤

bi.maxID} where pwc,B denotes the current position of the
cursor in the postings list of w in Bucket B under cell c. We
use TRelmax (o.ψ, S

o
bi
) to denote the maximum possible text

relevance between o.ψ and the queries containing keywords in
So
bi

. Then we have the following proposition: If bi.minT ≥
TRelmax (o.ψ, S

o
bi
), o will not be a result of any query in bi.

Proof: Since the query ids in B are sorted in ascending
order, if pw

′

c,B > bi.maxID, then based on the DAAT scheme
it suggests that: (1) o cannot be a result of any query in bi;
or (2) queries in bi that can match o have already been found.
Hence, unevaluated queries in bi cannot contain any keyword
that does not belong to So

bi
. So according to Equation 3

the text relevance between o and any query in bi cannot
exceed TRelmax (o.ψ, S

o
bi
). Then based on Lemmas 1 and 2,

if bi.minT ≥ TRelmax (o.ψ, S
o
bi
), o cannot be a result of any

query in bi. 2

Lemma 3 offers a filtering condition for efficiently deter-
mining whether object o is not a result of any query in a block.
If it can be determined, we move the cursor to the first query
in the next block; otherwise the cursor is forwarded to the next
query, and we need to check each individual query in the block
to determine whether o is a result.

Algorithm 1: ObjectProcess(Object o)
1 Result ← ∅;
2 c← CIQ.root;
3 while cell c is not empty do
4 for each bucket Bi in c do
5 Sw ← o.ψ;
6 ∀w ∈ Sw, pwc,Bi

← id of the first query in
I(w, c,Bi);

7 while Sw ̸= ∅ do
8 wm ← term with the minimum pwc,Bi

for all
w ∈ Sw;

9 pwm
c,Bi
← FindNext(wm, {pwc,Bi

}w∈Sw , Result);
10 if pwm

c,Bi
reaches the end of the current block bc

then
11 update bc.minS;
12 if pwm

c,Bi
reaches the end of I(wm, c, Bi) then

13 Sw ← Sw \ wm;
14 c ← c’s child node that contains o.ρ;

We are now ready to present our algorithm for processing
an incoming object o to maintain the top-k results of individual
queries. The algorithm starts from the root cell of the Quad-
tree and iteratively visits the child cells that cover the object o
until we reach the leaf cell; At each visited cell, queries in each
minD̃-bucket Bi are separately evaluated. For evaluating the
queries in each bucket, it traverses the postings lists for each
word in o concurrently, and applies Lemma 3 to prune the
search space.

Algorithm 1 shows the pseudo code. For each bucket Bi in
a visited cell, we first initialize the cursor of each postings list
to be the first element in the list (lines 5–6). Here I(w, c,Bi)
represents the postings list for keyword w in bucket Bi under
cell c (line 6). Next, we choose the postings list of wmin where
its cursor is located at the posting with the minimum query id
among all the postings lists of the words of o (line 8). Then
we invoke function FindNext to evaluate the blocks/queries
sequentially until wmin is not the keyword with the minimum
pwc,Bi

for all w ∈ Sw, where Sw represents the keyword set
s.t. (∀wj ∈ Sw) pwj

c,Bi
< I(wj , c, Bi).maxID (line 9). If the

cursor reaches the end of the current block bc, we update
bc.minS (line 10). We will remove wmin if pwmin

c,Bi
reaches

the end of I(wmin, c, Bi) (lines 12–13). When Sw is empty,
we move to the next bucket.

Function FindNext(w, {pwc,Bi
}w∈Sw

, Result)

1 pc ← pwc,B ;
2 bc ← the block containing pc;
3 if pc = bc.first then
4 if bc.minT ≥ TRelmax(o.ψ, Sobc) then
5 bc ← bc.next; pc ← bc.first; // Lemma 3
6 else
7 q ← the query indicated by pc;
8 if TRel(o.ψ, q.ψ) > minT(q, c) then
9 Compute Stsk(q, o, tcur);

10 if o is the result of q then
11 Return q as the query that matches o;
12 Update the the result of q in the global query list;
13 pc ← pc.next;
14 return pc;



Function FindNext is used for checking whether object o
is a top-k result of the current block/query. First, pc and bc
are respectively initialized as the current posting and block
(lines 1–2). If pc is the first posting in bc, i.e., none of the
queries in bc have been evaluated, then we compare bc.minT
with TRelmax(o.ψ, S

o
bc
). If bc.minT ≥ TRelmax(o.ψ, S

o
bc
),

none of the queries in bc can have o as a result, and thus we
skip bc and forward the cursor to the next block (lines 4–6).
However, if pc is not the first posting in bc, which indicates
that bc cannot be skipped as a whole, then we need to consider
the following two cases: (1) If the text relevance between o
and q (TRel(o.ψ, q.ψ)) is larger than minT(q, c), we compute
Stsk(q, o, tcur) and check whether o is a result of q. If so, q is
returned and we update the result of q in the global query list
(lines 9–13). (2) If TRel(o.ψ, q.ψ) is smaller than minT(q, c),
then o cannot be a result of q, and we just skip q.

VI. QUERY INSERTION

Recall that each TaSK query needs to be associated with
a set of non-overlapping spatial cells that can cover the
whole spatial area. To choose such a set of cells for a better
performance, we propose a cost model based approach.

Heuristic Method for Query Insertion: Before introducing
our proposed method, we first give a heuristic method for
associating a new query onto the Quad-tree cells:

Step 1: Starting from the root cell croot of the Quad-tree,
we check whether each of croot’s children ci covers q.ρ. If
not, we associate q with ci. If so, we invoke Step 2 with ci as
the input.

Step 2: Given an input cell c, we check whether each of
c’s children cj covers q.ρ. If not, we associate q with cj . If
so, we recursively invoke Step 2 with cj as the input.

Such recursive procedure terminates when the input cell c
in Step 2 reaches the m-th layer of the Quad-tree, where m is
a tunable parameter. An example association by this heuristic
method is given in Figure 4, and this method is denoted by
CIQ-H (Heuristic CIR based Quad-tree).

Next we present our cost-model based method denoted by
CIQ (CIR based Quad-tree). The objective for selecting a set
of cells to associate a new query q is twofold: (1) Minimize the
number of evaluations of q, which occurs when q cannot be
skipped according to Lemma 1 while processing a geo-textual
object; (2) Decrease the number of cells used for associating
q, which incurs cost. However, we need to strike a balance
between the two objectives that have a trade-off.

0 0( , )minD q cɶ

(a) minD̃ on c0

0 1( , )minD q cɶ

0 2( , )minD q cɶ

0 4( , )minD q cɶ

0 3( , )minD q cɶ

(b) minD̃s on c0’s children

Figure 8. minD̃s on cells from different layers

A. Cost Estimation

Because we do not know the text and location information
of future geo-textual objects, it is impossible to compute the

exact number of evaluations for query q, So we estimate the
expected number of evaluations of q by Definition 7.

Definition 7: Expected Number of Evaluations: Given
query q and cell c, Fo denotes the arrival frequency of
geo-textual objects, P (q.ψ) denotes the probability of an
object containing any of the keywords in q.ψ, P (c) is the
probability of o.ρ ∈ c, E(∆t) indicates the expected du-
ration of q (from the creation time to the deletion time),
and P (TRel > minT(q, c)) denotes the probability of
TRel(q, o) > minT(q, c). If q is associated with cell c, the
expected number of evaluations for q is computed by

E#(q, c) = Fo · P (q.ψ) · P (c) · P (TRel > minT(q, c)) · E(∆t).
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We estimate Fo, P (c), P (q.ψ), and E(∆t) based on his-
torical data, which is straightforward. We estimate P (TRel >
minT(q, c)) through the probability density function for the
text relevance between an arbitrary query and an arbitrary
object that contains at least one query keyword.

Next, we illustrate the comparison between associating q
with c0 and associating q with c0’s children (c1, c2, c3, and
c4 in Figure 8). If we associate q with c0, then minT(q, c0) =
1

1−αSbsk(q,Rq[k], tb) − minD̃(q, c0) and it will be used for
checking new objects falling in c0. If we associate q with c0’s
children, for each ci ∈ c0.children we have minT(q, ci) =
1

1−αSbsk(q,Rq[k], tb) −minD̃(q, ci), which will be used for
checking incoming objects falling in ci.

Lemma 4: Given a quad-tree cell c and a query q, we have

E#(q, c) ≥
∑

ci∈c.children

E#(q, ci), (10)

Proof: Since (∀ci ∈ c.children) minD(q, c) ≥ minD(q, ci),
(∀ci ∈ c.children) minT(q, c) ≤ minT(q, ci). We know that
P (c) =

∑
ci∈c.children P (ci). Hence, we have E#(q, c) ≥∑

ci∈c.childrenE#(q, ci) based on Definition 7. 2

According to Lemma 4, associating query q with the child
cells of c will lead to smaller value of E# for the incoming
objects falling in the area of c. However, both the space and
the time cost for storing q will increase as the number of cells
used for associating q mounts up. Hence, we need to balance
the trade-off between E# and the cost for storing q.

To determine whether q is to be associated with cell c or
its child cells, we compute the difference of their expected
number of evaluations based on Lemma 4 as follows:

∆E#(q, c) = E#(q, c)−
∑

ci∈c.children

E#(q, ci). (11)

Then we compute the difference of the number of insert
operations between the two options as follows:

∆U#(q, c) = 3× |q.ψ|. (12)

To make the two types of cost comparable, we introduce a
cost normalization factor δ that specifies the weight between
the two types of cost. If ∆E#(q, c) > ∆U#(q, c) × δ, i.e.,
the benefit from associating the query with the child cells
outperforms the overhead, then we associate q with the child
cells of c; otherwise we associate q with c. The factor δ is
empirically set at 3.5 in our experiments.



B. Inserting a TaSK Query

The method for query insertion is summarized as follows.
It starts from the root cell of the Quad-tree and recursively
checks whether we associate the query with the current cell or
its child cells. Algorithm 2 shows the pseudo code for query
insertion. Specifically, if ∆E#(q, c) ≤ ∆U#(q, c) × δ, the
query will be associated with the current cell c; Otherwise we
need to further check whether q will be associated with c’s
child nodes or lower level descendant nodes by invoking the
comparison again for each child of c.

Algorithm 2: QueryInsertion(Query q, Cell c, Factor δ)
1 if ∆E#(q, c) ≤ ∆U#(q, c)× δ then
2 Store the postings of q into c;
3 else
4 for each ci ∈ c.children do
5 QueryInsertion(q, ci, δ);

After we select a set of cells for associating query q,
for each selected cell c, we map q to a bucket based on
minD(q, c). Then for each keyword in q, we insert q into the
postings list of the keyword in the bucket. Specifically, we
maintain a temporary block bu for each postings list under
each bucket, which serves as a “buffer” to receive the newly
inserted queries. If bu becomes full, we compute bu.minID,
bu.maxID, bu.minS, and bu.minD. Subsequently, we insert
bu into the corresponding postings list and then create a new
temporary block to replace bu.

Query Deletion: The operation for query deletion is conducted
during query processing. When a deletion request for query q
is received, we mark q as expired in the global query list. If
we find that all the queries in a block bi are expired during
the process of evaluating queries in bi, then we delete bi.

VII. EXPERIMENTAL STUDY

A. Baselines

We discuss how to exploit existing techniques for process-
ing TaSK queries. No algorithm exist for solving the problem.
We develop two baselines by utilizing existing index structures.

1) Inverted File plus Query List (IFL): We use the in-
verted file to index TaSK queries. We also maintain a
global query table. For each query q, the table stores the
query id, Sbsk(q,Rq[k], tb), q.ρ, q.α, and its current query
results. When a geo-textual object o arrives, we traverse
the postings lists associated with the words in the object
in the Document-at-a-Time (DAAT) [19] manner. For each
posting, we get the query information from the query ta-
ble for computing the temporal spatial-keyword score be-
tween o and the query (Stsk(q, o, tcur)). Then we compare
Stsk(q, o, tcur) with Stsk(q,Rq[k], tcur), which is computed
from Sbsk(q,Rq[k], tb), to determine whether o is a result of
q. If so, we update the result set of q with o in the query table.

2) Block based Inverted File (BIF): This baseline uses a
block based inverted file (BIF) to index the TaSK queries.
Similar to the CIR based Quad-tree (CIQ), BIF partitions
each postings list into blocks, each of which contains a pre-
specified number of postings. For each block bi, we maintain
bi.minID, bi.maxID, and bi.minS. Similar to Algorithm 1,

Table II. DEFAULT VALUES FOR EACH PARAMETER

Parameter Default Setting
number of query keywords TWE: random from 1 to 5

preference parameter α random from 0 to 1
number of maintained query results random from 10 to 30
number of postings in each block FSQ:128 TWE:1024

number of minD-buckets for each cell 16
decaying scale 0.5

cost normalization factor δ 3.5
number of indexed queries FSQ:1M TWE: 10M

while processing each new object o we traverse the correspond-
ing postings lists with forward block skipping technique. Since
BIF does not utilize any spatial partitioning scheme, we cannot
derive minD(q, c) for each query. Hence, while computing the
minimum value of minT(q, c) for each block bi, we use “1”,
which is the maximum possible value of the distance score, to
replace minD(q, c) in Equation 9.

B. Experimental Settings

Our experiments are conducted on two real datasets:
FSQ and TWE1. FSQ is a real-life dataset collected from
Foursquare, which contains 1.1 million worldwide POIs with
both location and text. The dataset TWE is a larger real-life
dataset that comprises 40 million tweets with geo-locations.

The TaSK queries are generated as follows. For FSQ, each
POI is mapped to a TaSK query, in which the text description
of the POI becomes the query keywords, and the location of
the POI becomes the query location. For TWE, we randomly
select a number of keywords from the tweet keywords, and the
query location is the same as the tweet location. In addition, for
experiments on FSQ, we regard each tweet with geo-location
from TWE as a geo-textual object, and we use those tweets
to annotate the POIs from FSQ. For experiments on TWE,
each tweet with geo-location from TWE is considered to be
a geo-textual object on TWE. Default value for parameters is
presented in Table II.

We implemented all algorithms in Java on a PC with
Intel(R) Core(TM) i7-4770k @3.50GHz and 16GB RAM.

C. Experimental Result

1) the Time Effect: In this set of experiments, each method
runs for 4,000 seconds (which is simulation duration, denoted
by ∆tsim) on both FSQ and TWE. We set the decaying scale
D−∆tsim at 0.5. Our proposed method is denoted by CIQ, and
the variation of CIQ (without the cost-model based method
for query insertion) is denoted by CIQ-H as presented in
Section VI. The arrival rate of geo-tagged tweets in Twitter
is around 100 (4,600 tweets/second [18] and 2.17% of the
tweets are geo-tagged2). To make sure that all the methods
can handle, we use the following setting: during each second
5 geo-textual objects are issued, 5 new queries are issued, and
5 queries become expired. At the beginning, each method is
initialized with 1M and 10M TaSK queries, respectively, for
FSQ and TWE.

We report the average runtime for processing an object and
the average runtime for inserting a query during each period

1Datasets are available at: http://www.ntu.edu.sg/home/gaocong/datacode.htm
2http://journalistsresource.org/studies/society/social-media/mapping-global-

twitter-heartbeat-geography#
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Figure 9. Effect of Time for Object Processing
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of 500 seconds. Figure 9 shows that both CIQ-H and CIQ
outperform the two baselines significantly in object processing,
and CIQ exhibits the best performance. CIQ is able to improve
the runtime performance of the best baseline BIF by 70%-80%
on both datasets. The reasons could be explained as follows.

For IFL, we need to check each posting in the postings list
of each word of the incoming geo-textual object. While for
BIF, postings are indexed by blocks, which may help prune
the queries in a block-based manner during the search of
postings list. As a result, BIF performs moderately better than
IFL. However, compared with CIQ-H and CIQ, BIF does not
include the spatial information of each query while building the
index, and thus its pruning technique is not able to consider the
spatial proximity between the queries and incoming objects.
Consequently, CIQ-H and CIQ perform substantially better
than BIF. In addition, CIQ improves the runtime performance
of CIQ-H by 10% to 30%. Such performance improvement is
contributed by the cost-model based method for associating a
new TaSK query onto the cells of the Quad-tree.

Figure 10 shows the performance of query insertion for
each structure. Since CIQ-H and CIQ require the query to
be stored in the postings list under each cell associated with
the query, the runtime costs of query insertion for CIQ-H
and CIQ are higher than IFL and BIF. However, the time for
processing updates is negligible compared with the time for

object processing by comparing the runtime in Figure 9. Here
the frequency of object processing and the frequency of query
insertion are the same. In the publish/subscribe scenario the
frequency of query insert is normally much lower than that of
object arrivals, and thus the portion of update cost will be even
smaller than that shown here. Hence, in the rest of experiments,
we only show the object processing cost while ignoring the
update cost. Note that the deletion of queries is performed
together with object processing as mentioned in Section VI
and the time is included in that for object processing.

2) the Number of Query Keywords: We proceed to evaluate
the effect of the number of keywords of each TaSK query.
Figure 11 shows that all the methods present an increasing
trend for the runtime of object processing as we increase
the number of query keywords. This is because the number
of query keywords is proportional to the number of postings
required for indexing the query, which will lead to an increase
in the length of each postings list. We also observe that CIQ
is able to improve on the runtime of BIF by 60%-70%.

3) Effect of α: In this experiment, we investigate the effect
of the query preference parameter α. We observe similar trends
on both datasets. For IFL, the performance of object processing
is not affected by α. The reason is that IFL needs to retrieve
and evaluate all the postings in each postings list of the object
keyword while processing an incoming object, irrespective of



the value of α. Hence the value of α will not affect the
performance of IFL. However for BIF, the pruning strategy
for traversing the postings lists is based on the text relevance.
Consequently, more emphasis on the spatial aspect will lower
the effectiveness of the text-based pruning strategy. As for CIQ
and CIQ-H, the pruning strategy is based on both spatial and
text aspects. We observe that as α becomes larger, the disparity
between CIQ and BIF becomes larger. At α = 0.9 (distance
score has a high weight), CIQ improves over BIF by 70% on
FSQ and 75% on TWE. When α = 0.1, the performances of
CIQ and BIF are close.

4) the Number of Maintained Query Results: This ex-
periment evaluates the performance w.r.t. parameter “q.k”.
Figure 13 shows that the runtime for object processing slightly
increases as we increase the value of q.k for each query.
The reason is that the higher value of q.k will induce the
lower value of the temporal spatial-keyword score between an
incoming object and the kth result maintained for each query
on average. Consequently, the average number of queries that
have o as a result will increase.

5) the Number of Postings in each Block: This round of
experiments is to evaluate the performance of the indices
utilizing block structure, including CIQ, CIQ-H, and BIF,
when we vary the block size. Figure 14 shows the trend
of the object processing cost w.r.t. the block size. On FSQ,
all the three indices perform best when each block contains
128 postings, while for TWE the value is changed to 1024.
This can be explained as follows. If the block size is too
small, then the number of blocks we need to evaluate will
increase. On the other hand, if the block size is too large,
the possibility for skipping a block will decrease despite
the reduction of the number of blocks to be visited while
processing an incoming object. Nevertheless, the performance
is not significantly affected by the block size for all indices.

6) the Number of Buckets in each Cell: In this experiment,
we vary the number of buckets in each cell for CIQ-H and CIQ.
Figure 15 shows that both methods exhibit better performance
as we increase the number of buckets in a cell. However,
when we increase the number of buckets from 16 to 64, the
improvement is insignificant on both datasets.

7) the Decaying Scale: Figure 16 shows that the runtime
for object processing decreases as we increase the decaying
scale. The reason is that a lower value of decaying scale will
increase the number of queries that have an incoming object
to be their results.

8) the Number of Indexed Queries: We evaluate the effect
of the number of indexed queries. The number of queries
scales from 10M to 40M. Obviously, increasing the number
of indexed queries leads to the increase of postings in each
postings list. Hence, more postings will be retrieved and
evaluated while processing a new object. Figure 18 shows
that both the runtime for object processing and the index
size exhibit a linearly increasing trend for all methods as we
increase the number of indexed queries. Note that for CIQ
the query tables (including both global query tables and local
query tables) take 70% to 75% of the total memory cost. We
can see that memory cost would not be an issue considering
the available memory of PC.

9) Arrival Rate: We vary the arrival rates of both objects
and queries. Figure 18(a) presents the total time costs in
every 1 second for object processing when we vary the arrival
rate of geo-textual objects from 2 to 32 object(s)/second with
10M TaSK queries indexed. We find that CIQ is capable of
processing 32 geo-textual objects with 10M indexed queries
while the other methods fail to handle.

Figure 18(b) presents the total runtime of query insertion
when we vary the arrival rate of TaSK queries. Although the
query insertion cost of CIQ is moderately higher than the two
baselines, the arrival rate of query is much lower than the
arrival rate of object under the publish/subscribe scenario.

VIII. RELATED WORK

Continuous kNN Queries. Our problem is related to the
problem of continuously monitoring spatial kNN queries over
moving objects, which monitors the nearest k objects to
a given query point among all the moving objects. Yu et
al. [28] and Xiong et al. [27] study the problem of periodically
updating results for continuous kNN queries over moving
objects. Mouratidis et al. [20] propose a method for evaluating
continuous kNN queries based on a grid index and the concept
of influence region. These proposals focus on moving objects
while our work aims to handle a stream of geo-textual objects.
We do not see a way to adapt them for handling TaSK queries.

Top-k Spatial Keyword Search. Top-k kNN Query (TkQ)
returns k most spatial-textual relevant objects that are ranked
by both spatial proximity and text relevancy. Several geo-
textual indices have been proposed to efficiently answer TkQ,
such as the IR2-tree [10], the IR-tree [6], S2I [22], I3 [30],
and IL-Quadtree [29]. Among them, the IR2-tree [10], the IR-
tree [6] and S2I [22] are based on the R-tree, and the others
are based on the Quad-tree. There exits no sensible way to
adopt these methods to handle TaSK queries.

Reverse kNN Search. The TaSK query can be viewed as for
each incoming geo-textual object finding the set of queries
that take the geo-textual object as one of their top-k results
according to the temporal spatial-textual scores. In this sense,
the TaSK query is also related to the Reverse k Nearest
Neighbor (RkNN) query, which is to find the set of objects
that take a query as one of their kNN based on the spatial
distance. The RkNN query has been studied extensively (e.g.,
[3], [12], [25]). The textual relevance is also considered for the
reverse kNN query [17]. However, these techniques cannot be
used for answering the TaSK query because they just consider
the one-time query over static objects.

Content based Publish/Subscribe. Closest to our problem
setting is the existing work on top-k publish/subscribe sys-
tems [8], [9], [21], [24] that make published items trigger a
subscription only if it ranks among the top-k published items.
In the setting of most of these systems [8], [9], [21], the
relevance of an item remains constant during a pre-specified
time interval, and once its lifetime exceeds the item simply
expires. The expired item is then replaced by the most relevant
unexpired item. The setting is different from our setting
where time is part of the ranking score. The setting of top-
k publish/subscribe system [24] is similar to ours, where the
published items are tweets and the subscriptions are news. The
published items (e.g., tweets) do not have a fixed expiration



time. Instead, time is a part of the relevance score, which
decays as time passes. Older items retire from the top-k only
when new items that score higher arrive. The inverted files
are used as the indexes and the classic information retrieval
methods are adapted for the ranking. Our work differs from
this study in that both queries and objects in our work are geo-
textual. The spatial aspect is part of the ranking score, which
renders the solution [24] inapplicable, and also introduces new
challenges for top-k publish/subscribe.

Several publish/subscribe systems [4], [13], [26] are de-
veloped for geo-textual objects. To index subscription queries,
Chen et al. [4] present a hybrid index based on Quad-tree
and Inverted files, and Li et al. [13] present a hybrid index
based on R-tree and Inverted files. Recently, Wang et al. [26]
propose a novel adaptive spatial-textual partition tree that
adaptively groups the subscription queries based on keyword
and spatial partitions, guided by a cost model. However, their
publish/subscribe problem is different from the top-k pub-
lish/subscribe problem, and their methods cannot be employed
to handle TaSK queries.

News Detection over Tweets Stream. Sankaranarayanan et
al. [23] develop a news processing system TwitterStand to
continuously acquire breaking news from the tweets generated
by some selected users (“Seeders”) who publish news. Their
published tweets are clustered together, and each cluster of
tweets is associated with a set of geographical locations by
analyzing the tweet content and tweet meta-data. Users can
specify the topics and geographical regions of interest, and
summaries of clusters w.r.t. the specified topics and regions
are displayed on the map. However, the queries in TwitterStand
are continuous spatial-keyword queries with boolean filtering
expressions, which are different from our TaSK queries. More-
over, the work does not consider how to efficiently process a
large number of subscription queries.

IX. CONCLUSION

We consider the problem of maintaining up-to-date results
for a large number of TaSK queries that take into account
text relevance, spatial proximity, and recency of geo-textual
objects. We propose a mechanism to efficiently processing a
large number of TaSK queries. In particular, based on the
concept of conditional influence region, we develop an ap-
proach to grouping and indexing TaSK queries and generating
filtering conditions for each group of queries to evaluate them
simultaneously. The experimental results on two real-world
datasets show that our solution is able to achieve a reduction of
the processing time by 70–80% compared with two baselines.
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