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Abstract

Social image sharing websites, such as Flickr and Zooomr, have attracted a large number
of Internet users. These systems allow users to associate geolocation information to their
images, which is essential for many interesting applications such as location-aware image
search. However, only a small fraction of social images have geolocation information. Thus,
an automated tool for suggesting geolocation is essential to help users geotag their images.

In this paper, we investigate how to assist users in geotagging social images, and how
to boost the accuracy of geotagging. We use a large dataset consisting of 221M Flickr
images uploaded by 2.2M users. We analyze for the first time user uploading patterns, user
geotagging behaviors, and the relationship between the taken-time gap1 and the geographical
distance between two images from the same user. Our analysis shows that the taken-
time gaps between the image to be geotagged and historical images are very important for
geotagging. Based on the finding, we represent a user profile by historical tags for the user,
and build a multinomial model on the user profile for geotagging. We further propose a
unified framework to suggest geolocations for images, which combines the information from
both image tags and the user profile. Experimental results on the Flickr dataset show that
for images uploaded by users who have never done geotagging, our method outperforms the
state-of-the-art method by 10.6% to 34.2%, depending on the granularity of the prediction.
For images from users who have done geotagging, a simple method is able to achieve very
high accuracy.

1 Introduction

Social image sharing services such as Flickr and Zooomr have accumulated a huge number of
photos contributed by many users. Photos are taken at specific places and thus are inherently
spatial (Crandall, Backstrom, Huttenlocher, & Kleinberg, 2009). Many applications can benefit
from the geolocation2 information of photos. To name just a few, consider 1) With geolocation
information, we can organize images by location in a database and enable location-aware queries.
For example, users can retrieve photos within a geographical region or photos that are close to
the query location (Toyama, Logan, & Roseway, 2003). In addition to the geolocation, a query
can also contain a tag component (Rorissa, 2010; Cong, Jensen, & Wu, 2009), for example,

1That is, the amount of time between when two photos are taken.
2Geolocation refers to geographic coordinates in this paper.
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to retrieve photos close to a location and containing the tag “beach”. 2) With geolocation
information, photos can be browsed using a map-based interface, as currently done in many
social image sharing services. For example, photos can be pin-pointed on a map to identify
very small regions (Chen, Battestini, Gelfand, & Setlur, 2009). 3) With geolocation information,
images can be associated with points of interest in the rapidly developing Location Based Social
Network Systems (Ye, Shou, Lee, Yin, & Janowicz, 2011; Ye, Yin, Lee, & Lee, 2011).

The geolocations of photos in current image sharing services come from two sources: 1) With
GPS-enabled cameras, geolocations can be automatically associated with images; 2) Users can
also manually geotag photos by dragging a photo to a point on a world map interface when
uploading photos to a image sharing service. This method, however, is tedious.

Although geolocation information is indispensable to many applications, a large portion
of photos uploaded to social image sharing services contain no geolocation information. Our
analysis of a large collection of 221M Flickr photos shows that only 7.8% of the photos in the
collection are geotagged with latitude and longitude.

To make photos without geolocation available to location-aware applications, it is natural
to consider automatically geotagging the photos. The feasibility analysis of the geotagging task
is as follows: 1) Previous work shows that about 29% of Flickr tags3 are location specific or
location relevant (Sigurbjörnsson & Zwol, 2008); furthermore, location tags form the largest part
among all tag categories. This indicates that image tags provide good indicators for suggesting
geolocations for photos. 2) Although geotagged photos only account for a small portion of the
available photos in social image sharing sites, there is still a large number of geotagged photos
that have been accumulated which can be utilized to geotag other photos.

Several recent studies (Crandall et al., 2009; Serdyukov, Murdock, & Zwol, 2009) have
addressed the problem of geotagging images. In existing works, the world map is divided
into grids at different granularities based on latitude and longitude coordinates, and the tag
information of a photo without geolocation is used to predict its cell location. Unfortunately,
developing an efficient and effective method that is able to place photos in the correct cells is a
challenging problem. As pointed out by (Serdyukov et al., 2009), the huge number of candidate
locations makes the use of computationally expensive machine learning approaches unsuitable
— when the world map is divided at a 1km granularity, we end up with more than 600M grid
cells. Because of low accuracy and high computational cost, it is also impractical to solve the
problem by extracting and utilizing image features (Hays & Efros, 2008). According to the
experimental results in (Serdyukov et al., 2009), the accuracy of the state-of-the-art method is
low, even though images without tags have been excluded in their experiments.

Moreover, we observe that only 44.9% of Flickr images in our collection have tags, which
greatly limits the applicability and accuracy of the existing methods that utilize tags alone for
geotagging. Hence, there is a large space for improving on the accuracy of current geotagging
approaches.

In this paper, we explore a new approach to the geotagging problem. In addition to the
relationship between geolocations and image tags, we propose to utilize the relationship between
geolocations and users for geotagging. The intuition is that a user should have preference for
some geolocations, which can be described by a user profile extracted from historical images by
the user and their tags.

To utilize a user’s geolocation preferences as embedded in their profile, we perform an anal-
ysis on a large Flickr dataset. We propose to represent a user profile by the set of historical tags
the user has used, and then utilize the user profile as supplementary information to image tags

3We use the term “tag” to refer to textual tags, and “geotag” for latitude and longitude information.
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for geotagging. We model each user profile and each cell, respectively, by a multinomial distri-
bution over the vocabulary of tags, and then employ KL-divergence to estimate the similarity
between the two distributions, which depicts how likely a user is to visit a location. Finally,
we combine the information from image tags and the user profile to suggest the geolocation of
each image.

The contributions of this paper are fourfold.

1. Based on a large dataset from Flickr containing 221, 801, 183 images uploaded by 2, 252, 758
users, we analyze for the first time user uploading patterns, user geotagging behaviors,
and the relationship between the taken-time gap of two images from the same user and the
distance between the images. Based on the analysis results, we find that the taken-time
gap between a query image and a historical image is very important for geotagging. We
employ this finding in our geotagging algorithm.

2. We represent a user profile using historical tags from the user, and then build a multino-
mial model based on the user profile information for geotagging.

3. We propose a unified framework to suggest geolocations for images, which combines the
information from image tags and the user profile. To the best of our knowledge, no
previous work on geotagging social images exploits user profile information.

4. The proposed methods are evaluated on a large Flickr dataset. Experimental results show
that, for users who have never done geotagging, our method is able to improve on the
accuracy of a state-of-the-art method by 10.6%, 16.8% and 34.2% for 1km, 10km and
100km grids, respectively. For users who have done geotagging before, a simple method
is able to achieve very high accuracy.

Our proposed method is simple yet effective. It is also practical, as we can efficiently build
our multinomial model on a large number of images. Moreover, since the model is based on
Naive Bayes and language models, it can be easily updated to accommodate newly geotagged
photos generated by users.

Note that the proposed method can be used in an interactive way: when a user uploads an
image, we use the map interface to pin-point the cell suggested by the method as a starting
point. The user can then choose the right place for the image, which is typically at or near the
suggested location.

The remainder of this paper is organized as follows. Related research is reviewed in the next
section. In Section 3, we detail the dataset used in this work and the data analysis results. We
describe the proposed geolocation suggestion algorithm in Section 4. In Section 5, we present the
experimental setup, the evaluation metrics and the experimental results. Finally, we conclude
this paper and discuss future directions in Section 6.

2 Related Work

2.1 Image Geolocation Suggestion

Suggesting geographic locations of user generated images has been attracting increasing re-
search interests recently. The studies by Hays et al (Hays & Efros, 2008) and Serdyukov et
al (Serdyukov et al., 2009) are the most related to our work.

Hays et al. (Hays & Efros, 2008) infer the geographic location of an image by its nearest
neighbors defined by visual features. In their work, they use a special sub-set of Flickr images
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tagged with at least one name of a country, territory, continent, densely populated city, US
states or popular tourist site, and not tagged with some specific tags such as “birthday” or
“cameraphone”. Their method is able to find the correct locations for 16% of the testing
images within 200 ∗ 200km area on the restricted dataset.

Instead of using visual features, Serdyukov et al. (Serdyukov et al., 2009) infer geographic
locations for Flickr images by user generated textual tags. The authors place a grid over the
whole world map, and estimate a language model from tags of images for each grid cell. The
estimated language models are then employed to predict which grid cell a testing image resides
in. We use this method as the baseline method in our experiments.

GeoFolk (Sizov, 2010) is a framework based on Bayesian latent topic model, which char-
acterizes social images by combining text features with spatial knowledge. Due to the limited
space, we do not detail GeoFolk in this paper and interested readers are referred to (Sizov,
2010). Among other applications, GeoFolk can be used for image geotagging by associating
image tags with geolocations. However, as we will see in Section 5, the accuracy of GeoFolk for
geotagging is low. Furthermore, it does not work for 1km granularity due to the high running
time complexity.

The recent work (Ostermann, Tomko, & Purves, 2013) presents an evaluation of automati-
cally generated concept keywords and place names for geo-referenced images.

Our work is also related to the work on landmark identification. Crandall et al (Crandall
et al., 2009) build a system to place images on a map using a combination of textual and
visual feature (the SIFT visual words). Instead of considering the entire world map, they
limit their task to deciding which of ten landmarks in a given city is the subject of an image.
Their method is a classifier-based approach. Specifically, for each of the ten landmarks of a
city, a binary classifier is built, which takes the images taken at that landmark as the positive
examples, and other images as the negative examples. It is not clear how to scale this classifier
based method to place an image onto a point of the entire world map. There exist other
proposals (Y. Li, Crandall, & Huttenlocher, 2009; Zheng et al., 2009; Chen et al., 2009) for
landmark classification or recognition. Buscaldi et al. (Buscaldi & Rosso, 2008) employ Geo-
WordNet4 to extract geographical words from textual tags. However their method does not fit
the fine-grained case discussed in this work. Our work is related to tag prediction (Hsu & Chen,
2011), which however does not predict the geolocation as we do.

In this work, we propose to find the location of an image by combining the evidence from
its tags and the evidence from its user’s historical images, whose tags are relevant to the users’
activities (Stvilia & Jörgensen, 2010). To the best of our knowledge, none of existing work
considers to enhance the accuracy of geotagging by using user profile built from the user’s
historical images. We use language models to represent user profiles. The user profiling in our
work aims to profile the historical tags used by individuals, and the purpose is different from
the previous work on profiling users’ expertise (e.g., (Liu, Wang, Johri, Zhou, & Fan, 2012)).
As we will see in this paper, the proposed methods are able to greatly improve on the prediction
accuracy over the method (Serdyukov et al., 2009) which uses image tags alone.

2.2 Geolocating Users or Online Contents Other Than Images

There exist a host of work on studying the geographical scope of users or other online contents.
MediaEval workshops (Ferres & Rodriguez, 2010; Larson & Eskevic, 2010) provide a Flickr

video dataset with textual tags, based on which a campaign is hosted to find the most possible

4http://wordnet.princeton.edu/wordnet/related-projects/
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place for each video. They do not consider user profiles, which will be shown very helpful for
the geotagging task in the experimental part of this paper.

Based on user-supplied address information and the social network in Facebook, Back-
strom et al. (Backstrom, Sun, & Marlow, 2010) measure the relationship between geography
and friendship. Using the measurement, the authors introduce an algorithm that predicts the
geolocation of an individual with performance exceeding the IP-based geolocation.

Cheng et al. (Cheng, Caverlee, & Lee, 2010) propose a probabilistic framework for estimating
a Twitter user’s city-level location based on the content of the user’s tweets. They build a
classification model for identifying words in tweets with a strong geo-scope, and use a lattice-
based neighborhood smoothing model for refining the estimation of a user’s geolocation.

The recent work (R. Li, Wang, Deng, Wang, & Chang, 2012) addresses the problem of
estimating the location for a twitter user. The work is based on the assumption that a twitter
user is likely to follow users living close to her and to tweet nearby locations. The work presents
a discriminative influence model to infer the home location of twitter users.

There also exist studies on extracting geographical information from web page (Amitay,
Har’El, Sivan, & Soffer, 2004; Ding, Gravano, & Shivakumar, 2000) and search query (Backstrom,
Kleinberg, Kumar, & Novak, 2008) (e.g., to exact geographic term “Effel Tower, Paris” from a
web page). These approaches are based on the gazetteer taxonomy to identify locations. Hence
it is difficult to extract locations when the text has a geographical focus, but does not mention
toponyms found in gazetteers explicitly.

3 Geotagging Behaviour for Social Images

3.1 Dataset

We collect a large random subset of the Flickr images to simulate the entire Flickr images for
analyzing the image geotagging patterns of users and evaluating the proposed solution. This
is in contrast with many existing works (Cha, Mislove, & Gummadi, 2009; Mislove, Koppula,
Gummadi, Druschel, & Bhattacharjee, 2008), in which the dataset is collected by starting from
an initial set of users and then traversing along these users’ social links, aiming to focus on
social network structure. We do not adopt this approach, since starting from an initial set of
users will be biased towards the set of initially selected users.

To achieve our goal, we choose to collect a dataset of images uploaded by a set of randomly
selected users. Since we do not have the list of Flickr users, we make use of the fact that the
vast majority of Flickr user identifiers take the form of [0− 9]{8}@N00 (Mislove et al., 2008),
i.e., an eight digit number followed by @N00. By searching a randomly selected subspace of
30, 624, 071 possible Flickr user IDs of the entire space, we get a set of 2, 252, 758 valid Flickr user
IDs. This indicates that about 6.8% of these generated Flickr IDs are valid, which is consistent
with the result reported by (Mislove et al., 2008). Then for each valid user ID, we download
the meta information (“taken-time”, “uploaded time”, “tags”, “latitude and longitude pair (if
it is geotagged)) of all the publicly accessible images of the user, using the API exported by
Flickr. This yields a dataset of 221, 801, 183 images uploaded by 973, 179 Flickr users. Note
that only 973, 179 out of the 2, 252, 758 Flickr users have at least one public image. In other
words, about 56.8% Flickr accounts do not have any public photo. The randomly generated
dataset in this way is a representative subset of Flickr data, and is able to reflect the Flickr data
properties. Note that the Flickr users can specify whether their photos are visible to others
when uploading. In this work, we only collect the meta data of these public available images.
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Table 1: Basic Statistics of the Dataset

Total Textual Tagged Geotagged Both Tagged

#Images 221, 801, 183 99, 649, 530(44.9%) 17, 355, 876(7.8%) 13, 268, 992(5.9%)

#Users 2, 252, 758 468, 555(20.7%) 106, 289(4.7%) 97, 061(4.3%)

The numbers of images (resp. users) having textual tags, geotags, or both are summarized in
Table 1. Table 1 shows that, though Flickr has provided geotagging service for years, as of Aug
2011 (the last date for collecting our dataset), only 7.8% Flickr images were geotagged, and only
4.7% Flickr users ever geotagged their images. As discussed in Introduction, many applications
benefit from geolocation information of social image. Hence, an effective automated image
geolocation suggesting tool is of great value. In contrast, much more Flickr images (44.9%) are
annotated with textual tags by 20.7% of Flickr users.

3.2 Taken-time Gap vs Distance

We present an important analysis on the relationship between the distance and taken-time gap
of two images uploaded by the same user. The analysis aims to identify guidelines to design
geotagging methods.

Intuitively, if the taken-times of two images by a user are close, they are likely to be spatially
close. To investigate whether this is true, we proceed to perform the following analysis. We
sort the geotagged images of each user in ascending order of their uploaded times. Then for
each geotagged image Ii, we find the image Ij with the closest taken-time among images that
are taken by the same user and uploaded before Ii, and calculate the Euclidean distance ∆Dij

based on their coordinates.
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Figure 1: CDF of Distance between two Images with Close Taken-time by the same User

Figure 1 shows the Cumulative Distribution Function (CDF) of all possible ∆Dij , from
which Observation 1 can be made.

Observation 1 More than half of images are within one meter from the historical images with
the closest taken-time to them, and the percentage value reaches 93% when the distance scales
up to 100km.

Observation 1 indicates a simple way to suggest geolocations for images, i.e., a new image
can be geotagged by the geolocation of the historical image with the closest taken-time by the
same user. Indeed, as we will see in Section 5, this method gives an impressive performance.
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Figure 2: Mean Distance vs Different Taken-time Gaps

However, as shown in Table 1, only 4.7% of Flickr users did geotagging before. Thus a large
portion (95.3%) of users cannot benefit from this simple method. For the remaining 95.3% of
users, we cannot use the geolocation of historical image to tag a new image taken by the same
user simply because his historical images have no geolocation. However, the textual tags of
the historical images are still of great value for suggesting geolocation for a new image, since
it is observed that most images are spatially close to their preceding images taken by the same
users, and close images share similar tags (Serdyukov et al., 2009). Thus historical tags are
related to geolocations of new images to some extent. Hence, we generate the profile of a user
using the tags of his historical images. The inherent assumption is that a new photo of a user
is likely to reside in the geolocations represented by the user’s profile.

An open problem is whether we should treat a user’s historical tags equally when suggesting
geolocation for the user’s new image? Intuitively, the images with shorter taken-time gaps are
more likely to be close to the new image to be geotagged. Thus, their tags are perhaps more
indicative for geotagging the new image. To verify the intuition, we analyze the dataset further
by calculating taken-time gaps of all pairs of geotagged images for each user. Then for each
taken-time gap, we compute the average distance corresponding to the taken-time gap, i.e., the
expected spatial distance for a pair of images from the same user and with the given taken-time
gap. The relationship between taken-time gap and the expected distance is shown in Figure 2.
As we cannot plot zero values on a log scale axis, all distance values are increased by 0.2 meters.

It can be observed from Figure 2 that image pair with a taken-time gap of 10 seconds has the
smallest expected distance, which is about 10 meters on average. As taken-time gap increasing
to 2, 000 seconds, the distance increases accordingly to 1, 000 meters. This observation indicates
that, within a range between 10 to 2, 000 seconds, shorter taken-time gap between two images
uploaded by a user comes with shorter geographic distance. Figure 2 also shows that when taken-
time gap is larger than 100, 000 seconds, distances fluctuate a lot, indicating that a taken-time
gap larger than 100, 000 seconds (more than 27 hours) provides little information about the
geographic distance between two images. This might come from the fact that people might
either move far away or still stay at the same place between the long taken-time gap. We also
note from Figure 2 that, when taken-time gaps are less than 10 seconds, mean distances are
larger than that of 10 seconds. This might be caused by noise in the dataset (e.g., taken-time
is not correct). However, the distances are still within 100 meters, which is still consistent with
the observation that the expected distance for a short taken-time gap is short. From above
discussions, Observation 2 can be made.

Observation 2 Images contributed by the same user with close taken-time (within 2, 000 sec-
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Figure 3: CDF of Taken-time Gap

onds) to the image to be geotagged are more likely to be spatially close to it, and thus their tags
are more relevant to the geolocation of the image to be geotagged.

Observation 2 indicates that tags of images with taken-time gaps less than 2, 000 seconds
are useful for geotagging. To investigate it, for an image to be geotagged, there exist a historical
image of the same user and taken 2, 000 seconds close to it, we plot in Figure 3 the Cumulative
Distribution Function (CDF) of taken-time gaps for image pairs used in Figure 1. Most taken-
time gaps fall into a range from 10 to 100 seconds. As labeled in Figure 3, for more than
40%(resp.60%) images there exists a historical image of the same user, which was taken within
124(resp.931) seconds of their taken-times. We arrive at Observation 3.

Observation 3 For more than 60% images we can find a historical image of the same user,
which was taken within 2, 000 seconds of their taken-times.

3.3 Summary and Discussion

In summary, the three observations offer important guidelines for us to develop geotagging
methods.

• In particular, Observation 1 suggests a very simple yet effective method for geotagging a
photo uploaded by the user who has done geotagging before, i.e., using the geolocation of
the historical geotagged image with the closest taken-time to it, which is uploaded by the
same user.

• For 95.3% of Flickr users, who have not done geotagging before, Observation 2 and 3
suggest that 1) tags of historical images with taken-time gap less than 2, 000 seconds are
relevant to the geolocation of the image to be geotagged; 2) for most of images (more
than 60%) we can find such tags.

4 Proposed Methods for Geolocation Suggestion

We present the geolocation suggestion methods using image tags in Section 4.1, the methods of
utilizing user profile in Section 4.2, and the unified framework for combining both image tags
and user profile for geolocation suggestion in Section 4.3.
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4.1 Using Image Tags

4.1.1 Language Model Based Method

The Language Model (LM) method exploits image’s tags, and is used by Serdyukov et al. (Serdyukov
et al., 2009) to suggest an image’s geolocation. Suppose that the world map is divided into
grids of equal size, and each grid cell represents a location l. The LM method (Serdyukov et al.,
2009) models each cell by a multinomial probability distribution over the vocabulary of tags.
Specifically, the tag distribution of a location l is estimated by the tags of images located at
this location as in Equation 1:

P (t|l) = |l|
|l|+ λ

P (t|l)ML +
λ

|l|+ λ
P (t|G)ML, where

P (t|l)ML =
tft,l∑
t′∈l tft′,l

P (t|G)ML =
tft,G∑

t′∈G tft′,G

(1)

Here P (t|l)ML and P (t|G)ML are maximum likelihood estimates of tag generation probabil-
ities given location l and the global language models, respectively; tft,l is the frequency of tag
t in the image tags at location l, |l| is the total number of tags of images at location l, and λ is
the parameter of Dirichlet smoothing. Similarly, tft,G is the frequency of tag t in the collection
G.

Given an image’s tag set T , the most likely location L in which the image was taken is
estimated as Equation 2.

L = argmax
l

P (l|T ), where (2)

P (l|T ) = P (T |l)P (l)

P (T )
∝ P (T |l) =

∏
t∈T

P (t|l) (3)

4.1.2 Naive Bayes Method

The LM method implicitly assumes that images are evenly distributed across all locations, i.e.,
P (l) is identical for any l. However, images are not evenly distributed on the map, as more
photos would be taken at popular places. The strong assumption could degrade the accuracy
of the LM method. We remove this assumption by using the Naive Bayes (NB) method given
in Equation 4.

P (l|T ) = P (T |l)P (l)

P (T )
∝ P (T |l)P (l) = (

∏
t∈T

P (t|l))P (l), (4)

where P (l) is estimated by the fraction of images located in l out of the entire image set and
P (t|l) is estimated as Equation 1.

In the NBmethod, the location for a given image with tag set T is predicted using Equation 2,
where P (l|T ) is calculated using Equation 4.
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4.1.3 Image Tag Expanding

As shown in Table 1, over half of images do not have any tag. We also observe from our dataset
that a significant portion of images have very few tags. Obviously, it is very hard to predict
geolocations of these images by the methods described in Sections 4.1.1 and 4.1.2.

For a query image with few than K tags, we propose to expand its tag set with tags relevant
to the test image until its tag set contains K tags. If the test image already has K tags or
more, we do nothing. The reason we set a limit K is that the historical tags may contain both
useful information and noise for geotagging an image since the historical tags may correspond
to images taken at multiple places.

We consider two methods to select tags for expansion. The first method is to randomly
select tags from the historical tag set of the user for the test image. Based on Observation 2,
we propose to select the tags with closer taken-time as the expanding tags and ties are broken
arbitrarily. This method performs better than the first method in our preliminary study.

4.2 Using User Profile

4.2.1 Modeling User Profile by Language Model

Recall that we represent a user profile by the set of historical tags used by the user. We refer
to a user profile as p. We build a language model U to model a profile p, which describes the
location preferences of the user.

Given the set of historical tags of a user, i.e., the user’s profile, denoted by p, we consider
two methods to build language model from p. The first one treats equally each historical tag
in user profile p. This can be modeled by replacing l with p in Equation 1.

The second method is motivated by Observation 2 that tags with small taken-time gaps to
the image to be geotagged are more useful for geolocation suggestion. Hence, in the second
method we give historical tags different weights based on the taken-time of their corresponding
images—the closer an image is taken, the higher weight its tags have. In the model, each
historical tag is given a weight of (gap+1)−α, where gap is the taken-time gap between the test
image and the historical tag, and α ≥ 0 is a tuning parameter to be set using a development
set. If α = 0, the second method reduces to the first method.

4.2.2 KL Divergence Between User profile and Location

To incorporate the user profile information into the proposed framework (to be presented in
Section 4.3) to suggest geolocation for an image, we need a way to measure the similarity
between the user profile and each location. We propose to use KL-divergence for the purpose.

To measure the similarity between language models of a user’s profile U and a place L, the
KL-divergence is computed by Equation 5.

DKL(U||L) =
∑
i

U(i) log U(i)
L(i)

, (5)

where U(i) and L(i) are distribution probabilities of tag i in language model U and L, respec-
tively. If U(i) = 0, we assume U(i) log U(i)

L(i) = 0. Since L is smoothed by global language model,

L(i) ̸= 0 for all possible i. Thus Equation 5 is well defined.
We note that the more similar U and L are, the smaller is the value of Equation 5. Equation 5

gets a value of zero when U and L are identical. Thus we suggest the location with the smallest
KL-divergence as the geolocation.
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We did consider other possibilities of using user profile: 1) other similarity measures, in-
cluding cosine similarity and Jaccard similarity, and 2) using the methods in Section 4.1 on
user profile, i.e., by replacing T with user profile p. However, the accuracies of these alternative
methods are worse than the KL-divergence according to our preliminary study.

4.3 Unified framework for Combining Image Tags and User Profile

We proceed to present the proposed unified framework for combining the evidence of image tags
and the evidence of the profile of the user who took the image.

Let Stag be the similarity score between query image tags and a candidate location, which
can be computed using the methods in Section 4.1. Let Suser be the similarity score between
user profile and a candidate location computed using the method in Section 4.2.2. We propose
a unified framework, as described in Equation 6, to combine the aforementioned two scores for
geolocation suggestion.

S = (1− b−n)Stag + b−nSuser (6)

Here, b is a tuning parameter larger than 1, and n is the tag number of the query image to
be geotagged. The rationale that we introduce n and b is that for an image with fewer tags, its
tags might contain less location information, and thus we increase the weight of its user profile.
When b = 1, Equation 6 reduces to the method that uses user profile alone. When b → ∞, it
reduces to the method that uses image tags alone.

We normalize Stag and Suser to an identical value range. In our experiments, we use Equa-
tion 5 to measure the similarity between location and user profile, i.e., Suser, and use Equation 4
to measure the similarity between location and image tags, i.e., Stag. Before using them in
Equation 6, we normalize them into range [0, 1] by Equation 7 and Equation 8, respectively.

SDKL(U||L) = 1− DKL(U||L)−minDKL

maxDKL −minDKL
(7)

SP (l|T ) =
P (l|T )−minP

maxP −minP
, (8)

where max (resp. min) is the maximum (resp. minimum) value among all candidate locations.

5 Experiments

5.1 Data Filtering

To suggest geolocations for images, we need to discover the relationships between geolocations
of images and their tags and/or user profiles. Thus only geotagged images can provide us
information to analyze these relationships and build geolocation suggestion method. In the rest
of this paper, we focus on the subset of geotagged images only. Note that focusing on geotagged
dataset is only for model construction and performance evaluation (Geotagged images provide
the ground truth for evaluation). Obviously, our model is applicable to geotagging new query
image which has no geolocation information.

Each Flickr image is associated with an integer value to describe the location accuracy
ranging from 0 to 16, among which 0 means there is no location information of the image,
and 16 indicates the most accurate location information, i.e., street level location information.
To make our models more accurate, we filter out images with location accuracy less than
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Training Data

Testing Data

Figure 4: Image Distribution Over Counties

14. As tags used by few users or with small total occurrences are unlikely to carry location
information, following the preprocessing method used in (Rattenbury & Naaman, 2009), we
only keep tags occurring more than 25 times and used by at least two users in the experiments.
Flickr allows users to apply the same set of tags to images uploaded at the same time, which
has a negative effect on the building of model. Thus we follow the work (Serdyukov et al.,
2009) and apply a filter to remove this bulk uploading effect. After filtering, only one image
from each bulk uploading is kept. We separate the remaining images into two subsets. The first
subset comprises images uploaded before March 1st 2011, and is used for model building. From
the other subset comprising images uploaded after March 1st 2011, we randomly select 10, 000
images for parameter tuning, and 10, 000 images for performance testing. As to be explained
in Section 5.2, our methods are designed for users who never geotagged before, and thus we
further remove from the first subset (training set) the images that are uploaded by users whose
images are also contained in the 20, 000 selected images (test set and parameter tuning set).

Finally, we obtain a dataset comprising 3, 491, 429 images with 38, 376 unique tags for build-
ing our model, which is still much larger than the datasets used in previous work (Serdyukov et
al., 2009). Figure 4 shows the distributions for training images and test images across different
countries. We observe that about half of the images reside in US, followed by GB, and the
distributions of training images and test images are similar. Figure 5 shows the number of
images in the training dataset per square kilometers for each country, indicating that, although
US has the most number of images, its image density is diluted by its large area of territory
and is much smaller than those of the relatively small countries.
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Figure 5: Image Density For Each Country

5.2 Suggesting Geolocations for Images Uploaded by Users Who Did Geo-
tagging

As revealed by Observation 1, most images are spatially close to the historical images with the
closest taken-time to them, which leads to a simple but effective method to suggest geolocation
for a test image, i.e., among the geotagged historical images contributed by the same user,
we select the one with the closest taken-time to the test image and use its geolocation as the
prediction result. Note that to avoid the effect of bulk loading of users (since it is not reasonable
to assume that the geolocation of images in the same bulk loading is known), we exclude the
images with the same uploading time when we find the image with the closest taken-time.

By experimenting on the dataset described in Section 5.1, we find that this simple method
is able to achieve an accuracy of 63.5%, 78.2% and 89.1% for 1km, 10km and 100km grids, re-
spectively. Compared to the results reported in previous works (Hays & Efros, 2008; Serdyukov
et al., 2009; Crandall et al., 2009), the performance of this simple method is very impressive.

However, as shown in Table 1, only 4.7% Flickr users did geotagging before. Thus a large
portion (95.3%) of users cannot benefit from this method, simply because they do not have
geotagged historical images. The rest experiment will focus on methods for users who never
geotagged before.

5.3 Experimental Setup

We evaluate the following methods over the dataset described in Section 5.1.

• GeoFolk (GeoFolk) (Sizov, 2010).

• Language Model based method (LM), which is described in Section 4.1.1 and used in (Serdyukov
et al., 2009).

• Naive Bayes Model (NB), which is described in Section 4.1.2.

• Randomly (resp. taken-time aware) expanding tag set before applying Naive Bayes model
(NB+ RT (resp. NB+ CT)), which is described in Section 4.1.3.

• Using user profile (resp. weighted profile) alone (P (resp. WP)), which is described in
Section 4.2.2.

• Combining NB and user profile (reps. weighted user profile) by the proposed unified
framework (NB+ P (resp. NB+WP)), which is described in Section 4.3.
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In our experiments, three different cell granularities, namely, 1km, 10km and 100km, are
used for a fair comparison, since these three granularities are also used in previous work
(Serdyukov et al., 2009). In fact, users would be interested in different granularities for different
images: for the images of landmarks, e.g., the Golden Gate Bridge, the 1km is appropriate;
however, for the images of nature senary, e.g., the Montes Alps, 100km would be better. Thus,
it is reasonable to use these three granularities by following previous work.

After training models described in Section 4, the 10, 000 held-out tuning images are used to
tune parameters in these models. All parameters (λ, α and b) for the evaluated methods are
optimised on the held-out data by maximizing accuracy. We first fix λ as the optimum value
for LM and NB, and then tune the other parameters independently.

The metric used for training models and tuning parameters is accuracy (Acc), which is the
percentage of correctly predicted images out of all testing (training) images, and is the most
important metric for our problem. Apart from Acc, we use another two types of metrics to
evaluate the proposed methods: 1) fraction of images predicted correctly within k-cell distance
(Acc@k); 2) fraction of images predicted correctly among top-k locations (Top-k). The ra-
tionale to introduce Acc@k and Top-k is that our task is actually a likelihood estimation
problem, and thus apart from the suggested location, other top locations are important as well.
An example application is to present multiple locations with the highest probabilities to users,
a user can select one location out of them to geotag his image.

5.4 Experimental Results

Table 2 shows the results of all methods described in Section 5.3 except GeoFolk for 1km, 10km
and 100km sized grids.

With the most fine granularity (1km), NB+WP is able to correctly predict locations for
6.37% of testing images, while for 100km, this value increases to 32.77%. Not surprisingly,
suggesting accuracies of all methods increase as cell size increases. Moreover, NB+WP im-
proves on Acc by 10.6%, 16.8% and 34.2% over the method (LM) for 1km, 10km and 100km,
respectively. We note that the results of LM are better than those reported in (Serdyukov et
al., 2009), which could be attributed to the larger training data we use. Note that even 10.6%
improvement (for 1km grid) is very significant considering the huge number of social images
without geolocations(e.g., as of Aug 2011 Flickr held 6 billion photos5).

Though NB+WP achieves the best accuracy (Acc) among all methods, it is not an all-
round winner for all metrics. It can be noticed that NB+ CT achieves better Top-2 and Top-3
than NB+WP for 1km and 10km grids, which means NB+ CT could be a good choice for
application accepting multiple suggested locations with size 1km or 10km.

The usefulness of tag expanding By comparing the results of NB+ CT and NB in Table 2,
we find that tag expanding improves on the performance of NB. The improvement increases as
the grid size increases. The reason would be the fact that expanded historical tags are more
likely be relevant to a larger cell in which the test image resides.

The usefulness of user profile By comparing the performance of NB+WP and NB, we find
that utilizing user profile is able to greatly improve the performance for location suggestion.

NB+WP outperforms NB by 6.5%, 14.5% and 33.0% for 1km, 10km and 100km granular-
ities, which increases as the granularities of cell become coarser. The reason for this is that a
user takes photos within a big region, which is better captured by cells in 10km and 100km.

5http://thenextweb.com/socialmedia/2011/08/05/flickr-hits-6-billion-total-photos-but-facebook-
does-that-every-2-months/
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Table 2: Performance for All Methods. NB+WP improves on LM by 10.6%, 16.8% and 34.2%
for 1km, 10km and 100km, respectively, in terms of Acc.

Acc Acc@1 Acc@2 Acc@3 Top-2 Top-3 Top-4

1km

LM 0.0576 0.0958 0.1173 0.1297 0.0815 0.0935 0.1029

NB 0.0598 0.0989 0.1217 0.1354 0.0811 0.0947 01033

NB+ RT 0.0572 0.0946 0.1197 0.1351 0.0771 0.0906 0.0995

NB+ CT 0.0634 0.1065 0.1352 0.1521 0.0866 0.1011 0.1123

P 0.0121 0.0270 0.0438 0.0599 0.0187 0.0236 0.0286

WP 0.0389 0.0737 0.0960 0.1178 0.565 0.696 0.775

NB+ P 0.0577 0.0968 0.1230 0.1430 0.0800 0.0934 0.1046

NB+WP 0.0637 (+10.6%) 0.1067 0.1334 0.1546 0.0858 0.1007 0.1138

10km

LM 0.1550 0.2014 0.2187 0.2263 0.1996 0.2135 0.2228

NB 0.1581 0.2058 0.2245 0.2312 0.2010 0.2218 0.2368

NB+ RT 0.1602 0.1941 0.1985 0.2005 0.2084 0.2311 0.2447

NB+ CT 0.1794 0.2145 0.2193 0.2212 0.2323 0.2575 0.2722

P 0.0710 0.1214 0.1557 0.1697 0.1004 0.1164 0.1280

WP 0.1309 0.1982 0.2328 0.2493 0.1734 0.1996 0.2132

NB+ P 0.1685 0.2301 0.2589 0.2717 0.2138 0.2365 0.2503

NB+WP 0.1811 (+16.8%) 0.2442 0.2721 0.2851 0.2285 0.2515 0.2669

100km

LM 0.2442 0.2766 0.2976 0.3081 0.2758 0.2898 0.3006

NB 0.2463 0.2818 0.3056 0.3231 0.2977 0.3300 0.3490

NB+ RT 0.2839 0.3349 0.3644 0.3849 0.3399 0.3685 0.3854

NB+ CT 0.3056 0.3585 0.3912 0.4151 0.3596 0.3870 0.4068

P 0.2196 0.2828 0.3209 0.3456 0.2729 0.3044 0.3311

WP 0.2978 0.3643 0.4020 0.4283 0.3560 0.3893 0.4185

NB+ P 0.3023 0.3633 0.3973 0.4189 0.3640 0.3967 0.4214

NB+WP 0.3277 (+34.2%) 0.3899 0.4254 0.4491 0.3856 0.4193 0.4439

Thus, user profile built on the larger cells contains more accurate information for a user. This
fact is also supported by suggesting accuracies (Acc) of WP and NB for grids of different sizes.
As can be found in Table 2, NB outperforms WP by 53.7% with regard to Acc for 1km grids,
while in contrast the Acc of WP beats NB by 20.9% for 100km grids. This gives a surprising
finding that, when suggesting 100km sized locations, user’s history profile is more accurate
than the tags of test image for location prediction. This is due to that images uploaded by the
same user are very likely to be within 100km, and some tags of an image might not be location
related, which introduce noise.

The usefulness of time factor Also, it can be observed that NB+WP (resp. NB+ CT)
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outperforms NB+ P (resp. NB+ RT) greatly, which verifies the effectiveness of utilizing image
taken-time in location suggestion. This result is consistent with Observation 2 that historical
images with shorter taken-time gaps to the test image are more likely to be spatially close it.

Comparing with GeoFolk For GeoFolk, the Accs for 10km and 100km grids are 0.0758 and
0.1606, respectively, which are much worse than that of the baseline method LM. Moreover,
the time complexity of GeoFolk is too high, which makes GeoFolk infeasible for 1km sized grids.
The reason why GeoFolk does not work well for geotagging problem might be due to the huge
number of candidate cells. As usually topic model uses tens or hundreds of latent topics (and
it becomes too expensive to use with larger number of topics), latent topic model is not able to
well discriminate such a large number of classes. The number of topics used by GeoFolk in this
paper is set to 100. We tried to use 300 topics to achieve better results. However, we cannot
obtain the results after 5 days running due to the high time complexity of GeoFolk.

Looking into country To better understand the performance for images from different coun-
tries, we select eight countries with the largest numbers of images, and compare the Acc of
each using NB+WP on 100km grids. The results are shown in Figure 5. We can find that
Great Britain (GB) achieves the highest Acc of 46.65%, which also has the largest image den-
sity. Netherlands (NL) has the second largest image density, which achieves an Acc of 40.82%.
Other countries in Figure 5 have much sparser image distributions than do GB and NL. Accs
of these countries are lower than that of GB. Though it is not a strict rule, we can find a trend
that denser image distribution leads to higher suggestion accuracy. An outstanding counter
example is Australia (AU), which has a very sparse image distribution while having a relatively
high Acc of 42.19%. The reason could be that the majority of territory of Australia is not
human occupied, and thus images from Australia are limited to some small areas. As reported
in Table 2, the Acc for all countries obtained by NB+WP with 100km is 32.77%. Seven out
of the eight countries having the largest numbers of images in our dataset (except for Japan)
have higher accuracies than this overall value, which indicates that we are able to obtain better
performance if focusing on countries with a large number of Flickr images.

Looking into user moving region Some Flickr users move around a lot and upload images
with diversified geolocations, while some users move in a relatively small region and upload
images with close geolocations. To understand the effect of the sizes of user moving regions on
the performance gain for NB+WP over NB, we divide users into different groups based on the
number of unique geolocations (cells) where their images reside in, and calculate the relative
Acc improvements of NB+WP over NB for different groups of users.

For 1km, group 1 (resp. 2, 3 and 4) contains users with 1 to 9 (resp. 10 to 39, 40 to 106
and more than 106) unique geolocations. For 10km, group 1 (resp. 2, 3 and 4) contains users
with 1 to 5 (resp. 6 to 19, 20 to 49, and more than 49) unique geolocations. For 100km, group
1 (resp. 2, 3 and 4) contains users with 1 to 3 (resp. 4 to 9, 10 to 23 and more than 23) unique
geolocations. Users are divided such that users in each group have similar number of images
in the testing set. Figure 6 depicts the relative Acc improvements of NB+WP over NB for
different groups of users with 1km, 10km and 100km granularities. We find that the method
(NB+WP) combining evidences from both user profile and image tags improves on the Acc of
the method (NB) employing image tags alone for all user groups (all relative improvements are
positive), which shows the effectiveness and robustness of incorporating user profile for image
geotagging. For users with larger number of geolocations, NB+WP achieves relatively less
improvement over NB(except Group 2 and 3 for 10km). The reason would be the fact that
the profiles of users with smaller number of geolocations contain more accurate geolocation
information. This is consistent with the result, indicated in Table 2, that NB+WP achieves
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Figure 6: Acc Improvement of NB+WP over NB

larger improvement over NB for grids of larger size.

5.5 Experimental Summary

Section 5.2 shows that a simple method can achieve impressive accuracy for images from users
who did geotagging. However, as shown in Table 1, only 4.7% Flickr users did geotagging
before. Thus majority of users cannot benefit from this method.

In summary, experimental results for images from users who never geotagged before show
the following.

• Combining image tags and user profile together is able to achieve much better accuracy
than utilizing either of them alone for geolocation suggestion.

• The taken-time stamps of historical images play an important role in utilizing user profile.

• While NB+WP achieves the best performance for most scenarios, NB+ CT is a better
choice for applications accepting multiple suggested geolocations at the size of 1km or
10km granularity.

• For large granularity (100km), it achieves better accuracy to use a user profile alone than
using tags of the query image alone.

• The proposed methods are able to achieve better accuracy if we focuse on countries with
the largest numbers of Flickr images.

• The method (NB+WP) combining evidences from both user profile and image tags im-
proves on the Acc of the method (NB) employing image tags alone for all the users
with different moving regions. However, the improvement for images from users whose
movements cover fewer cells is greater.

6 Conclusion and Future Direction

In this paper, we propose a solution to the problem of geolocation suggestion for social im-
ages. On a large Flickr dataset, for the first time we analyze the user uploading patterns, user
geotagging behaviors, and the relationship between the taken-time gap of two images from the
same user and their spatial distance. Based on the analysis, we represent a user profile by the
historical tags used by the user, with the taken-time of historical tags being considered. Then
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we build a multinomial model based on the user profile for geotagging. A unified framework is
proposed to combine information from user profile and image tags to suggest geolocations for
social images. This is the first work that utilizes the user profile to improve the geolocation
suggestion for social images. The proposed methods are evaluated on the Flickr dataset. Ex-
perimental results show that, for users who have never done geotagging, our method is able to
improve on the performance of baselines significantly for grids at different granularities. For
users who have done geotagging, a simple method is able to achieve very high accuracy.

This work suggests a number of promising directions for future work. First, in addition to
the user profile, some other possible evidences can be incorporated into this work, such as users’
social links, month or season of images. Second, it appears promising to develop an adaptive
algorithm to automatically decide the size of suggested location. If we have sufficient evidences
to decide the geolocation of an image, we can suggest a more specific geolocation. Otherwise,
we suggest a larger geolocation. Finally, it would be interesting to study the user satisfaction
for the geotagging task, in addition to the evaluation based on the groundtruth.
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