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Abstract. Author name ambiguity has been a long-standing problem
which impairs the accuracy of publication retrieval and bibliometric
methods. Most of the existing disambiguation methods are built on sim-
ilarity measures, e.g., “Jaccard Coefficient”, between two sets of papers
to be disambiguated, each set represented by a set of categorical features,
e.g., coauthors and published venues1. Such measures perform bad when
the two sets are small, which is typical in Author Name Disambiguation.
In this paper, we propose a novel categorical set similarity measure. We
model an author’s preference, e.g., to venues, using a categorical distri-
bution, and derive a likelihood ratio to estimate the likelihood that the
two sets are drawn from the same distribution. This likelihood ratio is
used as the similarity measure to decide whether two sets belong to the
same author. This measure is mathematically principled and verified to
perform well even when the cardinalities of the two compared sets are
small. Additionally, we propose a new method to estimate the number of
distinct authors for a given name based on the name statistics extracted
from a digital library. Experiment shows that our method significantly
outperforms a baseline method, a widely used benchmark method, and
a real system.
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1 Introduction

Bibliometrics is an important methodology to assess the output and impact of
researchers and institutions. Ambiguous names which correspond to many au-
thors are a long-standing headache for bibliometric assessors and users of digital
libraries. For example, in DBLP, there are at least 8 authors named Rakesh Ku-
mar, and their publications are mixed in the retrieved citations. The ambiguity
on Chinese names is more severe, as many Chinese share a few family names
such as Wang, Li, and Zhang. An extreme example is Wei Wang. According to
our labeling, it corresponds to over 200 authors in DBLP! As more and more
researchers become active, the ambiguity problem will only become graver.

Author Name Disambiguation refers to splitting the bibliographic records by
different authors with the same name into different clusters, so that each cluster
belongs to one author and each author’s works are gathered in one cluster.

1 Venues here refer to the journal or conference, such as J. ACM or SIGIR.



For each paper, we consider 3 features: coauthors, published venue and title,
by following the setting used in previous work [5,3,12]. Under this setting, our
proposed method can be general and applicable to the existing bibliography
databases, e.g., DBLP, since they contain information on the three features for
each paper. Each feature serves as a body of evidence used to decide whether
two homonymous authors are the same person. Coauthors and venues are two
important features that have categorical values. During disambiguation, we need
measure the similarity between two clusters of papers. Naturally the feature
values in each cluster form a set of categorical data, and thus a categorical set
similarity measure is an important foundation of a disambiguation algorithm.

Given two sets of categorical data, previous methods of name disambigua-
tion use set similarity measures, such as Jaccard Coefficient ([2,12]) or cosine
similarity ([8]), which often fail when the sets are unbalanced in cardinality, or
when the frequencies of the elements in each set have distinctive patterns (to be
explained in Section 4). We exploit the property that categorical sets from the
same author follow similar distributions, and propose a generative probabilis-
tic model to estimate the similarity of two sets. We name this novel similarity
measure as Categorical Sampling Likelihood Ratio (CSLR).

In addition, the ambiguity (number of distinct people) of a disambiguated
name needs to be estimated to guide the disambiguation process. We exploit the
property that the different parts of a person name in a given culture are chosen
roughly independently, and derive a simple statistical method to estimate the
ambiguity, based only on the name statistics in a digital library. The estimated
ambiguity is shown to be reasonably close to the actual value for Chinese names.

We evaluate our system on two test sets extracted from the January 2011
dump of DBLP. Experiments show that our method significantly outperform one
baseline method (by 2-12%), a representative previous method DISTINCT (by
4-13%) and a well-known system Arnetminer [9] (http://arnetminer.org/)
(by 6-17%) in terms of macro-average F1 scores.

The rest of this paper is organized as follows. In Section 2, we review related
work. In Section 3, we define basic notations used in this paper, and state the
objective of Author Name Disambiguation. In Section 4, we establish the novel
set similarity measure CSLR. In Section 5, we outline our clustering system based
on CSLR. In Section 6, we describe the name ambiguity estimation method. In
Section 7, we report experimental results. Finally, we conclude in Section 8. In
addition, all proofs are in the full version of this paper ([6]). The source code
and data set are available at http://github.com/askerlee/namedis.

2 Related Work

A pioneering work [5] on Author Name Disambiguation presents two supervised
learning approaches, using Naive Bayes and SVM, respectively. For each name to
be disambiguated, a specific classifier is trained. Therefore, hand-labeled papers
for each name are needed. This overhead is unaffordable in practice.

The method DISTINCT [12] uses SVM to learn the weights of features. The
training data for SVM is generated automatically. The title is considered the
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unigram “bag-of-words” (BoW). Each cluster of papers has a few features, and
the similarity between feature value sets of two clusters is calculated using Jac-
card Coefficient. As another similarity measure, the connection strength between
clusters is measured by a random walk probability. The two similarity measures
are combined and form the similarity used in the agglomerative clustering.

The work [2] formulats the Name Disambiguation problem as a hypergraph,
where each author is one node. Relationships among authors, such as the coau-
thorship of a few authors, are represented as hyperedges. The similarity between
two clusters is measured by comparing their “neighboring sets” (other clusters
they connect with), using Jaccard Coefficient or Adamic/Adar Similarity.

Torvik et al. ([10]) develops a disambiguation system on MEDLINE. First
a training set is automatically generated, and the likelihood ratio of each fea-
ture value as its evidential strength is estimated from the training set. Evidence
provided by different feature values is aggregated under the Naive Bayes assump-
tion, and the probability that two papers belong to the same author is estimated.
Finally, a maximum likelihood agglomerative clustering is conducted.

Recently, Tang et al. ([8,11]) presents two closely-related methods based on
Pairwise Factor Graph models. The authorship is modeled as edges between
observation variables (papers) and hidden variables (author labels). Features of
each paper, and relationships such as CoPubVenue and CoAuthor, have impact
on the probability of each assignment of labels. The similarity between two clus-
ters is encoded in different “factors” (edge potentials) on different features. The
clustering process tries different author label assignments and finds the one with
maximal probability. Moreover, [11] improves the disambiguation resultes based
on user feedback, and is being used online in Arnetminer for disambiguation
(http://arnetminer.org/disambiguation).

In addition to the title, co-authorship and venue information, authors’ home-
pages ([11]), and results returned by a search engine ([7]) are also used for dis-
ambiguation. However, such information is not always available.

3 Problem Formulation

In a digital library, each author name e may correspond to one or more authors
{a1, a2, · · · , aκ(e)}. Each ai is called e’s namesake. The number of namesakes
κ(e) is the ambiguity of name e. The estimated ambiguity is denoted by κ̂(e).
The name e being disambiguated is called the focus name. Each paper d has a
set of authors Ad = {a1, a2, · · · , am}. Suppose ai has name e. The rest authors
(if any) Ad \ {ai} are the coauthors with regard to paper d, denoted by co(d).

We represent a collection of categorical data as a multiset. In contrast to
the traditional set, here each element x in set S has a frequency value freqS(x).
freqS(x) could be a real number after scaling. The cardinality of a multiset S,
denoted by |S|, is the sum of frequencies of all its elements: |S| =

∑
x∈S freqS(x).

A multiset S is often represented as a list of pairs as {x1 : f1, · · · , xm : fm}, where
fi = freqS(xi). Often we simply refer to a multiset as a set when the meaning
is clear from context.

http://arnetminer.org/disambiguation


Given a set of papers C = {d1, d2, · · · , dn} written by author a, the coauthor
set of C is the union of coauthors2 of all di, i.e., co(C) = ∪ni=1 co(di). Each
coauthor bi ∈ co(C) has a frequency freqco(C)(bi), which is the count of papers
in C having bi as a coauthor.

Likewise, we refer to the multiset of publication venues for the set of papers C
as the venue set of C, denoted by V (C). Each venue vi ∈ V (C) has a frequency
freqV (C)(vi), which is the number of papers in C published in vi.

Problem Statement Given a focus name e and a set of papers authored by
name e: P(e) = {d1, d2, · · · , dn}, the problem of name disambiguation is to
partition P(e) into different clusters {C1, · · · , Cκ(e)}, so that all papers in Ci are
authored by person ai and all the papers in P(e) by ai are in Ci.

Before we present the proposed method for name disambiguation in Section 5,
we first present the proposed similarity measure in Section 4, which lays the
foundation of our method.

Notation Description

e An ambiguous name
κ(e) Ambiguity of name e
ai An author (with no ambiguity)
C A cluster of papers that belong to the same author
co(C) Coauthor multiset of C: the union of coauthors of all papers in C
V (C) Venue multiset of C: the union of venues of all papers in C
freqS(x) Frequency of an element x in a multiset S
S A multiset, where each element x ∈ S has a frequency
|S| Cardinality of a multiset, i.e., the sum of frequencies of all elements
p = (p0, p1, · · · , pm) A parameter vector of a categorical distribution
B Base Set (the larger one of two compared multisets S1 and S2)
BCD, B Base Categorical Distribution where B is drawn
A Sampled Set (the smaller one of two multisets S1 and S2)

Ã Conflated sampled set (all “unseen” outcomes become UNSEEN)

A′ Tolerated sampled set (by reducing some UNSEEN counts from Ã)
Cat(p) A categorical distribution with the parameter vector p
Pr(S|p) Probability of drawing set S from Cat(p)
S ∼ D The case of drawing S from distribution D
Λ(A,B) Categorical Sampling Likelihood Ratio (CSLR) between A and B

Table 1. Notation table

4 Categorical Sampling Likelihood Ratio – A Categorical
Set Similarity Measure

In Section 4.1, we use a categorical distribution to model the preference of each
author, introduce the intuition behind Categorical Sampling Likelihood Ratio

2 As different coauthors with the same name are literally indistinguishable, the coau-
thor here may correspond to more than one actual author.



(CSLR), and formulate CSLR as the ratio of two likelihoods. In Section 4.2, we
present methods to approximate the two likelihoods. Section 4.3 presents the
proposed CSLR.

For ease of discussion, we present CSLR in the context of two venue sets,
each representing a set of papers by an author. The comparison between two
coauthor sets can be computed similarly.

4.1 Modeling using the Categorical Distribution and Motivation

Each author has preferences to the publication venue, and such preferences can
be represented as a categorical distribution, namely the Preference Distribution.
The frequency that the author published in a venue reflects the preference of
this author to the venue. Consider a cluster of papers C belonging to author a.
The venue of each paper in C is an observation of the preference distribution,
and the whole venue set V (C) forms a sample of that distribution. Suppose
there are m possible outcomes (i.e., venues) in this distribution, denoted by
xi, i = 1, · · · , m. Each xi has a probability pi drawn from this distributuion. We
denote all the outcome probabilities as a vector: p = (p1, · · · , pm). A categorical
distribution with a parameter vector p is denoted by Cat(p). Therefore author
a’s preference distribution is Cat(p).

Different authors usually have distinctive preference distributions. Hence we
can estimate the possibility that two clusters belong to the same author, by
comparing the two distributions from which these venue sets are drawn. Such a
problem is traditionally known as the two-sample problem ([4]).

The biggest challenge of the two-sample problem in Author Name Disam-
biguation is: during the clustering, a cluster of papers are often a small fragment
of the complete set of papers by that author, and therefore the venue set is a
small sample and often only a partial observation of the preference distri-
bution. It is difficult to compare two distributions based only on two partial
observations. Traditional categorical set/distribution similarity measures, such

as Jaccard Coefficient : J(A,B) = |A∩B|
|A∪B| , its variant Adamic/Adar Similarity,

cosine similarity, or Kullback-Leibler divergence, perform well when the sets A
and B are large and good approximations of the underlying distributions, but
do not fit well with Author Name Disambiguation. We take Jaccard Coefficient
to illustrate the problems of these measures:

1. Sets A and B often have unbalanced cardinalities, and J(A,B) is sensitive
to the relative set cardinalities. In the extreme case that A ⊂ B, intuitively
A,B are probably drawn from the same distribution (A is a smaller sample);

however J(A,B) = |A|
|B| varies drastically with the cardinality of either set;

2. The evidential strength of each shared element is usually regarded as the
same, regardless of their relative importance. But some elements are more
discriminative than others. For example, suppose x is the most frequent
elemnt in B, but absent in A. Then it is strong evidence that A and B
follow different distributions, and are dissimilar. But if x appears once in B
and absent in A, it is only weak evidence. Note adding weights to elements



does not help much, e.g., Adamic/Adar Similarity, the weighted version of
Jaccard Coefficient, is shown to perform worse than Jaccard Coefficient ([2]).

To this end, we propose a new measure. Assume two multisets A,B have
arisen under one of the two hypotheses H0 and H1. The null hypothesis H0 here
is: A and B are drawn from different distributions (and thus belong to different
authors). The alternative hypothesis H1 is: A and B are drawn from the same
distribution (and thus belong to the same author). We want to see how likely
one hypothesis holds relative to the other. The more likely H1 is relative to H0,
the more similar are A and B.

Formally, we estimate both Pr(H1|B, A) and Pr(H0|B, A). We compare

these two posterior probabilities and get a likelihood ratio Λ =
Pr(H1|B, A)

Pr(H0|B, A)
.

We use the likelihood ratio as the similarity between A and B.
We assume a flat prior on the two hypotheses: Pr(H0) = Pr(H1) = 0.5. By

applying Bayes’ theorem (the proof can be found in [6]), we get

Theorem 1.

Λ =
Pr(H1|B, A)

Pr(H0|B, A)
=

Pr(A|B, H1)

Pr(A|B, H0)
.

To compute the likelihood ratio, we need to compute the two probabilities
that A is seen, given B and one of the hypotheses, H0 and H1.

4.2 Calculating the Two Likelihoods

Computing Pr(A|B, H1) Consider two authors a1 and a2, whose preference
distributions are Cat(p1) and Cat(p2), respectively, and whose venue sets are A
and B, respectively.

We proceed to estimate Pr(A|B, H1). First, suppose hypothesis H1 holds.
Then p1 = p2. This implies, given B and H1, A is drawn from Cat(p2). Let
Pr(A|p2) be the probability that A is drawn from Cat(p2). Then Pr(A|B, H1) =
Pr(A|p2).

We estimate p1,p2 from A and B and get p̂1, p̂2, respectively. Then

Pr(A|B, H1) = Pr(A|p2) ≈ Pr(A|p̂2).

Note in Theorem 1, A and B are symmetric and exchangeable. Empiracally a
larger sample tends to better reflect the actual distribution Cat(pi). Without loss
of generality, suppose |B| ≥ |A|. Then Cat(p̂2) is probably a better estimation
of Cat(p2) than Cat(p̂1) as an estimation of Cat(p1). The likelihood Pr(A|p̂2)
would likely be more accurate than Pr(B|p̂1). So we choose B as the conditioning
set, namely the Base Set, from which we estimate a Base Categorical Distribution
(BCD) B, and the smaller set A as the conditioned set, namely the Sampled Set.
If |A| > |B|, we simply exchange A and B.

Let us denote the base set as B = {x1 : f1, x2 : f2, · · · , xn : fn}, and the
sampled set as A = {y1 : g1, y2 : g2, · · · , ym : gm}, where xi, yj are outcomes
(venues), and fi = freqB(xi), gj = freqA(yj). We can estimate B from B using

Maximum Likelihood Estimation (MLE): p̂i = fi∑
i fi

.



Considering that B may not cover all the outcomes in B, we should tolerate
outcomes in A but not in B. We introduce a “wildcard” outcome: UNSEEN
(denoted by x0, drawn with a small probability p0). Any outcome in A but
not in B is treated as UNSEEN, without discrimination. We adopt the widely
used Jeffreys prior([1]) to assign a pseudocount δ = 0.5 to UNSEEN and all the
observed outcomes in B. The smoothed estimator gives the following parameters:

p̂0 =
δ

δ(n+ 1) +
∑
i fi

, p̂i =
fi + δ

δ(n+ 1) +
∑
i fi

, for i = 1, · · · , n. (1)

The estimated B is B̂ = Cat(p̂2) = Cat(p̂0, p̂1, · · · , p̂n).
Before calculating the probability that A is drawn from B̂, we partition A

into two sets – the “seen” outcomes As and the “unseen” ones Au, and conflate
Au into UNSEEN:

1) As = A ∩ B. Suppose As = {y1 : g1, ... , yt : gt}. We align (relabel) the ele-
ments in B with As, so that xi = yi, for i = 1, ..., t (the remaining outcomes
in B are labeled as xt+1, · · · , xn arbitrarily). Then outcome yi is drawn with
probability p̂i from B̂;

2) Au = A\B is the unseen outcomes. Suppose Au = {yt+1 : gt+1, ... , ym : gm}.
All elements in Au are “conflated” to UNSEEN (x0). Let the frequency of
x0 be g0, then g0 = |Au| =

∑m
i=t+1 gi.

We denote the conflated set as Ã. We have Ã = {x0 : g0, y1 : g1, ... , yt : gt}.
Note the conflation does not change the cardinality of the set, i.e., |Ã| = |A|.
Then the probability that drawing A from distribution B, denoted by A ∼ B, is
approximated by the probability that Ã ∼ B̂:

Pr(A|B, H1) ≈ Pr(Ã|p̂2) =

(
|A|

g0, g1, · · · , gt

)
p̂g00

t∏
i=1

p̂gii , (2)

where
( |A|
g0, g1,··· ,gt

)
is the multinomial coefficient, counting the total number of

sequences with the same frequencies of outcomes as in A.

Toleration of Preference Divergence: Converting from A to A′ The
preference distribution of an author often evolves slowly with time. Thus an au-
thor has different preference distributions at different periods; however typically
these categorical distributions share many common outcomes, and the probabili-
ties of shared outcomes are still close. Thus the difference between the preference
distributions of the same author at different times is usually much smaller than
the difference between the distributions of different authors.

Consider two sets A and B, both belonging to author a, are drawn from
slightly different preference distributions Cat(p1) and Cat(p2), respectively,
where the parameter vectors p1 and p2 are similar but not identical. Let B
be the base set, and B̂ is the estimated BCD. When we calculate the probability
that A ∼ B̂, A may contain a few “unseen” outcome occurrences with respect to
B̂, as well as a lot of “seen” outcome occurrences. These UNSEEN occurrences
are all assigned a tiny probability p̂0, and contribute c · p̂g00 (c is a small factor



in the multinomial coefficient) in (2), which reduces the probability drastically
(although the majority of outcome occurrences are “seen”), wrongly indicating
that A and B unlikely belong to the same author. The “culprit” of this undesir-
able result is the few “unseen” outcomes. In other words, the direct likelihood
estimation is too stringent and intolerant to deviation from B̂.

To allow for preference divergence, before we calculate the likelihood, we re-
duce some count of UNSEEN, proportional to the cardinality of A. This strategy
is called toleration. The kept outcome occurrences form a new Tolerated Set A′.

To perform toleration on set A, first we conflate the “unseen” outcomes in A
and get Ã. Parameter θt controls the UNSEEN count to be reduced relative to
A’s cardinality, i.e., UNSEEN frequency g0 will be reduced by θt|A|. If UNSEEN
frequency g0 < θt|A|, then the new frequency g′0 = 0. We set θt = 1

3 . We
denote the tolerated set as A′ = {x0 :h0, y1 :h1, · · · , yr :hr}, where h0 = g′0, and
hi = freqA(yi), for ∀i > 0. The probability in (2) becomes Pr(A′|p̂2):

Pr(A|B, H1) ≈ Pr(A′|p̂2) =

(
|A′|

h0, h1, · · · , hr

)
p̂h0
0

r∏
i=1

p̂hi
i . (3)

Computing Pr(A′|B, H0) In the following, the sampled set in our likelihood
estimation is the tolerated set A′. We will estimate Pr(A′|B, H0) first.

The hypothesis H0 states that A′ and B are drawn from different categorical
distributions, i.e., A′ is drawn from a distribution other than Cat(p2). Since any
randomly-chosen categorical distribution is probably dissimilar to Cat(p2), we
can approximate Pr(A′|B, H0) by Pr(A′), i.e., the probability that A′ is drawn
from a categorical distribution Cat(p), where we have no information about p.

We limit the sample space of any possible categorical distribution Cat(p) to
the set of outcomes in B: {x1, · · · , xn}. Naturally, we assume a flat Dirichlet
Dir(1n) as the prior distribution of p, where 1n = (1, · · · , 1) is n dimensional.

Suppose A′ = {x0 :h0, y1 :h1, · · · , yr−1 :hr−1, yr :hr}, then we can represent
A′ by the frequency vector of its elements: h = (h0, h1, · · · , hr, hr+1, · · · , hn),
where hr+1 = · · · = hn = 0. Then we have the following Theorem.

Theorem 2.

Pr(A′|B, H0) ≈ Pr(A′) =

∫
p

Pr(h|p) Pr(p;1n)dp =
1(|A′|+n
n

) , (4)

where Pr(p;1n) denotes the probability of drawing p from Dir(1n).

The proof can be found in [6]. Theorem 2 reveals an interesting fact: Pr(A′)
is only determined by |A′|, A’s cardinality, and n, the number of categories in
B, but irrelevant to the histogram of outcome frequencies in A′.

4.3 Categorical Sampling Likelihood Ratio (CSLR)

As we have obtained two approximations of the two likelihoods in Eq. (3) and
Theorem 2, we combine them and get the approximation of Λ:

Λ ≈ Pr(A′|p̂2)

Pr(A′)
=

(
|A′|

h0, h1, · · · , hr

)(
|A′|+ n

n

)
p̂h0
0

r∏
i=1

p̂hi
i . (5)



We name Λ as Categorical Sampling Likelihood Ratio (CSLR). It is directly
used as the similarity between two categorical sets, such as venue sets and coau-
thor sets. For two sets A and B, we denote their CSLR as Λ(A,B).

5 Clustering Framework

5.1 Overview of the Clustering Procedure

We use Agglomerative Clustering as the basic framework. It starts with each
paper being a cluster, and at each step we find the most similar (the similar-
ity measures will be defined later) pairs of clusters, and merge them, until the
maximal similarity falls below certain threshold, or the cluster number is smaller
than the estimated ambiguity of the disambiguated name. The whole clustering
process divides into two stages:

1. Merge based on the evidence from shared coauthors;

2. Merge based on the combined similarity defined on the title sets and venue
sets of each pair of clusters.

The reasons for developing the two-stage clustering are twofold: First, coau-
thors generally provide stronger evidence than other features, based on which
the generated cluster usually comprises of papers of the same author, but the
papers of an author may distribute among multiple clusters ([3]); Second, the
venue and title features are relatively weak evidence, based on which we can
further merge clusters from the same author.

5.2 Stage 1: Merging by Shared Coauthors

The existing work ([5,12,10,2,3]) usually takes shared coauthors as a crucial fea-
ture. They usually treat all authors equally, and combine two clusters if they
have shared coauthors. However, we observe that the strength of the evidence
provided by a shared coauthor varies from one to another. If a coauthor collab-
orates with many people, it is likely that the coauthor collaborate with different
people with the same focus name. Especially when the focus name to be dis-
ambiguated has high ambiguity, the chance of different people sharing the same
coauthor names would be high. Hence, we propose to distinguish those weak
evidential coauthors from the strong evidential coauthors and treat them dif-
ferently. For example, consider to disambiguate “Wei Wang”. Coauthors Jiawei
Han and Jian Pei both collaborate with different “Wei Wang”. We observe that
both Jiawei Han and Jian Pei have over 200 collaborators, and thus they should
be treated as weak evidential coauthors when disambiguating “Wei Wang”.

We proceed to present a statistical approach to estimating the probability
that a coauthor b works with only one namesake of a given name e. Given that
a coauthor b is shared by two clusters C1 and C2, the alternative hypothesis H1

says C1 and C2 belong to the same author. If Pr(H1|b) is large enough (≥ θco),
then b is regarded as strong evidential, and we merge C1 and C2. Otherwise b is
weak evidential. Here θco is the decision threshold. We choose θco = 0.95.



Let e be the disambiguated focus name. Suppose that the coauthor b ran-
domly chooses n authors from the whole author set A3 to collaborate with, and
among the n collaborators at least one person a1 has name e. The total count
of authors is denoted by M = |A|. We assume the choice of collaboration fol-
lows a uniform distribution U over A. Thus the n collaborators are viewed as n
independent trials from U , where each author ai ∈ A has probability 1/M to be
chosen4. Since one trial is reserved for a1, only n − 1 trials are really random.
Suppose we have known e’s ambiguity κ(e). Then in each trial, choosing another

author with name e has probability κ(e)−1
M−1 ≈

κ(e)−1
M .

The probability that no other collaborator of b has name e is:

Pr(H∗1 |b) = (
M − κ(e)

M
)n−1 ≈ 1− (n− 1)κ(e)

M
, (6)

considering κ(e) � M . H∗1 means that for any pair of clusters C1 and C2, H1

holds. So H∗1 =⇒ H1, and Pr(H∗1 |b) ≤ Pr(H1|b).
But we do not know n, the actual number of collaborators of b. We only

know b has collaborated with | co(b)| names. So n ≥ | co(b)|. We can obtain n’s
expectation E[n] as n’s estimation:

E[n] ≈ M(| co(b)| − 1)

M −
∑
ei∈co(b) (κ(ei)− 1)

, (7)

where κ(ei) is approximated by κ̂(e) in Section 6, and M ≈
∑
e∈A κ̂(e).

Strong evidential coauthors require Pr(H1|b) ≥ θco. Combining this with Eq.
(6), we obtain

n ≤ (1− θco)M
κ(e)

+ 1. (8)

The right-hand value of Eq. (8) is a threshold value to partition authors into
two groups: one contains authors who have fewer coauthors than the threshold,
and thus provide strong evidence; the other contains authors who have more
coauthors than the threshold and thus offer weak evidence.

Given two clusters C1 and C2, if there is one shared strong evidential coau-
thors, then we see enough evidence supportingH1, and then we merge them. Oth-
erwise all shared coauthors are weak evidential. We use CSLR to see how likely
the two coauthor sets are drawn from the same distribution. If Λ( co(C1), co(C2) ) >
1, we merge C1 and C2.

5.3 Stage 2: Merging by Venue Set and Title Set

Consider a pair of clusters C1 and C2 with venue sets V1, V2, and title sets T1, T2.
We denote the Venue Set Similarity by simV (V1, V2), and Title Set Similarity by

3 A includes all authors in the DBLP dump.
4 The n trials is without replacement. The probability is approximated by trials with

replacement. This approximation is good, since n�M .



simT (T1, T2). These two similarity measures are heterogeneous metrics, and we
multiply them to compute the combined similarity:

sim(C1, C2) = simV (V1, V2) · simT (T1, T2). (9)

As the ambiguity κ(e) of an author e increases, there are more and more au-
thors working in the same subfields and publishing in the same venues. Therefore
the clustering threshold in this stage, denoted by θc, should increase monotoni-
cally with κ(e). We set θc as a linear function of κ̂(e):

θc(κ̂(e)) = 0.2 ·max(1,
1

5
κ̂(e)) (10)

Due to space limitations, the technical details of using CSLR to compute
the similarity simV (V1, V2) and using BoW to compute simT (T1, T2) are omitted
here, and can be found in the full version of this paper ([6]).

Next we briefly introduce the idea of computing the two similarities.

Venue Set Expansion and Similarity We use CSLR to compare two venue
sets. But CSLR treats different outcomes as disparate and their correlations
are not considered. Often two venue sets do not share common venues, but the
venues are correlated, such as “TKDE” in one set, and “CIKM” in the other.
They still favor (to certain degree) the hypothesis that the two clusters are from
the same author. In this case, CSLR returns a very small likelihood ratio.

To remedy this problem, before computing CSLR, we expand each venue set
with correlated venues first. Now a venue set {TKDE: 2, CIKM: 3} could become
{TKDE: 2, CIKM: 3, ICDM: 1, KDD: 0.5}, and the CSLR value between it and
another set {ICDM: 3, KDD: 1} will become reasonably large.

The idea is to predict the frequencies of absent but correlated venues of a
set, based on observed venues, and then add the predicted {venue : frequency}
pairs into that set. The correlated venues are mined using linear regression on
the 1.5 million DBLP papers.

We denote the expanded venue set of Vi as Ṽi, then simV (V1, V2) = Λ(Ṽ1, Ṽ2).

Title Set Similarity based on Unigram BoW We adopt the traditional
unigram BoW model to represent two title sets and calculate their similarity. The
similarity simT (T1, T2) is the weighted sum of shared unigrams5. The weighting
scheme is a variant of TF*IDF, which regards all the titles of an author as a
single document when calculating the Inverse Document Frequency (IDF).

6 Name Ambiguity Estimation

We present a statistical method to estimate the ambiguity κ(e) of each focus
name e. The estimation κ̂(e) is used in (8) and (10). In addition, it plays two

5 Words in the titles are so sparse and diverse that even if two title sets belong to the
same author, the two corresponding sets of words are usually not drawn from the
same distribution, and thus CSLR does not fit in here.



other roles: First, it is one of the stop criteria of the clustering. Once we reach
κ̂(e) clusters, we should stop merging. Note the clustering may stop before the
number of clusters becomes κ̂(e) due to other criteria. Second, if κ̂(e) is much
less than 1, it means name e is rare, and it is highly possible that only one person
has this name, regardless how many papers is authored by e. For example, in our
dataset, 448 papers have author name Jiawei Han. We assert that all of them
are by the same person, given that Jiawei Han’s estimated ambiguity is 0.29.

Our method is inspired by the “Ambiguity Estimate” intuition in [2]. Our
estimation only needs the names statistics in a digital library.

In the digital library names in a given culture usually have a fixed num-
ber of parts. For example in DBLP, a Chinese name usually has 2 parts (e.g.,
“Xiaofeng” and “Wang” for name “Xiaofeng Wang”). Suppose that these parts
were chosen roughly independently with each other. Thus we can estimate the
probability of each option of each part, and then the probability of a full name
is the joint probability of its parts.

We formulate the case of 3-part names as an example. Suppose a name e in
a given culture consists of a given name G(e), a middle name M(e) and a family
name F (e), i.e., e = G(e)+M(e)+F (e), where “+” means string concatenation.

For any name e in this culture, we assume G(e), M(e) and F (e) are drawn
independently from 3 categorical distributions CatG, CatM and CatE , respec-
tively. Then Pr(e) = Pr(G(e)) Pr(M(e)) Pr(F (e)).

The parameters of CatG, CatM and CatE are estimated using MLE. Take
CatG as an example. Let E be the set of all names in this culture, and G be the
set of all given names in this culture,

∀g ∈ G, Pr(G(e) = g) ≈
∑
e∈E,G(e)=g κ(e)∑
∀e∈E κ(e)

. (11)

Noticing
∑
∀e∈E κ(e) is the total number of different authors in this culture,

the MLE of the instances (i.e., ambiguity) of name e in the DBLP author set is:

κ̂(e) = Pr(G(e)) Pr(M(e)) Pr(F (e))
∑
∀e∈E

κ(e). (12)

We do not know κ(e), and thus we use κ̂(e) in place of κ(e), and evaluate
(11) and (12) iteratively, until κ̂(e) converges. It is possible that κ̂(e) < 1 (a rare
name), so during the iteration, we round κ̂(e) to 1 if κ̂(e) < 1. Specifically,

1. Initially, ∀e, κ̂0(e) = 1;

2. In the (i + 1)-th iteration, we plug max(κ̂i(e), 1) for κ(e) into (11) and
(12), evaluate them and get κ̂i+1(e). Repeat this step until |

∑
∀e κ̂i+1(e) −∑

∀e κ̂i(e)| ≤ εm, where εm is a small number to measure the convergence.

When the estimation converges at the n-th iteration, we round κ̂n(e) up to
1 and get κ̂(e). If we want to check the rarity of a name, we use κ̂n(e) directly.

Note the name-part independence assumption holds only among names in
a given culture. Given names from one culture and family names from another
culture are usually anti-correlated, for example “Jacob Li” is a very rare combi-
nation. So Ambiguity Estimation should be conducted culture-wise. For names in



a culture which are too few in the digital library to form a large enough sample,
external demographic data could be incorporated to get better estimation.

Table 2. Statistics of Data Set 1∗

Name e #Pubs κ(e) κ̂(e)

Hui Fang 9 3 1.62

Ajay Gupta 16 4 n/a

Joseph Hellerstein 151 2 n/a

Rakesh Kumar 36 2 n/a

Michael Wagner 29 5 n/a

Bing Liu 89 6 6.91

Jim Smith 19 3 n/a

Lei Wang 55 13 (31) 22.34

Wei Wang 140 14 (57) 49.43

Bin Yu 44 5 (11) 8.7

Table 3. Statistics of Data Set 2

Name e #Pubs κ(e) κ̂(e)

Hui Fang 45 8 6.8

Ajay Gupta 25 8 n/a

Joseph Hellerstein 234 2 n/a

Rakesh Kumar 104 8 n/a

Michael Wagner 61 16 n/a

Bing Liu 192 23 21.0

Jim Smith 54 5 n/a

Lei Wang 400 144 104.6

Wei Wang 833 216 254.2

Bin Yu 102 18 17.3

* [12] removed authors who have only one paper from their data set. So for the last
three names in Table 2, [12] reported much smaller ambiguities than the real values,
which are given in the parentheses.

7 Experimental Results

7.1 Experimental Setting

Data Set Two test sets are used. For fairness of comparison, both use the same
set of names as in [12]. Papers written by these names in DBLP are extracted
for disambiguation.

Set 1 is the same dataset as that used in [12]. Its statistics are listed in Table
2. This data set was extracted from a 2006 dump of DBLP.

Set 2 is extracted from a January 2011 dump of DBLP. Each name corre-
sponds to many more papers (and bigger ambiguity, as more authors with these
names publish) in Set 2 than Set 1. Their statistics are in Table 3. All these
papers were hand-labeled and available at the URL given in Section 1.

As a part of our experiments, we test Ambiguity Estimation on Chinese
author names, and list the results on names in the test set in Tables 2 and 3. Set
1 was built at the beginning of year 2006 ([12]), so we use the DBLP statistics
before 2006 to estimate these ambiguities. Set 2 contains all authors and papers
in DBLP till January 2011, and we use the whole DBLP statistics to estimate
these ambiguities. The actual ambiguities κ(e) are obtained by hand-labeling.

For Chinese names, our method gives a reasonable estimation: κ̂(e) ∈ (0.5κ(e),
1.5κ(e)). We have not estimated the ambiguities of names in other cultures. But
usually their ambiguities are small (below 30) and we set all of them to 2. Ex-
periments show such inaccuracy does not impair the performance of our system
noticeably.



Evaluation As in [12,8], we use Pairwise Precision, Pairwise Recall, and Pair-
wise F1 scores to evaluate the performance of our method and other methods.
Specifically, any two papers that are annotated with the same label in the ground
truth are called a correct pair, and any two papers that are predicted with the
same label (if they are grouped in the same cluster, we also call they have the
same label) by a system but are labeled differently in the ground truth are called
a wrong pair. Note the counting is for pairs of papers with the same label (either
predicted or labeled) only. Thereafter, we define the three scores:

Prec =
# PairsCorrectlyPredicted

# TotalPairsPredicted
Rec =

# PairsCorrectlyPredicted

# TotalCorrectPairs

F1 =
2× Prec×Rec

Prec + Rec

Experimental Details We evaluated one baseline, denoted by Jac, which uses
Jaccard Coefficient for coauthor/venue sets, the unigram BoW based similarity
for title sets, and Eq. (10) as its clustering threshold. The optimal Jaccard Co-
efficient thresholds for coauthor sets and venue sets are different. We tested Jac
with different thresholds, and chose the thresholds for coauthor sets and venue
sets that produce the highest macro-average F1 scores, respectively. The best
thresholds are 0.03 for coauthor sets, and 0.04 for venue sets.

We compared our method with two representative methods: DISTINCT
([12]) and Arnetminer ([11]). We acquired the original source code of DISTINCT.
DISTINCT uses randomly generated training sets, and in different runs its per-
formance varies greatly. Moreover, DISTINCT does not have a mechanism to
determine a clustering threshold for a given name. Instead it tries 12 different
thresholds between [0, 0.02]. For each name, different thresholds lead to dis-
parate performance. So we ran DISTINCT 10 times and averaged its scores
at each threshold, and then took the threshold that gives the highest macro-
average F1 score over all names, as the chosen threshold (0.002 for Set 1, 0.001
for Set 2). Additionally, we crawled the disambiguation pages of these 10 names
from http://arnetminer.org/ on March 12, 2012, and extracted the disam-
biguation results. These results are generated by the up-to-date work of [11]. As
Arnetminer contains papers newer than the release date of our DBLP dump, we
discarded papers that are not in our data sets.

We refer to our own method as CSLR. It has 3 important parameters: θt,
which controls the degree of toleration; θco, which controls the decision threshold
between strong/weak-evidential coauthors; and θc(κ̂(e)), which controls when to
stop the second-stage clustering. They are tuned on a development set of 5
names: Tao Peng, Peng Cheng, David Jensen, Xiaodong Wang, and Gang Wu.

7.2 Experimental Results and Discussion

The results for all methods are shown in Table 4 and 5. For each method, the
most important measure, the macro-average F1 score over all names, is under-
lined. On both sets, CSLR significantly outperforms all the other methods.

http://arnetminer.org/


Table 4. Comparison of Performance on Set 1

Name
Jac Arnetminer DISTINCT Our (CSLR)

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Hui Fang 100.0 100.0 100.0 55.6 100.0 71.4 85.6 100.0 88.7 100.0 100.0 100.0

Ajay Gupta 100.0 93.1 96.4 100.0 100.0 100.0 67.7 94.5 78.8 100.0 93.1 96.4

Joseph Hellerstein 50.7 83.9 63.2 97.4 97.4 97.4 92.4 80.6 84.6 100.0 69.7 82.1

Rakesh Kumar 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Michael Wagner 100.0 64.0 78.1 100.0 33.7 50.5 90.1 96.2 92.9 100.0 64.0 78.1

Bing Liu 99.8 84.5 91.5 86.2 79.8 82.9 86.5 82.0 83.6 91.8 87.0 89.4

Jim Smith 100.0 83.1 90.8 100.0 84.5 91.6 95.6 91.7 93.3 100.0 87.3 93.2

Lei Wang 100.0 71.2 83.2 59.4 94.2 72.9 42.5 75.0 51.8 100.0 63.3 77.6

Wei Wang 60.5 83.7 70.2 28.1 98.5 43.8 31.0 98.8 47.1 59.3 72.4 65.2

Bin Yu 70.7 64.7 67.6 87.8 95.3 91.4 77.1 89.2 81.3 98.8 68.5 80.9

Avg. (macro-F1) 88.2 82.8 84.1 81.5 88.4 80.2 76.9 90.8 80.2 95.0 80.5 86.3

Table 5. Comparison of Performance on Set 2

Name
Jac Arnetminer DISTINCT Our (CSLR)

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Hui Fang 100.0 68.8 81.5 59.1 63.7 61.3 81.3 97.9 88.0 100.0 78.9 88.2

Ajay Gupta 96.0 47.0 63.1 60.0 65.4 62.6 65.3 87.9 74.2 96.0 39.6 56.1

Joseph Hellerstein 52.8 80.5 63.7 94.5 95.9 95.2 92.3 89.5 90.0 100.0 79.6 88.6

Rakesh Kumar 100.0 89.0 94.2 98.4 89.3 93.7 89.9 96.0 92.5 99.9 97.8 98.8

Michael Wagner 92.8 59.4 72.4 55.6 36.7 44.2 67.4 98.2 79.1 88.1 64.6 74.6

Bing Liu 97.8 67.0 79.5 75.7 67.2 71.2 83.0 84.7 83.3 98.1 74.7 84.8

Jim Smith 100.0 44.1 61.2 88.6 45.1 59.7 94.8 87.8 90.0 100.0 48.8 65.6

Lei Wang 30.0 79.8 43.6 18.1 83.1 29.8 29.3 85.9 42.4 78.1 87.6 82.6

Wei Wang 40.2 77.0 52.8 9.7 88.2 17.5 25.8 84.2 38.9 81.0 71.8 76.1

Bin Yu 70.6 42.8 53.3 72.4 62.2 66.9 54.0 62.0 57.0 88.0 49.1 63.0

Avg. (macro-F1) 78.0 65.5 66.5 63.2 69.7 60.2 68.3 87.4 73.5 92.9 69.2 77.8

On Set 1 DISTINCT has a lower macro-average F1 score than that reported
in [12]. We think it is partly due to the random nature of DISTINCT when it
chooses a random training set to trains the feature weights. But since we have run
DISTINCT for consecutive 10 times, we think the average scores truly reflect its
performance in practice without ground truth to select the best trained weights.

On Set 2 Arnetminer has a sudden performance drop compared to its per-
formance on Set 1. One important “culprit” is its precision on Wei Wang is
extremely low. As we can see in the actual disambiguation result online at
http://arnetminer.org/, 727 papers are credited to the professor at UNC,
among which we believe only < 200 papers are authored by her. The reason
might be Arnetminer merges clusters based on a few weak evidential coauthors.

The baseline Jac performs well on Set 1. This may ascribe to two factors: 1) It
uses the optimal Jaccard Coefficient thresholds, which are impossible to obtain
in practice without ground truth; 2) It uses the same estimated name ambiguity
to set the clustering threshold. However, Jac’s performance plunges on Set 2
where the ambiguity of each name is larger. This contrast suggests the adverse
effect of the inaccuracy of Jaccard Coefficient intensifies as the ambiguity grows.

Compared to other methods, our system has slightly lower recall, but much
higher precision. We think a major reason is that CSLR returns a high similarity
only when two clusters follow similar distributuions. Sometimes clusters of papers

http://arnetminer.org/


by the same author are drastically different (e.g., very few shared venues and
shared terms in titles), and it is difficult even for a human to decide whether
they belong to the same author. From a user’s perspective, it is often more
frustrating to see papers of different authors are mixed up (low precision), than
to see papers of the same author are split into smaller clusters (low recall).

8 Conclusions and Future Work

In this paper, we present a novel categorical set similarity measure named CSLR
for two sets which both follow categorical distributions. It is applied in Author
Name Disambiguation to measure the similarity between two venue sets or coau-
thor sets. It is verified to be better than the widely used Jaccard Coefficient. We
have also proposed a novel method to estimate the distinct author number of
each name, which gives reasonable estimation. Our experiments show that our
system clearly outperforms other methods of comparison.

We envision broad applications of CSLR since it is a general categorical set
similarity measure. In scenarios such as Social Networks and Natural Language
Processing, an entity often has a set of contextual features. Often these features
have categorical values, and two entities are similar iff these sets follow similar
categorical distributions. Some previous work used Jaccard Coefficient etc. as
the similarity measures. We expect CSLR will perform better than them.
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