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Abstract—Influence maximization is a fundamental research
problem in social networks. Viral marketing, one of its appli-
cations, is to get a small number of users to adopt a product,
which subsequently triggers a large cascade of further adoptions
by utilizing “Word-of-Mouth” effect in social networks. Influence
maximization problem has been extensively studied recently.
However, none of the previous work considers the time constraint
in the influence maximization problem.

In this paper, we propose the time constrained influence
maximization problem. We show that the problem is NP-hard,
and prove the monotonicity and submodularity of the time
constrained influence spread function. Based on this, we develop
a greedy algorithm with performance guarantees. To improve the
algorithm scalability, we propose two Influence Spreading Path
based methods. Extensive experiments conducted over four public
available datasets demonstrate the efficiency and effectiveness of
the Influence Spreading Path based methods.

I. INTRODUCTION

The influence maximization problem has been extensively
studied (e.g., [1]–[8]). It aims to find a set of K influential
nodes such that the expected number of nodes reached by
influence spreading from the selected node set is maximized.
Among others, a motivating application of influence maxi-
mization is viral marketing in social networks (e.g., Face-
book), which has become a common ground for businesses
to target potential customers. Viral marketing aims to select
a small number of influential users to adopt a product, and
subsequently trigger a large cascade of further adoptions by
utilizing the “Word-of-Mouth” effect in social networks [9],
[10]. For example, a pop vocal concert marketer may select
a small number of influential users of a social network, and
offer each of them a free ticket, such that the concert is widely
known throughout the entire social network.

Recent research reveals that time plays an important role in
the influence spread from one user to another [11] and the time
needed for a user to influence another varies. Indeed, influence
propagation time is considered in the recent work [11]–[15] on
building the underlying influence propagation graph from real
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Fig. 1. An example illustrating the time constrained influence maximization.

world log data. On the other hand, in many real world viral
marketing applications, people only care about how widely the
influence is spread before a fixed time. For example, to market
a pop vocal concert to be held on Sep 1st 2012, the marketer
would want to maximize the number of users influenced before
Sep 1st 2012. Indeed, users influenced after the concert would
not bring any profit to the marketer.

However, none of the previous works considers the influence
maximization under the time constraint. 1 We proceed to
illustrate the idea of incorporating time factor in influence
maximization using an example in Figure 1. In this example,
five users are connected by five edges, each of which indicates
a user may influence over another user. Numbers over each
edge give the corresponding influencing probabilities, and the
distribution of influencing delays. For example, user v2 will
influence v5 with a probability of 0.7, and the influencing
delay is distributed among the first two time units (e.g., day)
with probability 5/7 and 2/7 respectively. This means that
user v2 would influence v5 within the first time unit (resp. the
second time unit) at a probability 0.7× 5/7 (resp. 0.7× 2/7),
and v2 cannot influence v5 after the first two time units.
Suppose we are asked to find a single seed user to maximize
the expected number of influenced users. Without any time
constraint, user v1 will be returned as the result since it is
expected to influence the maximal number of users among
all users. However, if we aim to find a single seed user that
influences the maximal number of users in 1 time unit, user
v2 will be returned as the result (the algorithms for calculating
the result will be presented in later sections).

1We note that the problem of time-constrained influence maximization is
independently studied by Chen et al. [16].



In this paper, we define the time constrained influence
maximization problem, which is based on the Latency Aware
Independent Cascade influence propagation model. We prove
that the time constrained influence maximization problem
is NP-hard. We propose an algorithm that considers time
factor in the process of Monte Carlo simulation to estimate
the influence spread for a given seed set. This enables us
to employ a greedy algorithm to solve the time-constrained
influence maximization problem. However, the greedy algo-
rithm is computationally expensive, which does not complete
the task after two days running with LiveJournal dataset (to
be described in Section V). As to be discussed in Related
Work section, existing solutions for conventional influence
maximization problem do not consider time factor. To this
end, we propose two Influence Spreading Path based methods
to solve the time constrained influence maximization problem.

The contributions of this paper are summarized as follows.

• We define the time constrained influence maximization
problem in social networks. We prove the NP-hardness of
the problem. We study the monotonicity and submodular-
ity of the corresponding time constrained influence spread
function. We also propose a time step based simulation
algorithm for estimating the time constrained influence.
These lead to a simulation based approximate algorithm.

• To develop more computation and memory efficient algo-
rithms, we propose to logically augment a social network
to incorporate influencing delay information, and define
the Influence Spreading Path, based on which we propose
two algorithms.

• Extensive experiments conducted on four public available
datasets demonstrate the efficiency and effectiveness of
the Influence Spreading Path based methods, and show
that the influential nodes returned by methods of solving
conventional influence maximization problem incur low
influence for the time constrained version.

The remainder of this paper is organized as follows. The
related work is reviewed in the next section. In Section III,
we present a latency aware independent cascade model and
the formal problem definition. In Section IV, we give a
greedy algorithm, and then propose a simulation and two
Influence Spreading Path based solutions. Section V presents
the experimental study. Finally, Section VI concludes this
paper and points out future directions.

II. RELATED WORK

A. Influence Propagation Graph

The problem of building the underlying influence propaga-
tion graph has been studied recently. Saito et al. [14] propose
an asynchronous model to extend the traditional Independent
Cascade Models by incorporating influence spreading delay
information. The proposed asynchronous model is employed
to facilitate model parameter learning of the influence graph.
Other efforts of learning parameters of the influence graph
from history data include the work [11], [13]. In fact, the

problem of building an influence graph is orthogonal to influ-
ence maximization problem, which assumes that the influence
graph is known.

B. Influence Maximization

Richardson et al. [1], [2] are the first to study influence
maximization problem in social networks. They formulate the
problem with a probabilistic framework and employ Markov
Random Field to solve it. Kempe et al. [3] formulate the
problem as a discrete optimization problem, which is widely
adopted by subsequent studies. They prove the influence
maximization problem is NP-hard, and propose a greedy
algorithm to approximately solve it by repeatedly selecting
the node incurring the largest marginal influence increase to
a seed set. To find the node incurring the largest marginal
influence increase at each step, one needs to know influence
spreads induced by different seed sets generated by adding
each individual candidate node into current seed set.

However, the problem of calculating influence spread in-
duced by a given seed set is very difficult (Chen et al. [5] prove
it to be #P-hard), and thus Kempe et al. [3] propose to simulate
influence spreading process starting from the given seed set
for a large number of times, and then use the average value of
simulation results to approximate it. However, the simulation
based method is computationally expensive and cannot scale
well with large social networks [4]–[6]. To ease this problem,
Leskovec et al. [4] propose a mechanism called Cost-Effective
Lazy Forward (CELF) to reduce the number of times required
to calculate influence spread, which will be used to optimize
our algorithms in the conducted experiments. Chen et al.
propose two fast heuristics algorithms, DegreeDiscount [5]
and PMIA [6], to select nodes at each step of the greedy
algorithm. At each step, DegreeDiscount adds the node with
the largest degree to seed set, and then degrees of neighbors of
the selected node are discounted accordingly. PMIA calculates
influence spread by employing local influence arborescences,
which are based on the most probable influence path between
two nodes. As PMIA needs to maintain arborescence for each
node, it consumes a huge amount of memory, which makes it
unscalable to large social graphs. We compare with DegreeD-
iscount and PMIA in our experimental studies. Experimental
results show that DegreeDiscount achieves much less influence
spread compared to methods proposed in this work. PMIA
achieves less influence spread than methods proposed in this
work, and consumes much more memory, which makes it
inapplicable to large social graph (LiveJournal dataset). In
addition, Wang et al. [7] solve the problem by exploring
the underlying community structure of social networks. Chen
et al. [16] independently propose the time-critical influence
maximization problem, in which the influencing model is a
special case of the model proposed in this paper. In their
model influence delays are constrained to follow the geometric
distribution. In contrast, our model has no such a constraint
and our algorithm is applicable when other distributions are
used in the influencing model.



III. INFLUENCE PROPAGATION MODEL AND THE TIME
CONSTRAINED INFLUENCE MAXIMIZATION PROBLEM

We briefly describe the Independent Cascade (IC) model in
Section III-A. We present the proposed Latency Aware Inde-
pendent Cascade (LAIC) model, which incorporates influence
propagation latency into the IC model in Section III-B. Based
on the LAIC model, the formal definition of time constrained
influence maximization problem is given in Section III-C.
Notations used in this paper are summarized in Table I.

TABLE I
NOTATION TABLE

Notation Definition
G = {V, E} Social Network
n |V|
m |E|
K Number of seed nodes
S Seed set
N(u) Neighbor set of u
Puv Probability u activates v

Plat
u Distribution of influence propagation latency of u

σT (S) Expected number of nodes influenced by S within
T time units

AP(t)(u, S) Probability u is first activated by S at time t
APT (u, S) Probability u is activated within time T by S
ISP (S) All influence spreading paths
ISP (u, S) All influence spreading paths ending with u
ISPθ,T (S) Influence spreading paths with length no larger than T ,

probability no less than θ
ISPθ,T (u, S) Influence spreading paths with length no larger than T ,

probability no less than θ, and ending with u
nθT max|S|≤K{|ISPθ,T (S)|}

A. Independent Cascade Model

Independent Cascade (IC) Model [18] is a popular model
describing how influence spreads in social networks, which
is widely adopted by the existing influence maximization
algorithms [3]–[8].

In the IC model, each node of the social network is in
either active (e.g., buying a product) or inactive state. A
node is allowed to switch from inactive to active state, but
not vice versa. Given a set of seed nodes S, the IC model
propagates influence in inductive steps. Let At be the set of
nodes activated at step t, and A0 = S. At step t+1, every node
u ∈ At has a single chance to activate each of its currently
inactive neighbors v, i.e., v /∈ ∪ti=0Ai. The probability that u
activates v is given by the activating probability Puv associated
with edge (u, v). The influence propagation process terminates
at step t, if and only if At = ϕ. In the IC model, once a node
u is activated, it either activates its currently inactive neighbor
v in the immediate next step, or does not activate v at all.

However, as discussed in Section I, influence propagation
delay exists in real world social networks, which is not
captured by the IC model. We proceed to present the Latency
Aware Independent Cascade (LAIC) model, which encodes the
influence propagation latency information into the IC model.

B. Latency Aware Independent Cascade (LAIC) Model

For LAIC model, when a node u is first activated at step
t, it activates its currently inactive neighbor v in step t + δt
with probability PuvP lat

u (δt), where δt is the influencing delay
and is randomly drawn from the delay distribution P lat

u . Note
that a node can be activated at most once. If a node has
multiple neighbors influencing it, it is activated at the earliest
activation time while the rest activations are ignored. The
influence propagation process terminates at step t, iff there
is no node activated after t.

C. Problem Definition and its NP-hardness

Based on the proposed LAIC model, we next present the
time constrained influence maximization problem.
Time Constrained Influence Maximization Problem. Given
a social network G = {V, E}, time bound T , positive integer
K < |V|, activating probability Puv ∈ (0, 1] for each (u, v) ∈
E , and latency distribution P lat

u for each u ∈ V , find a seed set
S ⊂ V of K nodes, such that the expected number of nodes
influenced by S within T time, σT (S), is maximized under
the LAIC model.

Analogous to the conventional influence maximization prob-
lem, the time constrained version is NP-hard, which is shown
in Theorem 1.

Theorem 1: The time constrained influence maximization
problem is NP-hard.

Proof: As a traditional influence maximization problem
(known to be NP-complete) is the corresponding time con-
strained problem with unlimited time bound, we argue that the
traditional influence maximization problem is a special case of
the time constrained influence maximization problem, which
thus is NP-complete.

IV. INFLUENCE SPREADING PATH BASED SOLUTION

In Section IV-A, we show the Monotonicity and Submodu-
larity of the time constrained influence function σT (S) in the
LAIC model, which thus leads to a natural hill climbing greedy
algorithm framework. To implement the greedy algorithm, we
need a method to calculate the expected influence spread for
a given seed set, whose special case has been shown to be
#P-hard [6]. To approximately solve this #P-hard problem,
we propose a simulation based algorithm in Section IV-B,
and define the Influence Spreading Path in Section IV-C. In
Section IV-D, an Influence Spreading Path based algorithm
is given. Finally, an algorithm employing faster marginal
influence spread estimation is proposed in Section IV-E.

A. Monotonicity, Submodularity and Greedy Algorithm

Let σT (S) be the expected number of nodes influenced by
S within T time units. By replacing σ(S) with σT (S), we
adapt the greedy algorithm [3] to approximately solve the time
constrained influence maiximization problem, which is given
in Algorithm 1.

The greedy algorithm repeatedly adds the node incurring the
largest marginal influence increase to seed set S, until |S| =



Algorithm 1: Greedy Algorithm Framework

Input: G, T , K, Puv and P lat
u

Output: S
1 initialize S = ∅
2 for i← 1 to K do
3 u← argmaxv σT (S ∪ {v})− σT (S)
4 S ← S ∪ {u}
5 end
6 return S

K. The time complexity of Algorithm 1 is O(KnT (σT (S))),
where n is the number of nodes in G and T (σT (S)) the run-
ning time for calculating σT (S∪{v}). As Theorem 2 shows the
influence function σT (S) is monotonous and submodular, and
thus the greedy algorithm approximates the optimal solution
with a lower bound ratio of 1− 1/e [20].

Theorem 2: With the LAIC model, the influence function
σT (S) is monotonous and submodular.

Proof: With the LAIC model, each social network can
be treated as a random graph. Each edge (u, v) ∈ E is
associated with a random Bernoulli variable governed by Puv ,
which controls the likelihood u activates v. Each u ∈ V is
associated with an influence delay distribution P lat

u , which
controls the length of edges starting from u. Let X denote the
entire probability space constituting all possible determined
influence propagation graphs. A determined influence prop-
agation graph is generated by flipping a coin of bias Puv

for every edge (u, v) ∈ E to determine if edge (u, v) exists
in the determined graph, and drawing a delay length from
distribution P lat

u for every node u ∈ V to determine the length
of u’s outgoing edges in the determined graph. Then we have
σT (S) =

∑
x∈X P (x)σT,x(S), where P (x) is the probability

of x, σT,x(S) is the number of influenced nodes by S within
T time units over the determined graph x.

For any determined graph x ∈ X , σT,x(S) is equal to the
number of nodes reachable from S by at least one path with
length no larger than T . It is easy to find that σT,x(S) ≤
σT,x(S∪{u}), therefore σT,x(S) is monotonous. As σT (S) =∑

x∈X P (x)σT,x(S), and P (x) ∈ (0, 1], σT (S) is monotonous
either.

Let S1 ⊆ S2 ⊆ V and u ∈ V . We first consider a
determined graph x ∈ X . σT,x(S1 ∪ {u}) − σT,x(S1) is
the number of nodes of T length reachable from u, but
not T length reachable from S1. As S1 ⊆ S2, we have
σT,x(S1 ∪ {u}) − σT,x(S1) ≥ σT,x(S2 ∪ {u}) − σT,x(S2).
Thus σT,x(S) is submodular. Noticing that σT (S) is a non-
negtive linear combination of submodular functions σT,x(S),
Thus σT (S) is submodular, which concludes the proof.

The main difficulty in applying the greedy algorithm lies
in calculating the expected influence spread for a given set of
seeds (Line 3 of Algorithm 1), whose special case has been
shown to be #P-hard [6]. In the following sections, we propose
a set of approximate algorithms including a simulation based
algorithm and two Influence Spreading Path based algorithms.

B. Simulation based Algorithm for σT (S)

We propose Algorithm 2 to simulate the time constrained
influence spreading process based on time steps. Note that
Algorithm 2 is different from the simulation algorithm for
conventional influence maximization problem [3], which is
based on Breadth-first Search (BFS) and does not consider
time factor.

Algorithm 2: σT (S) based on Simulation

Input: G, T , S, Puv and P lat
u

Output: σT (S)
1 v.status← inactive, v.actT ime← +∞ for v ∈ V \ S
2 v.status← active, v.actT ime← 0 for v ∈ S
3 A0 ← S
4 t← 1
5 do
6 for u ∈ At−1 do
7 for (u, v) ∈ E and v.status ̸= active do
8 draw flag from Bernoulli(Puv)
9 if flag = 1 then

10 draw δt from P lat
u

11 if v.status = inactive then
12 if t+ δt ≤ T then
13 v.status← latent active
14 v.actT ime← t+ δt
15 end
16 end
17 else if t+ δt < v.actT ime then
18 v.actT ime← t+ δt
19 end
20 end
21 end
22 end
23 At ← {u|u.actT ime = t ∩ u.status = latent active}
24 u.status← active for u ∈ At−1

25 t← t+ 1
26 while |{u|u.status = latent active}| ̸= 0 or At ̸= ∅;
27 return

∑t
j=0 |Aj |

In Algorithm 2, we simulate the influence propagation
process starting from S. In the beginning, all nodes in S are
set to be active, while all other nodes are set to be inactive
(Lines 1-2 of Algorithm 2). The set of nodes activated at
time t is denoted by At. Nodes in S are treated as being
activated at time 0 (Line 3). At time step t > 0, each node
u ∈ At−1 intends to activate each of its inactive or latent
active (to be explained) outgoing neighbors v ∈ Nout(u) with
the probability Puv . If u successfully activates v (Lines 9-
20), an activating latency δt (δt = 0, 1, 2...) is drawn from
the discrete distribution P lat

u associated with node u. If v is
in inactive state and t + δt ≤ T , v switches to latent active
state with activating time t+ δt, which specifies when v will
switch from latent active to active. If v is already in latent
active state, v updates its activating time with the minimum



of t+δt and its current activating time. All latent active nodes
with activating time t automatically switch to active state at
time step t (Lines 23-24). The process terminates if and only
if there is no more latent active nodes and newly activated
nodes. When the process terminates, the number of activated
nodes is returned (Line 27).
Time and space complexities Let n (resp. m) be the number
of nodes (resp. edges) in social network G. The first four lines
of Algorithm 2 take O(n) time. For the entire while loop, the
dominant cost is on exploring the graph starting from S along
edges. In the worst case, the algorithm needs to explore all
nodes and edges in the graph. Thus the running time for the
while loop is O(n+m), which is also the time complexity of
Algorithm 2. In addition to the input social graph, Algorithm 2
only needs to store status and actT ime for each node, the
space needed by which is O(n). Thus the space complexity
of Algorithm 2 is O(n+m), which is dominated by the input
social network.

To obtain an approximate value of the expected influence
spread within T time units, we need to repeat Algorithm 2 for a
large number (R) of times and average the returned numbers.
Consequently the total running time of the combination of
Algorithm 1 and 2 is O(KnR(n+m)). By following [3], [5],
[6], R = 20, 000 simulations are employed to calculate the
expected influence spread for a given seed set.

C. Influence Spreading Path based Activation Probability Cal-
culation

Due to the computational curse, the simulation based algo-
rithm is not suitable to large social networks. We proceed to
describe how a social network is augmented by incorporating
influence delay information into the graph structure, based
on which the definition of influence spreading path is given.
Then we propose an algorithm for calculating the activation
probability of a node given a seed set.

1) Augmenting Social Network with Influencing Delay In-
formation: In the LAIC model, when a node u is first activated
at time t, it tries to activate each of its outgoing neighbors
v at a later time t + δt with a probability of PuvP lat

u (δt).
To incorporate influence propagation delay information into
the social network structure, we logically augment the orig-
inal social network G = (V, E) into a directed multigraph
GT = (V,E), where V = V . For each (u, v) ∈ E , we put
T edges e1uv, e

2
uv, . . . , e

T
uv from u to v in G. Each edge etuv

in E is assigned with two values, i.e., length(etuv) = t and
prob(etuv) = PuvP lat

u (t).
Figure 2 gives the multigraph augmented from the example

of social network in Figure 1 under the case of T = 2. We
note that this augmentation is done logically. All algorithms
proposed in this paper are able to infer the augmented graph
from an original graph on the fly.

2) Constrained Influence Spreading Path: Given a seed set
S, the expected influence spread within time T , σT (S), is
the expected number of nodes activated no later than time
T , denoted by

∑
u∈V APT (u, S), where APT (u, S) is the

probability that S activates u within T . It is easy to find out

V1

V5

V4

V2

V3

0.2   t=1

0.
3 
  t
=
1

0.5   t=1

0.
4 
  t
=
1

0.4
   t
=1

0.2   t=2

0.1   t=2

0.
2 
  t
=
2

0.2
   t
=2 0.

1 
 t=

2

Fig. 2. The logically augmented multigraph with T = 2.

that APT (u, S) = 0, if there is no path from S to u in the
augmented directed multigraph GT = (V,E). Thus in what
follows, we ignore those nodes not reachable from S.

To estimate APT (u, S) for each node u, we define Influ-
ence Spreading Path in the augmented graph below.

Definition 1: Influence Spreading Path. Given a seed set
S and a directed multigraph G = (V,E), a simple path
p = (u1

e1−→ u2
e2−→ u3 . . .

ek−1−−−→ uk) in graph G is an
Influence Spreading Path, if and only if u1 ∈ S and ui /∈ S
for i ̸= 1, where k > 1. For an influence spreading path p, the
length of p is

∑i=k−1
i=1 length(ei), while the probability of p

is
∏i=k−1

i=1 prob(ei). Note that the algorithms proposed in this
paper do not need the detailed path information, and we only
need to store length, probability and the ending node of each
Influence Spreading Path.

From Definition 1, we notice that an Influence Spreading
Path cannot contain duplicate nodes, as a node cannot be
activated more than once. Furthermore, except the starting
point, an influence spreading path cannot contain any other
nodes belonging to S, which comes from the fact that seed
nodes are already in active state at the very beginning and
cannot be activated at a later time.

We observe that each Influence Spreading Path p ending
with u gives a possible way for S to activate u. The activating
time taken by following p to activate u is length(p), while
the activating probability of this path is prob(p). For a given
seed set S, we denote ISP(u, S) to be all possible influence
spreading paths ending with u. Note that |ISP(u, S)| grows
exponentially as the number of nodes increases. To reduce
the number of paths in ISP(u, S), we apply two restrictions
to filter out some Influence Spreading Paths which are not
or less related to our problem. First, we prune paths with
length larger than T , which are not related to influence
spread within time T . Furthermore, we filter out paths with
probability less than a small threshhold θ > 0, as Influence
Spreading Paths with small probabilities have limited impacts
on the influence spread estimation. The resulting constrained
Influence Spreading Paths are denoted by ISPθ,T (u, S).

3) Activation Probability Calculation based on Influence
Spreading Paths: By assuming all Influence Spreading Paths
ending at u (ISPθ,T (u, S)) are independent with each other,
we are able to calculate the probability u gets activated by
S within time T (APT (u, S)) from ISPθ,T (u, S) in Pro-
cedure AP outlined below. Procedure AP iterates over all



possible time steps from 1 to T , calculates the probability
that u is first activated at time t (AP(t)(u, S)) (Line 3), and
adds it to APT (u, S) at Line 4. At Line 3, 1−APT (u, S)
is the probability u has not been activated before t, and
1−

∏
p∈ISPθ,T (u,S),length(p)=t(1−prob(p)) is the probability

u is activated at time t. At the end of each iteration t,
APT (u, S) is updated to store the probability u is activated
before t + 1. The loop results in the probability APT (u, S)
that u is activated within time T .

Time and space complexities For the running time, the
dominant part of Procedure AP is the for loop in which
every Influence Spreading Path in ISPθ,T (u, S) is checked
exactly once. Thus the running time of Procedure AP is
O(|ISPθ,T (u, S)|). Note that the space complexity of Pro-
cedure AP is also O(|ISPθ,T (u, S)|).

Procedure AP
Input: ISPθ,T (u, S), T
Output: APT (u, S)

1 APT (u, S)← 0
2 for t← 1 to T do
3 AP(t)(u, S)← (1−APT (u, S))(1−∏

p∈ISPθ,T (u,S),length(p)=t(1− prob(p))

4 APT (u, S)← APT (u, S) +AP(t)(u, S)
5 end
6 return APT (u, S)

D. Influence Spreading Path based Algorithm for σT (S)

Algorithm 3 computes the expected influence spread within
time T for a given seed set (σT (S)). First, Algorithm 3 gets
all constrained Influence Spreading Paths starting from S by a
Depth-First Search (DFS) (Line 2), which are then divided into
disjoint sets based on their ending nodes (Line 3). For each
node u with at least one constrained Influence Spreading Path,
i.e., ISPθ,T (u, S) ̸= ∅, Procedure AP is applied to calculate
the probability APT (u, S) that u is activated by S within
time T (Line 5). Finally, activation probabilities of all nodes
are summed together and returned as the expected influence
spread of S.

Like Algorithm 2, Algorithm 3 is embedded in Algorithm 1
(calculating σT (S)) to find a seed set of K nodes.

Time and space complexities Let nθT =
max|S|≤K{|ISPθ,T (S)|}, where |ISPθ,T (S)| is the number
of Influence Spreading Paths starting from S with length no
less than T and probability no less than θ. The second line of
Algorithm 3 can be done using DFS algorithm in O(nθT ) time,
which is also the time needed for the third line. As calculating
APT (u, S) by Procedure AP takes O(|ISPθ,T (u, S)|) time
and

∑
u∈V |ISPθ,T (u, S)| = |ISPθ,T (S)| ≤ nθT , the for

loop also takes O(nθT ) time. Thus the total running time of
Algorithm 3 is O(nθT ). Note that the Influence Spreading
Path based solution (combination of Algorithm 1 and 3) takes
O(KnnθT ) time, which is much less than the time needed

Algorithm 3: σT (S) based on Influence Spreading Path
Input: G, θ, T , S
Output: σT (S)

1 σT (S)← 0
2 get all Influence Spreading Paths with length no larger

than T and probability no less than θ by DFS.
3 divide them into different ISPθ,T (u, S).
4 for every u with non-empty ISPθ,T (u, S) do
5 σT (S)← σT (S) +AP (ISPθ,T (u, S), T )
6 end
7 return σT (S)

by simulation based solution (combination of Algorithm 1
and 2) O(KnR(n +m)). It is obvious to see that the space
complexity of Algorithm 3 is O(n + m + nθT ), where the
n + m part comes from the input social graph, and nθT is
for storing ISPθ,T (S).

E. Faster Marginal Influence Spread Estimation

In the greedy Algorithm 1, when trying to add one more
node into the currently selected seed set S, we need to
calculate the marginal influence increase brought by adding
each u ∈ V \S. Instead of calculating σT (S ∪ {u}) from
scratch by Algorithm 3, we propose to employ faster marginal
influence spread estimation.

Suppose currently selected seed set is S, we want to
calculate the marginal influence spread increase if node v is
added to S, i.e., σT (S ∪ {v}) − σT (S), which is obviously
no larger than σT ({v}). By noticing that σT ({v}) is already
known as it was calculated when selecting the first seed node,
we propose to approximate σT (S ∪ {v})− σT (S) by making
a discount of σT ({v}) in Equation 1.

σT (S∪{v})−σT (S) ≈ σT ({v})
∑

(v,w)∈E Pvw(1− PSw)σT ({w})∑
(v,w)∈E PvwσT ({w})

(1)
where PSw = 1 −

∏
(u,w)∈E,u∈S(1 − Puw) if w ∈ N(S);

otherwise, PSw = 0. In other words, PSw is the probability
w gets immediately activated by seed nodes. The rationality
behind Equation 1 is that the marginal influence increase is a
discount of σT ({v}). The higher probability v’s neighbors are
already activated by S, the larger discount should be applied
to σT ({v}). With this marginal influence spread increase
approximation, we propose Algorithm 4 to solve the time
constrained influence maximization problem.

Algorithm 4 calculates time constrained influence spread
based on influence spreading paths for each single node (Line
1-3). Seed nodes are selected by picking the node with the
largest discounted marginal influence one by one (Lines 8-
12).

Time and space complexities As Algorithm 3 takes O(nθT )
time, the first for loop of Algorithm 4 takes O(nnθT ) time.
Line 9 takes O(nemax) time while line 11 takes O(Kemax)
time, where emax is the largest degree among all nodes. Thus



Algorithm 4: Marginal Discount of Influence Spread Path

Input: G, T , K, Puv , P lat
u , θ

Output: S
1 for every u ∈ V do
2 calculate σT ({u}) by Algorithm 3.
3 end
4 u← argmaxv σT ({v})
5 S ← {u}
6 PSw ← Puw for w ∈ Nout(u)
7 PSw ← 0 for w /∈ Nout(u)
8 for k ← 1 to K − 1 do
9 u← argmaxv σT ({v})

∑
(v,w)∈E Pvw(1−PSw)σT ({w})∑

(v,w)∈E PvwσT ({w})
10 S ← S ∪ {u}
11 update PSw for every w ∈ Nout(S).
12 end
13 return S

the second for loop takes O((K−1)nemax) time, and the total
running time of Algorithm 4 is O(n(nθT + (K − 1)emax)).
Note that Algorithm 4 itself solves the time constrained influ-
ence maximization problem, and does not need to be combined
with Algorithm 1. By comparing the time complexities of
Algorithm 4 and the combination of Algorithms 1 and 3,
whose running time is O(KnnθT ), we find that they have
the same running time when K = 1, and Algorithm 4 runs
faster when K > 1. This observation is consistent with the
experimental results that will be presented in the next section.
The memory space needed by Algorithm 4 is dominated by
running Algorithm 3 at line 2, and thus the space complexity
for Algorithm 4 is the same as that for Algorithm 3, which is
O(n+m+ nθT ).

V. EXPERIMENTS

A. Experimental Setup

1) Experimental Datasets: Four public available2 real-
world social networks are used in the experiments. The basic
statistics of these networks are summarized in Table II. The
first one is a Wikipedia voting network, denoted by Wiki,
where nodes represent wikipedia users, and an edge from
node i to j represents that user i voted on user j. The
network contains all Wikipedia voting data from the inception
of Wikipedia till Jan 3 2008. The second one is a who-
trust-whom social network of a general consumer review site
Epinions.com, which is denoted by Epinions. The third one
is denoted by Slashdot, which is a social network extracted
from the user community of Slashdot.org in February 2009.
The last one is a large social network formed by LiveJournal
community, denoted by LiveJournal.

2) Evaluated Methods: We note that all methods proposed
in this paper are based on the greedy algorithm framework.
The difference lies in the way of calculating the marginal

2http://snap.stanford.edu/data/index.html

TABLE II
STATISTICS OF FOUR SOCIAL NETWORKS

Networks Wiki Epinions Slashdot LiveJournal
Node Number 7, 115 75K 82K 4.8M
Edge Number 103K 508K 948K 68.9M

Clustering Coefficient 0.2089 0.2283 0.0617 0.3123

influence increase, i.e., Line 3 of Algorithm 1. The following
methods are evaluated.

• Monte Carlo (MC). Calculate both σT (S ∪ {v}) and
σT (S) by simulations (combination of Algorithm 1
and 2). 20, 000 simulations are employed for each seed
set by following [3], [5], [6].

• Influence Spreading Path (ISP). Calculate both σT (S ∪
{v}) and σT (S) by using Influence Spreading Paths
(combination of Algorithm 1 and 3). The Influence
Spreading Paths starting from each seed set are calculated
from scratch by DFS.

• Marginal Discount of Influence Spread Path (MISP).
Calculate influence spread σT (u) for each single node
u with Influence Spreading Paths starting from u, then
select seed node with the largest discounted marginal
influence spread one by one (Algorithm 4).

• Random. Randomly select K nodes as seed, which acts
as the baseline method.

• Degree Discount (DC). The degree discount heuristic
proposed by [5]. The implementation of DC used in this
paper is provided by its authors.

• Prefix excluding Maximum Influence Arborescence
(PMIA). PMIA [6] is a state-of-the-art solution for con-
ventional influence maximization problem. The imple-
mentation of PMIA used in this paper is provided by
its authors.

Note that all evaluated methods are enhanced by CELF [4]
optimization if applicable.

3) Parameter Setting: The activating probability Puv of
each edge (u, v) is set by the “Weighted Cascade” policy,
which is widely adopted by the existing conventional influ-
ence maximization techniques [3], [5], [6]. With “Weighted
Cascade” policy, Puv is set to be 1

Nin(v)
, where Nin(v) is the

indegree of v.
The influencing delays (P lat

u ) used in the experiments
follow the Poisson distribution. For each node u ∈ V , the
parameter for its Poisson distribution (expected number of
occurrences in a given interval) is randomly selected from
the set {1, 2, 3, ..., 20}. We note that the distributions of both
activating probability and influencing delay are orthogonal to
the proposed methods.

The threshold parameter for PMIA is set to 1
320 , which is

the suggested value by [6]. We also try to run PMIA with
other threshold values, which result in less influence spread.

Parameter θ controls the number of Influence Spreading
Paths for MISP and ISP. Intuitively, smaller value of θ results
in larger number of Influence Spreading Paths used by MISP
and ISP, and thus should achieve larger influence spread.
However, on the other hand, smaller value of θ incurs a larger
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Fig. 3. The results of running time and influence spread on Wiki with
different θ (T = 10,K = 50).

amount of running time. So there exists a tradeoff between
influence spread and running time, which is tunable by θ.

To investigate this tradeoff and select an optimal value of θ,
we run MISP and ISP with different values of θ. The running
time and influence spread for different θ on Wiki dataset
with T = 10, K = 50 are depicted in Figure 3. Note that
results for other datasets and/or different values of T and K
are similar, which are not included in this paper due to the
limited space. Not surprisingly, Figure 3 shows that smaller
value of θ achieves larger influence spread but consumes more
running time for both MISP and ISP methods. As MISP and
ISP achieve relatively large influence spread and short running
time with θ = 10−5, θ is set to 10−5 for MISP and ISP in the
rest of the experimentation,

4) Measurement: For time constrained social influence
maximization problem, a critical performance metric is the
number of nodes influenced by the selected seed set within a
given time. As the time constrained influence maximization
problem is NP-hard, we are not able to get the result in
polynomial time. Thus we apply 20, 000 Monte Carlo sim-
ulations with seed set selected by each evaluated method, and
the average influenced node number is used as the influence
spread of the seed set. We also measure the running time
and memory needed for each method. Furthermore, we will
analyze the impacts of different values of T on the time
constrained influence maximization problem.

5) Experimental Platform: All algorithms are implemented
in C++ language, and compiled by gcc 4.4.3 on a Linux server
with an 8-core Intel Xeon 3.0 GHz CPU and 12 GB memory.

B. Experimental Results

In this section, we present the experimental results of the
proposed methods on four real world social networks.

1) Influence Spread: All six methods indicated in Sec-
tion V-A2 are evaluated over datasets Wiki, Epinions, and
Slashdot. However, PMIA is not evaluated on the LiveJournal
dataset as the memory needed for PMIA exceeds 12GB, which
is the amount of memory on the testing server. We cannot
obtain the result for MC method on LiveJournal dataset after
running it for two days.

Figure 4 shows the results of influence spread over the
four datasets with T = 10 for different K values. It shows
that both ISP and MISP methods achieve similar influence
spread as the computationally expensive greedy algorithm MC,
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Fig. 6. The results of running time and influence spread on Wiki with
different T (K = 50).

which verifies the effectiveness of Influence Spreading Path
based methods. We also observe that ISP and MISP achieve
similar influence spread although MISP is an approximate
version of ISP. As expected, a larger number of seed nodes
lead to larger influence spread for all evaluated methods, and
randomly selected seed set achieves very poor performance.

Among the algorithms for conventional influence maximiza-
tion problem, PMIA performs the best, but it achieves consid-
erably lower influence spread than do MISP, ISP and MC,
which demonstrates that methods for conventional influence
maximization problem do not work for the time constrained
version.

2) Running Time: Figure 5 shows the running time of
different methods for each dataset with T = 10. As the running
time for Random and DC is trivial, we do not include them
to make the figure more distinguishable. When K = 1, ISP
and MISP have similar running time, which is about two
orders of magnitude faster than MC. The running time of
ISP and MC increases as K increases, while the running
time of MISP almost remains constant for different values
of K. These observations are due to the fact that MISP
follows the same way as ISP to select the first seed node
(by Influence Spreading Path), but employs a faster marginal
influence spread estimation mechanism to select the rest seed
nodes. The time needed by MISP is dominated by selecting
the first seed node, and thus the total running time of MISP
is almost constant for different values of K. We note that
MISP is nearly three orders of magnitude faster than MC when
K = 50. For small values of K, PMIA runs faster than all
other methods except DC and Random, which are not depicted,
on the three datasets where PMIA can return results. However,
for a large K (K > 10 for Wiki and Epinions, K > 20 for
Slashdot), MISP is faster than PMIA.

3) Memory Usage: Table V-B3 shows the peak memory
usage of each methods for different datasets with T = 10.
We find that Random, MISP and MC always need the same
amount of memory, which is mainly occupied by the social
network data. For the two Influence Spreading Path based
methods, the memory consumption of ISP increases as K
increases, while the memory needed by MISP remains con-
stant. PMIA consumes the largest amount of memory, which
renders it inapplicable to social networks of large scale (i.e.,
LiveJournal).



0 10 20 30 40 50
0

50

100

150

200

250

300

350

400

Seed Number (K))

In
fl

u
e

n
ce

 S
p

re
a

d

 

 

Random

DC

PMI A

MISP

IS P

MC

(a) Wiki

0 10 20 30 40 50
0

500

1000

1500

2000

2500

3000

3500

4000

Seed Number (K))

In
fl

u
e

n
ce

 S
p

re
a

d

 

 

Random

DC

PMI A

MISP

IS P

MC

(b) Epinions

0 10 20 30 40 50
0

500

1000

1500

2000

2500

Seed Number (K))

In
fl

u
e

n
ce

 S
p

re
a

d
d

 

 

Random

DC

PMI A

MISP

IS P

MC

(c) Slashdot

0 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Seed Number (K))

In
fl

u
e

n
ce

 S
p

re
a

d

 

 

Random

DC

MISP

IS P

(d) LiveJournal

Fig. 4. The results of influence spread on four real world social networks (T = 10).
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Fig. 5. The results of running time on four real world social networks (T = 10).

TABLE III
MEMORY USAGE (MB) OF DIFFERENT METHODS (T = 10)

K = 1 10 20 30 40 50
Wiki

Random 13 13 13 13 13 13
DC 19 19 19 19 19 19

PMIA 19 19 19 20 20 20
MISP 13 13 13 13 13 13
ISP 13 19 20 21 21 21
MC 13 13 13 13 13 13

Epinions
Random 51 51 51 51 51 51

DC 74 74 74 74 74 74
PMIA 145 146 147 147 148 149
MISP 51 51 51 51 51 51
ISP 51 57 74 78 82 83
MC 51 51 51 51 51 51

Slashdot
Random 85 85 85 85 85 85

DC 119 119 119 119 119 119
PMIA 186 187 188 188 189 190
MISP 85 85 85 85 85 85
ISP 85 99 106 138 142 147
MC 85 85 85 85 85 85

LiveJournal
Random 5785 5785 5785 5785 5785 5785

DC 8358 8358 8358 8358 8358 8358
PMIA N.A N.A N.A N.A N.A N.A
MISP 5785 5785 5785 5785 5785 5785
ISP 5785 5785 5785 5785 5785 5785
MC N.A N.A N.A N.A N.A N.A

4) Effect of Different Values of T : To investigate whether
different time constraint values of T result in different seed
sets maximizing time constrained influence, we run MC with
Wiki, Slashdot and Epinions datasets for T ∈ {1, 2, ..., 10}
(as indicated in the previous sections, we cannot run MC
with LiveJournal). Table IV depicts the overlaps of seed sets
returned by MC for different values of T with K = 50. For
example, value 34 at row T = 1 and column T = 4 (Wiki)
is the number of common nodes for the two T values. We
find that seed sets maximizing influence spread with different
time constraints differ significantly. For example, seed sets
for T = 1 and T = 10 have only 22, 17 and 11 out
of 50 nodes in common for Wiki, Epinions and Slashdot,
respectively. We argue that time constraint plays an important
role in influence maximization problem, and the set of nodes

maximizing influence spread before a given time do not
necessarily maximize that for a different time constraint.

To investigate how the value of T affects the running time
needed and influence spread achieved by different methods, we
depict the running time and influence spread for different T
on Wiki dataset with K = 50 in Figure 6. Note that results for
other datasets and/or different values of K are similar, which
are not included in this paper due to the limited space. As the
running time for Random and DC is trivial, to make the figure
more distinguishable, Random and DC methods are excluded
from Figure 6(a). From Figure 6(a), we find that the running
time of MISP, ISP and MC increases as T increases, while
that of PMIA remains constant. MISP achieves much less
running time than MC and ISP. Again, MC needs the largest
amount of running time among all methods. From Figure 6(b),
we find that all methods achieve more influence spread as T
increases. This is due to the fact that a larger value of T poses
less restriction on time slots during which influence spread is
counted. Again, MC, ISP and MISP achieve similar influence
spread, which is much more than that of other methods.

C. Summary and Discussion

From the experimental results, we find that time constraint
plays an important role in influence maximization problem.
We find that straightforward methods (Random and DC) are
not suitable for the time constrained influence maximization
problem, as they achieve poor influence spread. PMIA, a state-
of-the-art solution for the conventional influence maximization
problem, achieves much less time constrained influence spread
than do MC, ISP and MISP. Another drawback of applying
PMIA to maximize time constrained influence is its large
memory consumption, which makes it unsuitable for large
scale social networks. By investigating the effect of different
values of T , we find that the set of nodes maximizing influence



TABLE IV
THE OVERLAPS OF SEED SETS RETURNED BY MC WITH DIFFERENT T

(K = 50)
T 1 2 3 4 5 6 7 8 9 10

Wiki
1 50 43 36 34 32 30 28 24 23 22
2 50 41 39 37 35 33 29 27 26
3 50 46 44 42 39 33 31 28
4 50 48 46 42 36 34 31
5 50 47 43 37 35 32
6 50 46 40 38 35
7 50 44 42 39
8 50 48 45
9 50 46
10 50

Epinions
1 50 44 34 28 22 18 18 18 18 17
2 50 40 34 28 23 22 22 21 20
3 50 43 37 31 30 30 29 27
4 50 44 38 36 36 34 32
5 50 44 40 39 37 35
6 50 45 43 41 39
7 50 48 46 44
8 50 48 46
9 50 48
10 50

Slashdot
1 50 42 36 28 23 19 15 13 12 11
2 50 44 36 31 27 23 20 20 16
3 50 42 37 31 25 22 22 18
4 50 45 39 33 30 30 26
5 50 43 36 33 33 29
6 50 43 40 39 35
7 50 47 46 42
8 50 48 45
9 50 46
10 50

spread before a given time do not necessarily maximize that for
a different time constraint, which shows that time constraint
plays an important role in influence maximization problem.

Influence Spreading Path based methods (ISP and MISP)
run much faster than the expensive MC, and achieve similar
influence spread. Overall, MISP is the all-round winner for
the time constrained influence maximization problem, as it
achieves influence spread very close to MC and is multiple
orders of magnitude faster than MC. Other nice properties of
MISP include that its running time almost remains constant as
K increases, and consumes the same amount of memory as
Random and MC, which is mainly the space needed to store
the social network.

VI. CONCLUSION

In this paper, we propose a new problem of the time
constrained influence maximization in social networks based
on a Latency Aware Independent Cascade model. We prove its
NP-hardness, and develop a simulation based greedy algorithm
with performance guarantees to solve the problem. However,
the simulation based implementation of the greedy algorithm
is quite expensive, and is not suitable for large social networks.
We propose to use Influence Spreading Paths to quickly and
effectively approximate the time constrained influence spread
for a given seed set, which is the expensive part of the greedy
algorithm. Further, by employing faster marginal influence
spread calculating methods, we propose MISP to improve the
speed of ISP. Experimental results on four public available
datasets show that MISP is the fastest and multiple orders
of magnitude faster than simulation based greedy algorithm
MC while achieving similar time constrained influence spread.
Other nice properties of MISP include that its running time
almost remains constant as K increases, and its memory usage
is very efficient.

This work suggests a number of promising directions for fu-
ture work. First, as the size of social networks is growing fast,
it is unlikely to load a huge social network into memory. Thus
developing distributed version of time constrained influence
maximization algorithms is of great value. Second, besides IC
model, there exist other influence propagation models, such
as Linear Threshold model. How to solve time constrained
influence maximization problem under these models is an
interesting direction. Finally, as the proposed methods deal
with discrete time only, we will study the extension of these
methods for the case of continuous time in the future.
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