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Abstract

Let {Zij} be independent and identically distributed (i.i.d.) random variables with

EZij = 0, E|Zij |2 = 1 and E|Zij |4 < ∞. Define linear processes Ytj =
∑∞

k=0 bkZt−k,j

with
∑∞

i=0 |bi| < ∞. Consider a p–dimensional time series model of the form: xt =

Πxt−1 + Σ1/2yt, 1 ≤ t ≤ T with yt = (Yt1, · · · , Ytp)′ and Σ1/2 be the square root of a

symmetric positive definite matrix. Let B = (1/p)XX∗ with X = (x1, · · · ,xT)′ and X∗

be the conjugate transpose. This paper establishes both the convergence in probability

and the asymptotic joint distribution of the first k largest eigenvalues of B when xt is

nonstationary. As an application, a new unit root test for a vector of high–dimensional

time series is proposed and then studied both theoretically and numerically.

Keywords: Asymptotic normality, Largest eigenvalue, Linear process, Unit root test.

1 Introduction

There have been an increasing interest and significant developments on the theory and method-

ologies for handling high-dimensional data in recent years. Understanding high-dimensional sam-

ple covariance matrices, including its eigenvalues and eigenvectors, has proved to be extremely

useful for such developments. Indeed, random matrix theory has provided useful estimation and

testing procedures for high-dimensional data analysis. Recent discussions on this topic can be

found in Johnstone [15], Paul and Aue [21] and Yao, Zheng and Bai [28].

Research towards understanding the eigenvalues of sample covariance matrices dates back to

as early as the studies of Fisher [12], Hsu [13] and Roy [24], and has become increasingly active

since the publication of the celebrated work of Marcenko and Pastur [18], in which the authors

established a limiting spectral distribution (MP type distribution) for a sample covariance matrix

for the case where p and n are comparable. More recent research has been devoted to establishing
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asymptotic properties for the eigenvalues and eigenvectors of high-dimensional sample covariance

matrices.

There are currently two main lines of research about asymptotic distributions of the largest

eigenvalues of high–dimensional random matrices. The first line of research is concerned with the

Tracy-Widom law of the largest eigenvalues of random matrices. It is well known that limiting

distributions of the largest eigenvalues of high-dimensional random matrices, such as Wigner

matrices, follow the Tracy-Widom law, which was originally discovered by Tracy and Widom in

[26] and [27] for Gaussian Wigner ensembles. The largest eigenvalue of the Wishart matrix was

investigated in Johnstone [14]. Several progresses for general sample covariance matrices have

also been made, and we refer to [5] and [11] among others.

Empirical data from wireless communication, finance and speech recognition often suggest

that some extreme eigenvalues of sample covariance matrices are well separated from the rest.

This intrigues the second line of research about the spiked eigenvalues, which was first proposed

in Johnstone [14]. Significant progresses have been made in recent years on the behaviour of these

spiked eigenvalues. For instance, the CLTs of the largest eigenvalues of complex Gaussian sample

covariance matrices with a spiked population were investigated in Baik et al. [3], which also

reported an interesting phase transition phenomenon. Baik and Silverstein [4] further considered

almost sure limits of the extreme sample eigenvalues of the general spiked population. Paul [20]

established a CLT for the spiked eigenvalues under the Gaussian population and the population

spikes being simple. The fluctuation of the extreme sample eigenvalues of the general spiked

population with arbitrary multiplicity numbers was further reported in Bai and Yao [2].

Most of the above existing studies rely on the assumption that the observations of high

dimensional data are independent, although dimensional correlation structure can be allowed.

Observations of high–dimensional data in economics and finance, for example, are often highly

dependent on time–dimension. In view of this, Zhang [29] investigated the empirical spectral

distribution (ESD) of the sample covariance for the case where the data matrices are of the

form A1ZA2, where A1 and A2 are positive semidefinite matrices and Z has independent en-

tries satisfying some moment assumptions. This model is referred to as the separable covariance

model and allows for some dependence among observations recorded over different time points.

Liu, Aue and Paul [17] studied the ESD of sample covariance matrices and symmetrized sample

autocovariance matrices constructed from a linear process. Note that their setting also accom-

modates dependence among observations due to the fact that linear processes are built from the

same innovation vectors. However, the above two papers considered the ESD only.

To the best of our knowledge, there is no existing work available to deal with the largest

eigenvalues of sample covariance matrices generated from high–dimensional nonstationary time

series data. This paper belongs to the second line of research about the spiked eigenvalues. This

paper establishes a joint asymptotic distribution for the first several largest eigenvalues of a large

sample covariance matrix of high–dimensional nonstationary data. An additional contribution

of this paper is that it develops a new unit root test that is devoted to testing nonstationarity
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for high–dimensional dependent time series.

We conclude this section by giving its organization. Section 2 establishes an asymptotic

distributional theory for the first several largest eigenvalues of the covariance matrix of a high–

dimensional dependent time series. Section 3 proposes a new unit root test that is devoted to

testing nonstationarity for high dimensional dependent data. Section 4 evaluates both the size

and power properties of the proposed test. Section 5 gives some concluding remarks. Appendix A

establishes some useful results for truncated versions of sample covariance matrices by truncating

linear processes. Appendix B gives the full proofs of the main theorems in Section 3.

2 Asymptotic Theory

This section first introduces some necessary assumptions before we establish new asymptotic

properties for the largest eigenvalues of the covariance matrix of a high–dimensional time series

vector.

2.1 Matrix models

The paper is to consider high–dimensional covariance matrices for nonstationary time series.

Specifically, define the following linear processes:

Ytj =
∞∑
k=0

bkZt−k,j (2.1)

with
∞∑
i=0

|bi| < ∞. Suppose that yt = (Yt1, · · · , Ytp)′ is a p–dimensional time series where {Zij}

are independent and identically distributed (i.i.d.) random variables with EZij = 0, E|Zij|2 = 1

and E|Zij|4 <∞. Consider a p–dimensional time series model of the form:

xt = Πxt−1 + Σ1/2yt, 1 ≤ t ≤ T, (2.2)

where the spectral norm of the coefficient matrix Π is bounded by one (0 ≤ ‖Π‖2 ≤ 1). Let

B =
1

p
XX∗ (2.3)

with X = (x1, · · · ,xT)′. We also define a T × p matrix X0 = (x0, · · · ,x0)′ consisting of the

initial vector x0 of the time series. Here we would point out that when Π = 0, Σ satisfies

some conditions and Ytj’s are i.i.d random variables, the Tracy-Widom distribution has been

established for the large eigenvalue of B in [5]. Also, when Π = 0, Σ is a block matrix with

spiked eigenvalues and Ytj’s are i.i.d random variables, an asymptotic distribution (Gaussian

distribution under some conditions) for the largest eigenvalues of B has been discussed in [20]

and [2]. It is not clear yet how the largest eigenvalues of B may behave when Ytj’s have some

dependence structure. One case is that Π = 0, but Σ is present in (2.1). When Π = I, (2.2)

becomes nonstationary. The main motivation for considering such a model is the proposal of

one unit root test to be discussed in the next section.
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When Π = I, the sample covariance matrix B can be rewritten as follows. Let Y =

(y1, · · · ,yT )′ be a T × p random matrix. Define C = (Cij)1≤i,j≤T to be a T × T lower tri-

angular matrix with

Cij = 0 for j > i and Cij = 1 for 1 ≤ j ≤ i. (2.4)

Now we may rewrite X = CYΣ1/2 + X0 so that

B =
1

p
XX∗ =

1

p
CYΣY∗C∗ +

1

p
CYΣ1/2X0

∗ +
1

p
X0Σ1/2Y∗C∗ +

1

p
X0X0

∗. (2.5)

This paper is to investigate the largest eigenvalues of B for the case where Π = I or ‖Π‖2 =

ϕ < 1. Throughout the paper, we make the following assumptions about the coefficients bi and

Σ:

(A1)
∑∞

i=0 i|bi| <∞.

(A2)
∑∞

i=0 bi = s 6= 0.

(A3) There exist two positive constants M0 and M1 such that ‖Σ‖2 ≤M0 and tr(Σ)
p
≥M1.

(A4) T →∞ and p→∞ such that limT→∞
√
p

T
= 0.

Here ‖ · ‖2 stands for either the spectral norm of a matrix or the Euclidean norm of a vector.

The linear process includes MA(q) models and AR(1) models. Assumption A2 is easily satisfied.

Note that we do not require p and T to be of the same order, which is being commonly used in

the random matrix theory literature. We also need to make some assumptions about Zij and

x0.

(A5) {Zi,j} are i.i.d random variables with mean zero, variance one and bounded forth moment.

Let zt = (Zt1, · · · , Ztp)′, where t can be either positive or negative integer (for the purpose

of introducing A7 below).

(A6) E‖x0‖2
2 = O(p).

(A7) x0 =
∞∑
k=0

b̃kΣ1
1/2z−k + b̃−1Σ2

1/2z̃ + b̃−2, where ‖Σ1‖2 ≤ M0, ‖Σ2‖2 ≤ M0 and z̃ =

(Z̃1, · · · , Z̃p)′ is independent of zt for any t, in which {Z̃j} are i.i.d random variables with

mean zero, variance one and finite forth moments. The coefficients satisfy
∞∑
k=0

|b̃k|+ |b̃−1| <

∞ and ‖b̃−2‖2 = O(p).

We would like to remark that Assumption A7 implies Assumption A6.

2.2 Main results

To characterize the limits in probability of the eigenvalues of B, define for k = 1, · · · , T ,

λk =
1

2(1 + cos θk)
with θk =

2(T + 1− k)π

2T + 1
, (2.6)
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and

γk = λk

(
a0 + 2

∞∑
j=1

aj(−1)j cos(jθk)

)
, (2.7)

where

ai =
∞∑
k=0

bkbk+i. (2.8)

We first characterize the magnitude of λk and γk.

Proposition 1. For any fixed constant k ≥ 1, there is a constant ck such that

lim
T→∞

γk
T 2

= ck > 0 (2.9)

and

lim
T→∞

γk
γ1

= lim
T→∞

λk
λ1

=
1

(2k − 1)2
. (2.10)

We are now at a position to state the main results; their proofs are given in Appendix B.

The first theorem develops an upper bound in probability for the spectral norm of B for the

stationary case. The second theorem gives a limit in probability for the first k largest eigenvalues

of B for nonstationary data. The third theorem establishes a joint distribution for the first k

largest eigenvalues of B for the nonstationary case.

Theorem 1. Suppose that Assumptions A1-A6 hold. When 0 ≤ ‖Π‖2 = ϕ < 1, we obtain

lim
T→∞

P

‖B‖2 ≤
8
∑

i≥0 |ai|
(1− ϕ)2

M0

(
1 +

√
T

p

)2
 = 1, (2.11)

where M0 is a positive constant independent of p and T .

Theorem 2. Suppose that Assumptions A1-A6 hold. Let ρk be the kth largest eigenvalue of B.

When Π = I and k is fixed, we have

ρk − γk tr(Σ)
p

γ1

i.p.−→ 0, (2.12)

where i.p. means convergence in probability.

Theorem 3. Suppose that Assumptions A1–A5 and A7 hold. Let ρk be the kth largest eigenvalue

of B. When Π = I and k is fixed, the random vector

√
p

γ1

(
ρ1 − γ1

tr(Σ)

p
, · · · , ρk − γk

tr(Σ)

p

)′
(2.13)

converges weakly to a zero-mean Gaussian vector w = (w1, · · · , wk)′ with the covariance function

cov(wi, wj) = 0 for any i 6= j and var(wi) = 2θ
(2i−1)4

with θ = lim
p→∞

tr(Σ2)
p

.
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Remark 1. The result holds for the complex case as well. In fact when Z is complex, set

Re(Zjk) = ZR
ij , and Im(Zjk) = ZI

ij. (2.14)

Let ZR
ij and ZI

ij be independent. Then
√
p

γ1

(
ρ1 − γ1

tr(Σ)
p
, · · · , ρk − γk tr(Σ)

p

)′
converges weakly to

a zero-mean Gaussian vector w = (w1, · · · , wk)′ with var(wi) = 2θ
(2i−1)4

(1− 2E(ZR
i1)2E(ZI

i1)2), in

which θ = lim
p→∞

tr(Σ2)
p

. When i 6= j, cov(wi, wj) = 0.

Remark 2. If Assumption A7 does not hold but Assumption A6 is true, then Theorem 3 remains

true under Assumptions A1-A3 and lim
T→∞

p
T

= 0.

Remark 3. We would compare our results with those in [2]. [2] needs to assume that the

observations are independent and that Σ has a spiked structure. In our paper, the observations

are dependent. Furthermore, we don’t need to assume a spiked structure of Σ since the spiked

eigenvalues come naturally from the random walk structure.

3 Unit Root Test

This section is to explore an application of the main results to the proposal of a new unit root

test for a high–dimensional time series setting.

Unit root testing is a formal test to check whether time series data are stationary or non-

stationary. Existing studies on this topic can be found in [10], [6] and [23]. In the past two

decades, unit root testing in panels has received much attention. Many researchers (e.g. [9], [16]

and [22]) consider the time series case where the error process is independent across individuals.

There are also many results (e.g. [7]) that have investigated the case where the error process is

cross–sectional dependent. In these papers, researchers often need to first estimate the covariance

matrix about the cross–sectional dependence. However, when the dimensionality of the time

series becomes large, it is hard to consistently estimate it without imposing some structure on

the covariance matrix. We would like to propose one new test using the covariance matrix of a

high–dimensional time series under consideration.

To this end, a key observation is that Theorem 2 indicates that the largest eigenvalue of B

is of order T 2 in probability (the order of γ1, which is given in Proposition 1), while Theorem 1

and Assumption (A4) imply that when 0 ≤ ϕ < 1, ‖B‖2 = op(T ). This motivates us to propose

a new unit root test based on the largest eigenvalues.

3.1 Test statistic

Theorem 3 states that when Π = I, the statistic Lp =
√
p(ρ1−γ1 tr(Σ)

p )
γ1
√

2θ
converges weakly to a

standard normal variable. Note that γ1
tr(Σ)
p

and γ1

√
2θ are both unknown in practice. We

would like to emphasize that γ1, tr(Σ)
p

and θ can not be estimated individually. However it is

possible to estimate their products as a whole. Specifically speaking, an estimator of γ1
tr(Σ)
p

is

proposed below.
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Theorem 4. Under the conditions of Theorem 3, we obtain

λ1

(
T∑
i=2

(xi−xi−1)′(xi−xi−1)

p(T−1)
+ 2

m1∑
j=1

T−j∑
i=2

(xi−xi−1)′(xi+j−xi+j−1)

p(T−j−1)

)
− γ1

tr(Σ)
p

γ1

(3.1)

= op(p
−1/2),

when m1 = [
√
p], where λ1 is given in (2.6).

However, finding a consistent estimator for γ1

√
2 tr(Σ

2)
p

is challenging. Our strategy is to find

an estimator for aiajtrΣ
2 first, which turns out to be Sσ2,i,j given below. To this end, let m2 be

a number to be specified later. For 0 ≤ i ≤ j ≤ m2, define

Sσ2,i,j =

[T/2]−j∑
f=2

T−j∑
g=f+[T/2]

((xf − xf−1)′(xg − xg−1))((xf+i − xf+i−1)′(xg+j − xg+j−1))

(T − j/2− 3
2 [T/2])([T/2]− j − 1)

. (3.2)

We next approximate γ1 by λ1

(
a0 + 2

m2∑
j=1

aj

)
. By carefully selecting the appropriate terms

Sσ2,i,j and expanding the square of λ1

(
a0 + 2

m2∑
j=1

aj

)
, we may then construct Sσ2 , the estimator

of γ1

√
2 tr(Σ

2)
p

, as follows: Sσ2 = Sσ2,0,0 + 4
m2∑
i=1

Sσ2,i,i + 4
m2∑
i=1

Sσ2,0,i + 8
m2−1∑
i=1

m2∑
j=i+1

Sσ2,i,j. To make

it nonnegative we below add the absolute value sign for Sσ2 .

Theorem 5. Let m2 tend to infinity such that m4
2 max{pT−2, p−1} = o(1). Under the conditions

of Theorem 3, we have

λ1

√
2
|Sσ2 |
p

γ1

√
2 tr(Σ

2)
p

= 1 + op(1), (3.3)

where λ1 is given in (2.6).

Once the two estimators are available, we can construct a test statistic, TN , of the form:

TN =
√
p

ρ1 − λ1

(
T∑
i=2

(xi−xi−1)′(xi−xi−1)

p(T−1)
+ 2

m1∑
j=1

T−j∑
i=2

(xi−xi−1)′(xi+j−xi+j−1)

p(T−j−1)

)
λ1

√
2
|Sσ2 |
p

, (3.4)

where λ1 is given in (2.6).

Theorem 6. Under the conditions of Theorem 5, we have

TN −→ N(0, 1). (3.5)

Remark 4. The conditions imposed on m1 and m2 can be further relaxed. For example, if there

exists a positive integer s such that bi = 0 for any i > s in (2.1), we find ai = 0 for any i > s in

(2.8). So one can choose m1 = min{s, [√p]} in this case. Also, one can choose m2 = s as long

as s4 max{pT−2, p−1} = o(1). This point helps us to simplify the design and the verifications of

the assumptions for the simulation in Section 4 below.
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Now we investigate the power of TN for the case where {Ytj} in (2.1) are i.i.d, a type of local

alternatives under H1.

Theorem 7. Let Assumptions A1–A5 and A7 hold with bi = 0 for i ≥ 1 and Π = ϕI with

0 ≤ ϕ < 1. Then under the case of m1 = m2 = 0, we have

lim
T→∞

P (TN > C0|H1) = 1 (3.6)

for some C0 > `α, where `α is the α–level critical value of the limiting distribution of TN .

The proofs of Theorems 4–7 are given in Appendix B.

Remark 5. There are some well–known panel unit root tests (e.g. [9] and [16]). They considered

the case of Π = diag(ϕ1, · · · , ϕN) and used the estimators of ϕi to test whether Π = I. Moreover,

when the covariance matrix Σ is involved, it has to be estimated in order to test whether Π = I

(e.g. [7]). So such existing tests may only work for the finite-dimensional case. By contrast, our

test makes the best use of the properties of the largest eigenvalues of B instead of estimators of

ϕi. In addition, we do not impose special structures, such as sparsity on the covariance matrix

Σ.

The advantages of our test over existing tests will also be demonstrated by the finite–sample

evaluation in Section 4 below.

4 Simulation

This section is to conduct some simulations to investigate the size and power of TN . We first

specify the initial vector x0 and the coefficients bi involved in the linear process. Let

bi =


1 i = 0,

0.3 i = 1,

0 i ≥ 2

b̃i =


0.6 i = 0,

0.8 i = −1,

0 otherwise

and

(Σ1/2)ij = (Σ1
1/2)ij = (Σ2

1/2)ij =


1 i = j,

0.2 |i− j| = 1,

0 |i− j| ≥ 2.

Let Z̃j follow the uniform distribution over the interval [−
√

3,
√

3]. Let Zij be either the uniform

distribution over the interval [−
√

3,
√

3] or the standard normal distribution. We also consider

the case where the matrix Π is not diagonal. The respective entries of two such matrices Π1

and Π2 are given as follows:

(Π1)ij =


0.599 i = j,

0.2 |i− j| = 1,

0 |i− j| ≥ 2,
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(Π2)ij =


0.5 i = j,

0.2 |i− j| = 1,

0 |i− j| ≥ 2.

One can verify that the largest eigenvalue of Π1 is smaller than 0.999 and the smallest

eigenvalue of Π1 is bigger than 0.199. Similarly, the largest eigenvalue of Π2 is smaller than 0.9

and the smallest eigenvalue of Π2 is bigger than 0.1. We choose m1 = m2 = 1 for such Π1 and

Π2 as pointed out by Remark 4.

The results of the test statistic TN are based on 1000 replications. The nominal size is set to

be 0.05. We consider the case when both p and T are large (regardless of whether T is larger

than p or smaller than p). Different values of p, T and Π are given in Tables 1–4. One can see

that the power increases when Π moves away from the identity matrix.

Table 1: The empirical size for TN

Zij Normal Uniform

p \ T 40 60 80 40 60 80

40 0.057 0.051 0.052 0.068 0.058 0.051

60 0.065 0.035 0.052 0.056 0.058 0.048

80 0.061 0.052 0.045 0.062 0.046 0.063

Table 2: The empirical power for TN when Π = 0.99I

Zij Normal Uniform

p \ T 40 60 80 40 60 80

40 0.085 0.167 0.348 0.088 0.161 0.354

60 0.136 0.349 0.595 0.132 0.362 0.596

80 0.208 0.506 0.801 0.215 0.501 0.795

4.1 Comparison with some existing tests when p is large

There are several existing unit root tests available for panel data. The first type of statistics

considered the case where the random variables Zit and Zjs are independent when i 6= j. For

example one may see [9]. In this case the p-dimensional test can be converted into p independent

1-dimensional tests. As a consequence, this idea can use the sample size of O(pT ). Unfortunately,

when Σ is unknown, this method doesn’t work.
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Table 3: The empirical power for TN when Π = 0.98I

Zij Normal Uniform

p \ T 40 60 80 40 60 80

40 0.327 0.658 0.948 0.319 0.662 0.946

60 0.520 0.922 0.999 0.531 0.917 1

80 0.717 0.986 1 0.709 0.990 1

Table 4: The empirical power for TN when Π = Π1

Zij Normal Uniform

p \ T 40 60 80 40 60 80

40 0.916 0.967 0.980 0.919 0.965 0.982

60 0.983 0.998 0.999 0.981 0.996 0.998

80 0.998 1 1 0.999 1 1

When Σ is unknown, an immediate idea is to estimate Σ. [7] showed that the Bootstrap

method with estimation of Σ performs better than the t-bar statistic for the case where p is

fixed and T is large. [7] also stated that the Bootstrap-OLS performs better than Bootstrap-

GLS when p is large. Furthermore, GLS doesn’t work when p ≥ T . So we will compare TN

with the t-statistic corresponding to Bootstrap-OLS t∗ols and the F-statistic corresponding to

Bootstrap-OLS F ∗ols.

In [7], when the error (yt in our paper) is an MA process, they used a finite order AR model to

approximate it. Unfortunately, the approximation may perform poorly sometimes. For example,

one may consider the case where yt is an MA(1) process and b1 is near to 1. In contrast, TN

can perform well even though b1 = 0.99. We use the same Σ as in Tables 1–4. The results are

given in Tables 5–8. In this case, one can see that TN performs well.

Table 5: The empirical size for TN when b1 = 0.99

Zij Normal Uniform

p \ T 40 60 80 40 60 80

40 0.041 0.039 0.043 0.049 0.057 0.048

60 0.052 0.046 0.039 0.059 0.048 0.049

80 0.044 0.047 0.054 0.055 0.049 0.043

Now we consider the case where yt is independent. In other words, we assume that bi = 0
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Table 6: The empirical power for TN when b1 = 0.99 and Π = 0.99I

Zij Normal Uniform

p \ T 40 60 80 40 60 80

40 0.086 0.174 0.369 0.089 0.182 0.366

60 0.148 0.365 0.634 0.155 0.359 0.631

80 0.249 0.549 0.817 0.256 0.542 0.825

Table 7: The empirical power for TN when b1 = 0.99 and Π = 0.98I

Zij Normal Uniform

p \ T 40 60 80 40 60 80

40 0.364 0.717 0.949 0.359 0.722 0.956

60 0.574 0.945 0.998 0.580 0.939 1

80 0.748 0.989 1 0.752 0.992 1

Table 8: The empirical power for TN when b1 = 0.99 and Π = Π1

Zij Normal Uniform

p \ T 40 60 80 40 60 80

40 0.956 0.982 0.991 0.962 0.979 0.994

60 0.993 0.997 0.999 0.992 0.998 1

80 0.996 1 1 0.998 1 1
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when i ≥ 1. The results of the three test statistics based on 1000 replications, 500 bootstrap

replications and different values of p, T and Π are reported in Tables 9—11. The nominal size

is set to be 0.05.

Table 9: The empirical size for three tests when bi = 0 for i > 0.

test TN t∗ols F ∗ols

p T Normal Uniform Normal Uniform Normal Uniform

40 40 0.038 0.052 0 0 0.001 0.002

40 60 0.044 0.055 0.001 0.001 0.004 0.003

40 80 0.053 0.046 0.004 0.008 0.012 0.015

60 40 0.046 0.049 0 0 0.006 0.001

60 60 0.052 0.047 0 0 0 0

60 80 0.050 0.044 0 0 0 0.002

80 40 0.056 0.052 0.001 0 0.004 0.003

80 60 0.041 0.048 0 0 0.001 0.001

80 80 0.048 0.053 0 0 0 0

One can find that the empirical sizes of t∗ols and F ∗ols suffer from the size distortion when p is

large. This indicates that their asymptotic distributions may not hold under the null hypothesis

when p is large. One of the reasons is that when p is large and the population covariance

matrix is not assumed to have some special structures, we can’t find any consistent estimators

for the population covariance matrix and other unknown parameters. As a consequence, their

asymptotic distributions may fail to hold under the null. Meanwhile, their power is worse than

TN when p is large and Π is close to I. In addition, TN doesn’t require bootstrap repetitions.

This saves computational time.
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Table 10: The empirical power for three tests when bi = 0 for i ≥ 1 and Π = 0.99I.

test TN t∗ols F ∗ols

p T Normal Uniform Normal Uniform Normal Uniform

40 40 0.078 0.081 0.002 0 0.002 0

40 60 0.178 0.187 0.024 0.022 0.025 0.025

40 80 0.379 0.375 0.095 0.087 0.098 0.088

60 40 0.180 0.191 0.003 0.003 0.003 0.003

60 60 0.402 0.397 0.004 0.002 0.004 0.003

60 80 0.656 0.660 0.039 0.044 0.043 0.047

80 40 0.238 0.249 0.001 0.001 0.001 0.001

80 60 0.536 0.554 0.005 0.005 0.005 0.006

80 80 0.834 0.837 0.007 0.008 0.008 0.009

Table 11: The empirical power for three tests when bi = 0 for i ≥ 1 and Π = 0.98I.

test TN t∗ols F ∗ols

p T Normal Uniform Normal Uniform Normal Uniform

40 40 0.378 0.382 0.012 0.012 0.013 0.012

40 60 0.768 0.777 0.145 0.152 0.153 0.156

40 80 0.947 0.953 0.381 0.386 0.386 0.388

60 40 0.634 0.641 0.019 0.019 0.019 0.022

60 60 0.955 0.957 0.064 0.059 0.065 0.061

60 80 0.998 0.999 0.363 0.347 0.373 0.355

80 40 0.820 0.814 0.017 0.016 0.018 0.017

80 60 0.995 0.996 0.096 0.117 0.104 0.121

80 80 1 1 0.226 0.251 0.236 0.263

13



5 Conclusions and Discussion

This paper has developed an asymptotic theory for the largest eigenvalues of the covariance

matrix of a high–dimensional time series vector. As an application, a new unit root test developed

for testing nonstationarity in high–dimensional time series vectors has been proposed and then

discussed both theoretically and numerically. The small sample properties discussed in Section

4 have offered the support to the theory established in Sections 2 and 3.
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A Results for Truncated Matrices

This section is to consider the truncated version of the sample covariance matrix. To this end, define

Yij,l =

l∑
k=0

bkZi−k,j

with l = max{p, T}, a truncated version of Ytj in (2.1). However, to simplify notation, we let bi = 0 for

all i > l in this section, so that we still use Yij instead of Yij,l. In this way ai defined in (2.8) and Ytj

in (2.1) respectively become

ai =
l−i∑
k=0

bkbk+i, Ytj =
l∑

k=0

bkZt−k,j .

Furthermore let F = (Fij) be a T × (T + l) matrix with

Fij =

bl+i−j i ≤ j ≤ i+ l,

0 otherwise.
(A.1)

It follows that Y = FZp, where Zp is a (T + l)× p random matrix with (Zp)i,j = Zi−l,j . For the sake

of notation simplicity, we below denote Zp by Z and (Zp)i,j by Zij . Let A = (Aij)T×T = (a|i−j|)T×T .

We then have A = FF′. We would remind readers that l depends on T so that a|i−j| depends on T.

We also assume that x0 = 0 in this section.

A.1 Upper bound of the spectral norm of B from stationary data

This subsection is to investigate the upper bound of the spectral norm of B from stationary data.

Proposition 2. Suppose that Assumptions A1-A5 hold. When 0 ≤ ‖Π‖2 = ϕ < 1,

lim
T→∞

P (‖B‖2 ≤
8
∑

i≥0 |ai|
(1− ϕ)2

M0(1 +

√
T

p
)2) = 1.
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Proof of Proposition 2: By (2.2) we may write

xt =

t−1∑
k1=0

Πk1Σ1/2yt−k1 .

This, together with (2.3), implies that

1

p
X
′
X =

1

p

T∑
t=1

xtx
′
t =

1

p

T∑
t=1

t−1∑
k1=0

t−1∑
k2=0

Πk1Σ1/2yt−k1y′t−k2
Σ1/2Π′k2

=
1

p

T−1∑
k1=0

T−1∑
k2=0

Πk1Σ1/2(
T∑

t=max (k1,k2)+1

yt−k1y′t−k2
)Σ1/2Π′k2 .

Note that

T∑
t=max (k1,k2)+1

yt−k1y′t−k2
= Y′C̃′k1

C̃k2Y

where C̃k is a T × T matrix with elements C̃k,ij = I(i− j = k). It’s easy to know ‖C̃k‖2 ≤ 1. We then

conclude that

‖1

p
X∗X‖2 ≤

T−1∑
k1=0

T−1∑
k2=0

ϕk1+k2‖1

p
Y∗Y‖2‖Σ‖2 ≤

M0

(1− ϕ)2
‖1

p
Y∗Y‖2

≤ M0

(1− ϕ)2
‖1

p
Z∗Z‖2‖A‖2. (A.2)

As we know the matrix A is a Toeplitz matrix so that ‖A‖2 ≤ 2
∑

i≥0 |ai| (see [19]). From the

assumption (A4) and the results in [8] and [1] we have

lim
T→∞

P (‖1

p
ZZ∗‖2 ≤ 4(1 +

√
T

p
)2) = 1. (A.3)

Proposition then follows from Lemma 1, the assumption (A3) and (A.2).

A.2 Eigenvalues of CAC∗

This subsection and the following subsections are to consider the case Π = I. In this case one has

B = (1/p)XX∗ = (1/p)CYΣY∗C∗ = (1/p)CFZpΣZ∗pF∗C∗. (A.4)

We below investigate the eigenvalues and eigenvectors of CFF∗C∗ = CAC∗ at first. These are crucial

steps.

Since it’s very hard to find the eigenvalues of CAC∗ directly we use the following strategy. At

first, we note that the eigenvalues of CAC∗ and AC∗C are the same. We obtain the eigenvalues and

eigenvectors of C∗C by first studying (C∗C)−1. The next key step is to construct a matrix Am defined

in (A.27) below which has the same eigenvectors as C∗C. In the mean time, it is easier to find the

eigenvalues of AmC∗C. We then use the eigenvalues of of CAmC∗ to approximate those of CAC∗.

Our results are summarized in the following series of Lemmas and Theorems.

The first two lemmas describe the eigenvalues of C∗C and decide their limits.
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Lemma 1. Let λ1 ≥ λ2 ≥ · · · ≥ λT ≥ 0 be the eigenvalues of C∗C. We then have

λk =
1

2(1 + cos θk)
, θk =

2(T + 1− k)π

2T + 1
, k = 1, · · · , T. (A.5)

Lemma 2. Using the notation in Lemma 1,

lim
T→∞

λk
T 2

=
4

π2(2k − 1)2
(A.6)

for any fixed k.

Lemma 3 below specifies the eigenvectors of C∗C.

Lemma 3. Let x̃k = (xk,1, · · · , xk,T )′ be a T × 1 vector with

xk,i = (−1)T−i sin(T − i+ 1)θk, −l ≤ i ≤ T + l. (A.7)

Then {x̃k, 1 ≤ k ≤ T} are orthogonal and satisfy for any k

C∗Cx̃k = λkx̃k. (A.8)

Lemma 4 below specifies the eigenvalues of AmC∗C and gives their approximation to those of

AC∗C.

Lemma 4. Define γk by

γk = λk(a0 + 2
∑

1≤j≤T−1

aj(−1)j cos(jθk)). (A.9)

For any fixed constant k ≥ 1, there is a constant ck such that

lim
T→∞

γk
T 2

= ck > 0 (A.10)

and

lim
T→∞

γk
γ1

= lim
T→∞

λk
λ1

=
1

(2k − 1)2
. (A.11)

Let β1 ≥ β2 ≥ · · · ≥ βT be the eigenvalues of AC∗C. If A satisfies the assumptions (A1) and (A2),

then for any fixed integers i ≥ 1 and j ≥ 1 the following holds

|βi − γi
γj

| = O(T−1). (A.12)

For any ε > 0 there exists T0 and k0 where k0 is a fixed number independent of T such that when T ≥ T0

and k ≥ k0,

|βk
γ1
| ≤ ε. (A.13)

Lemma 5. Suppose that A satisfies the assumptions (A1) and (A2). Then

tr(AC∗C) = a0
(T + 1)T

2
+

∑
1≤j≤T−1

aj(T − j + 1)(T − j) (A.14)

and

lim
T→∞

βk
tr(AC∗C)

= lim
T→∞

γk
tr(AC∗C)

=
8

π2(2k − 1)2
. (A.15)
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Lemma 6. Suppose that A satisfies the assumptions (A1) and (A2). For any ε > 0, we can find T0

and k0, where k0 is a finite number independent of T , such that when T ≥ T0,

|
∑

k>k0
βk

γ1
| < ε. (A.16)

Proof of Lemma 1:

Let MT = (C∗C)−1. Define the characteristic function of MT by gT (λ) = det(λIT−MT). We can

verify that the entries of the inverse matrix C−1, a T × T lower triangular matrix, are as following

C−1
ij =


1 i = j,

−1 i = j + 1,

0 otherwise.

(A.17)

It follows that Mi,j , the elements of MT = (C∗C)−1, satisfy

Mij =



1 i = j = 1,

2 i = j > 1,

−1 |i− j| = 1,

0 otherwise.

(A.18)

By the cofactor expansion we obtain a recurrence relation as following

gT (λ) = (λ− 2)gT−1(λ)− gT−2(λ). (A.19)

Consider λ ∈ (0, 4) at first. Hence we may write λ = λ(θ) = 2+2 cos θ. We can further solve (A.19)

to get

gT (λ) =
sinTθ + sin(T + 1)θ

sin θ
. (A.20)

When sin θ 6= 0, gT (λ) = 0 is equivalent to

sinTθ + sin(T + 1)θ = 0. (A.21)

Let hT (θ) = sinTθ + sin(T + 1)θ = 2 sin(T + 1/2)θcos θ2 . Note that (A.5) gives T different solutions

which satisfy hT (θ) = 0 and sin θ 6= 0. On the other hand, observe that there are at most T solutions

for gT (λ) = 0. The proof of (A.5) is complete.

Lemmas 2 and 3 can be verified with some straightforward computations and the simple fact that

sin(k + j)θ + sin(k − j)θ = 2 sin kθ cos jθ. (A.22)

We ignore the details here.

Proof of Lemma 4:

Let’s prove (A.10) and (A.11) at first. Note that

|(a0 + 2
∑

1≤j≤T−1

aj(−1)j cos(jθk))− (a0 + 2
∑

1≤j≤∞
aj)| ≤ 2

∑
1≤j≤T−1

|aj ||cos(
j(2k − 1)π

2T + 1
)− 1|+ 2

∑
T≤j
|aj |.
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For a fixed k, we can find a jk to satisfy π
3 ≤

jk(2k−1)π
2T+1 ≤ π

2 . It follows that

2
∑

1≤j≤jk

|aj ||cos(
j(2k − 1)π

2T + 1
)− 1| ≤ 2

∑
1≤j≤jk

|aj |(
j(2k − 1)π

2T + 1
)2

≤ 2jk(2k − 1)2π2

(2T + 1)2

∑
1≤j≤jk

j|aj | ≤
(2k − 1)π2

(2T + 1)

∑
1≤j≤∞

j|aj |

and that

2
∑

jk<j≤T−1

|aj ||cos(
j(2k − 1)π

2T + 1
− 1)|+ 2

∑
T≤j
|aj | ≤ 4

∑
j≥jk

|aj |

≤ j−1
k 4

∑
j≥jk

j|aj | ≤
3(2k − 1)

2T + 1

∑
1≤j≤∞

j|aj |.

From the assumption (A2), (B.4) and truncation conditions we can find

lim
T→∞

(a0 + 2
∑

1≤j≤T−1

aj(−1)j cos(jθk)) = lim
T→∞

(a0 + 2
∑

1≤j≤∞
aj) = (

∞∑
i=0

bi)
2 = s2 > 0. (A.23)

In view of (A.6), (A.9) and (A.23), we can prove (A.10) and (A.11).

Now we consider the eigenvalues of AC∗C. From (A.5)

sin(T − i)θk = − sin(T + i+ 1)θk. (A.24)

In view of (A.7) and (A.24), we obtain

xk,i = xk,1−i, −T ≤ i ≤ 0 (A.25)

and

xk,i = −xk,2T+2−i, T + 2 ≤ i ≤ 2T. (A.26)

We construct a new matrix Am whose sth row, am,s, satisfies that

am,sx̃k = a0xk,s +
∑

1≤j≤T−1

aj(xk,s−j + xk,s+j) = (a0 + 2
∑

1≤j≤T−1

aj(−1)jcosjθk)xk,s. (A.27)

Let as be the sth row of A. We can find that

asx̃k = a0xk,s +
∑

1≤j≤s−1

ajxk,s−j +
∑

1≤j≤T−s
ajxk,s+j . (A.28)

We further define T × T matrix Al by

(Al)ij =


ai+j−1 i+ j ≤ T,

−a2T−i−j+2 i+ j ≥ T + 3,

0 T + 1 ≤ i+ j ≤ T + 2.

(A.29)

Let

Am = A + Al. (A.30)

One can verify

Amx̃k = (a0 + 2
∑

1≤j≤T−1

aj(−1)jcosjθk)x̃k. (A.31)
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It follows that

AmC∗Cx̃k = λkAmx̃k = γkx̃k, (A.32)

which implies that γk is the eigenvalues of AmC∗C.

Now we consider CAlC
∗. It is easily seen that,

‖CAlC
∗‖2 ≤ T max

i,j
{|(CAlC

∗)i,j |}. (A.33)

Recalling (A.29) we can find that

max
i,j
{|(CAlC

∗)i,j |} ≤ 2

T−1∑
i=1

i|ai|. (A.34)

We conclude from (A.33) that

‖CAlC
∗‖2 ≤ 2

T−1∑
i=0

i|ai|T.

In view of (B.4), we have

‖CAlC
∗‖2 ≤ 2

T−1∑
i=0

i|ai|T = O(T ). (A.35)

Let γ̃1 ≥ γ̃2 ≥ · · · ≥ γ̃T be the eigenvalues of CAmC∗. For fixed integers i, βi is the ith largest

eigenvalue of CAC∗. It follows that

|βi − γ̃i
γj

| ≤ ‖C(Am −A)C∗‖2
γj

=
‖CAlC

∗‖2
γj

. (A.36)

From (A.9) and (A.11) we can find Ti for any fixed i such that when T > Ti, γ̃i = γi. By (A.10) and

(A.35) we can prove (A.12).

(A.13) follows from Lemma 6 directly.

Proof of Lemma 5:

One can verify (A.14) with some computation. Observe that

|a0 +
∑

1≤j≤T−1

aj
(T − j + 1)(T − j)

(T+1)T
2

− (a0 + 2
∑

1≤j≤∞
aj)| = O(T−1).

This, together with (A.6), (A.9), (A.23), (A.12) and the assumption (A2), implies (A.15).

Proof of Lemma 6:

Observe that
∞∑
k=1

1

(2k − 1)2
=

3

4

∞∑
k=1

1

k2
=
π2

8
. (A.37)

For any ε > 0, we can find k0 such that

|
k0∑
k=1

1

(2k − 1)2
− π2

8
| < ε

3
. (A.38)

From (A.11), (A.12) and (A.15), we can also find T0 such that when T ≥ T0,

|
k0∑
k=1

1

(2k − 1)2
−
∑k0

k=1 βk
γ1

| < ε

3
. (A.39)
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and

| tr(AC∗C)

γ1
− π2

8
| < ε

3
. (A.40)

It follows from (A.38)-(A.40) that

|
∑

k>k0
βk

γ1
| = | tr(AC∗C)

γ1
−
∑k0

k=1 βk
γ1

| < ε. (A.41)

A.3 Eigenvectors of CAC∗

This section is to investigate the eigenvectors of CAC∗. At first we normalize {x̃k}1≤k≤T to get

{ỹk}1≤k≤T . Then we study the eigenvectors of of AC∗C by representing them with {ỹk}1≤k≤T . At

last we give some result about the eigenvectors of CAC∗ which is necessary for the future proof in

Section 3.4. Our results are the following.

Lemma 7. Recall the eigenvectors x̃k defined in Lemma 3. Then

ΣT
j=1(xk,j)

2 =
2T + 1

4
. (A.42)

Let

ỹk =
x̃k

‖x̃k‖
. (A.43)

Then {ỹk}1≤k≤T are orthogonal and the jth element of ỹk, yk,j, satisfies

|yk,j | =
|xk,j |√

2T+1
4

≤ 2√
2T + 1

. (A.44)

Lemma 8. Let {uk}1≤k≤T be orthogonal and real vectors such that ‖uk‖ = 1 and

CAC∗uk = βkuk. (A.45)

Define fk = C−1uk
‖C−1uk‖

such that

fk = ΣT
j=1αkjyj (A.46)

with

ΣT
j=1α

2
kj = 1. (A.47)

Then when k ≥ 1 is fixed,
α2
kkλk

ΣT
j=1α

2
kjλj

= 1 +O(T−1), (A.48)

where {λj} are given in Lemma 1.

Lemma 9. Let (Sk,1, · · · , Sk,T+l)
′ = sk = F∗C∗uk√

γ1
. Then {sk}1≤k≤T are orthogonal and

T+l∑
j=1

S4
k,j = O(T−1). (A.49)

Proof of Lemma 7: From (A.7) we obtain

|xk,j | ≤ 1.

Lemma 7 can be then proved with some straightforward computations. We ignore details here.
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Proof of Lemma 8: From fk = C−1uk
‖C−1uk‖

and (A.45), we have ‖fk‖ = 1 and

AC∗Cfk = βkfk. (A.50)

From (A.30) and (A.50), we have

βk =
f∗kC∗CAC∗Cfk
‖Cfk‖2

=
f∗kC∗C(Am −Al)C

∗Cfk
‖Cfk‖2

.

It follows that

|f∗kC∗CAmC∗Cfk| − |f∗kC∗CAlC
∗Cfk|

‖Cfk‖2
≤ βk ≤

|f∗kC∗CAmC∗Cfk|+ |f∗kC∗CAlC
∗Cfk|

‖Cfk‖2
. (A.51)

By (A.8), (A.43) and (A.46), we have

‖Cfk‖ =
√

ΣT
j=1α

2
kjλj . (A.52)

(A.8), (A.32), (A.43) and (A.46) imply that

C∗CAmC∗Cfk = C∗CΣT
j=1αkjAmC∗Cỹj = C∗CΣT

j=1αkjγjỹj = ΣT
j=1αkjγjλjỹj.

This and (A.46) ensure

f∗kC∗CAmC∗Cfk = ΣT
j=1α

2
kjγjλj . (A.53)

From (A.35), we have
|f∗kC∗CAlC

∗Cfk|
‖Cfk‖2

≤ ‖CAlC
∗‖2 = O(T ).

This, together with (A.51)-(A.53), implies that

ΣT
j=1α

2
kjγjλj

ΣT
j=1α

2
kjλj

−O(T ) ≤ βk ≤
ΣT
j=1α

2
kjγjλj

ΣT
j=1α

2
kjλj

+O(T ).

By Lemma 4, for any fixed k we have

ΣT
j=1

α2
kjλj

ΣT
j=1α

2
kjλj

γj
βk
−O(T−1) ≤ 1 ≤ ΣT

j=1

α2
kjλj

ΣT
j=1α

2
kjλj

γj
βk

+O(T−1). (A.54)

Note that {uk}1≤k≤T are orthogonal and {ỹk}1≤k≤T are orthogonal. When k 6= m, from (A.8),

(A.43) and (A.46) we have

0 = U∗kUm =
f∗kC∗Cfm
‖Cfk‖‖Cfm‖

=
ΣT
j=1αkjαmjλj

‖Cfk‖‖Cfm‖
.

This implies that

ΣT
j=1αkjαmjλj = 0. (A.55)

Moreover let υkj =
αkj
√
λj√

ΣTj=1α
2
kjλj

. We have

ΣT
j=1υ

2
kj = 1. (A.56)

Note that (A.54) is equivalent to

ΣT
j=1υ

2
kj

γj
βk
−O(T−1) ≤ 1 ≤ ΣT

j=1υ
2
kj

γj
βk

+O(T−1). (A.57)
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Also (A.55) implies that

ΣT
j=1υkjυmj = 0. (A.58)

We consider υkj for fixed k below. When k = 1 and T is big enough, Lemma 4, (A.56) and (A.57)

imply

O(T−1) = |1− ΣT
j=1υ

2
1j

γj
β1
| ≥ (1− υ2

11)
β1 − γ2

β1
− υ2

11

|β1 − γ1|
β1

. (A.59)

In view of (A.10)-(A.12), we have β1−γ1
β1

= O(T−1) and β1−γ2
β1

= 8
9 + o(1). It follows that (A.59) implies

that υ2
11 = 1 +O(T−1) and ΣT

j=2υ
2
1j = O(T−1). From (A.58), for any k 6= 1 we have

|υk1υ11| = |ΣT
j=2υkjυ1j | ≤

√
ΣT
j=2υ

2
kj

√
ΣT
j=2υ

2
1j = O(T−1/2). (A.60)

This implies υ2
k1 = O(T−1). It’s similar to obtain that υ2

22 = 1 + O(T−1) and υ2
k2 = O(T−1) for any

k 6= 2.

By repeating these steps we conclude that υ2
kk = 1 +O(T−1) for any fixed k. This implies (A.48).

Proof of Lemma 9: Note that {sk}1≤k≤T are orthogonal and real due to orthogonality of {uk}1≤k≤T .

We conclude from (A.8) and (A.46) that

sk =
F∗C∗Cfk√
γ1‖Cfk‖

=
1

√
γ1‖Cfk‖

ΣT
j=1αkjλjF

∗ỹj = sk,M + sk,R, (A.61)

where

sk,M =
1

√
γ1‖Cfk‖

αkkλkF
∗ỹk, sk,R =

1
√
γ1‖CLk‖

Σj 6=kαkjλjF
∗ỹj. (A.62)

By Hölder’s inequality, we have

‖sk,R‖ = ‖ 1
√
γ1‖Cfk‖

Σj 6=kαkjλjF
∗ỹj‖ ≤

1
√
γ1‖Cfk‖

‖F‖2
√

Σj 6=kα
2
kjλ

2
j .

Recalling A = FF∗, we have

‖F‖2 =
√
‖A‖2.

Since A is a Hermitian Toeplitz matrix, from [19],

‖A‖2 ≤ 2
∑

0≤k≤l
|ak|.

By (B.4) we can get

‖F‖2 =
√
‖A‖2 <∞.

From Lemma 2, (A.48), and (A.52) we can obtain that for any fixed k,√
Σj 6=kα

2
kjλ

2
j

‖Cfk‖
≤

√√√√Σj 6=kα
2
kjλj

ΣT
j=1α

2
kjλj

√
λ1 = O(T 1/2).

This, together with (A.10), implies that for any fixed k,

‖sk,R‖ = O(T−1/2). (A.63)
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Similarly, we can also obtain that 1√
γ1‖Cfk‖αkkλk is bounded for any fixed k.

Let Sk,M,j be the jth element of sk,M and Sk,R,j be the jth element of sk,R. From (A.44), (A.48)

and (A.62) and the assumption (A1) we can obtain that for any fixed k,

|Sk,M,j | ≤
1

√
γ1‖Cfk‖

|αkk|λk
2√

2T + 1

l∑
h=0

|bh| = O(T−1/2). (A.64)

It follows from (A.61), (A.62) and (A.64) that for any fixed k,

T+l∑
j=1

S4
k,j ≤ 8

T+l∑
j=1

(S4
k,R,j + S4

k,M,j)

≤ 8
T+l∑
j=1

S4
k,M,j + 8(

T+l∑
j=1

S2
k,R,j)

2 = O(T−1). (A.65)

A.4 Convergence in Probability

This section is to establish convergence in probability of the spiked eigenvalues of a kind of separable

sample covariance matrices, which is enough for our purpose.

Lemma 10. Let D = 1
pWZΣZ∗W∗, where W is a T × (T + l) matrix, Σ is a p× p positive-definite

matrix with ‖Σ‖2 ≤M0, and Z is defined below (A.1). Order the eigenvalues of WW∗ as τ1 ≥ · · · ≥ τT
with τ1 being bounded. Suppose that {τk}1≤k≤T satisfy the following conditions.

(C1) For any fixed k, there is a constant ck > 0 such that

lim
T→∞

τk = ck. (A.66)

(C2) For any ε > 0 there exist T0 and k0, where k0 is a constant independent of n and T , such that

when T ≥ T0,

|
∑
k>k0

τk| < ε. (A.67)

For any fixed k, denote the first k largest eigenvalues of D by ρ1 ≥ · · · ≥ ρk. Then ρj − cj tr(Σ)
p → 0 in

probability.

Proof. We can find V such that

VW∗WV∗ = diag(τ1, · · · , τT+l) = ΛT+l,

VV∗ = V∗V = IT+l,

where τk = 0 when k > T . So D∗ = 1
pVZΣZ∗V∗ΛT+l has the same nonzero eigenvalues as

1
pZΣZ∗W∗W.

To prove the lemma, it suffices to prove that for any δ > 0 and fix number k,

lim
T→∞

P (|ρk − ck
tr(Σ)

p
| > δ) = 0. (A.68)
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In view of (A.67), we can find k0 > 0 such that

|
∑
k>k0

τk| <
δ

4M0
. (A.69)

Write ΛT+l = ΛM
T+l + ΛR

T+l, where

ΛM
T+l = diag{τ1, τ2, · · · , τk0 , 0, · · · , 0}

ΛR
T+l = diag{0, · · · , 0, τk0+1, τk0+2, · · · , τT+l}. (A.70)

Let h = tr(1
pVZZ∗V∗ΛR

T+l). Note that E(VZZ∗V∗)kk = p and V ar(VZZ∗V∗)kk
p < ∞. We can

evaluate the mean and variance of h as follows

E(h) =

T+l∑
k=k0+1

E
(VZZ∗V∗)kkτk

p
=
∑
k>k0

τk <
δ

4M0

and

V ar(h) = V ar(

T∑
k=k0+1

(
(VZZ∗V∗)kkτk

p
))

≤ (
T∑

k=k0+1

√
V ar(

(VZZ∗V∗)kkτk
p

))2 = O(
(
∑

k>k0
τk)

2

p
) = O(

1

p
).

Since Σ is positive-definite, we have ‖1
pVZΣZ∗V∗ΛR

T+l‖2 ≤ tr(1
pVZΣZ∗V∗ΛR

T+l) ≤ M0h. It follows

that

lim
T→∞

P (‖1

p
VZΣZ∗V∗ΛR

T+l‖2 >
δ

2
) = 0. (A.71)

Denote the kth largest eigenvalue of 1
pVZΣZ∗V∗ΛM

T+l by ρMk . From the definition of ΛM
T+l, we

conclude that 1
nVZΣZ∗V∗ΛM

T+l has the same nonzero eigenvalues as its upper left k0 × k0 block. By

Theorem 7.1 of [2] it’s easy to prove that the limit of off-diagonal elements in the upper left k0 × k0

block is 0 in probability. Recall that k0 is a a constant which doesn’t depend on T . We conclude that

the nonzero eigenvalues of 1
pVZΣZ∗V∗ΛM

T+l are diagonal elements of the upper left k0×k0 block. From

Theorem 7.1 of [2], the limit of diagonal elements in the upper left k0 × k0 block can be obtained as

follow

lim
T→∞

P (|ρMk − τk
tr(Σ)

p
| > δ

2
) = 0. (A.72)

It follows from (A.64), (A.71) and (A.72)that

lim
T→∞

P (|ρk − λk
tr(Σ)

p
| > δ)

≤ lim
T→∞

P (|ρMk − λk
tr(Σ)

p
|+ |ρMk − ρk| > δ)

≤ lim
T→∞

P (|ρMk − λk
tr(Σ)

p
| > δ

2
) + lim

T→∞
P (|ρMk − ρk| >

δ

2
)

≤ lim
T→∞

P (|ρMk − λk
tr(Σ)

p
| > δ

2
) + lim

T→∞
P (‖1

p
VZΣZ∗V∗ΛR

p+l‖2 >
δ

2
) = 0.

We apply Lemma 10 with D = B
γ1

where B is defined in (A.4). Lemma 4 and Lemma 6 ensure that

conditions in Lemma 10 are satisfied so that Proposition 3 below holds.

Proposition 3. Let ρk be the kth largest eigenvalue of B. When ϕ = 1,
ρk−γk tr(Σ)

p

γ1
→ 0 in probability.
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A.5 CLT of the first k largest eigenvalues

This section is to develop central limit theorems of the first k largest eigenvalues of B.

Proposition 4. Let ρk be the kth largest eigenvalue of B. When ϕ = 1, (
√
pρ1−γ1γ1

, · · · ,√pρk−γkγ1
)′

converges weakly to a zero-mean Gaussian vector w = (w1, · · · , wk)′ with covariance cov(wi, wj) =

δij
θ

(2i−1)4
(2− 4E(ZRi1)2E(ZIi1)2) and θ = limp→∞

tr(Σ2)
p .

Proof. Recalling the definitions of uk and sk in Section 3.2, we denote (u1, · · · ,uT) by U and F∗C∗U√
γ1

by S. Note that {uk}1≤k≤T and {sk}1≤k≤T are both orthogonal and real. Since s∗j si = 0 for i 6= j we

have

SS∗ = Λ = diag{β1

γ1
, · · · , βT

γ1
}. (A.73)

In view of (A.4), let

D =
U∗BU

γ1
=

1

p
S∗ZΣZ∗S. (A.74)

The eigenvalues of D are ordered as ρT
γ1
≤ · · · ≤ ρ1

γ1
.

To rewrite D as a block matrix we first introduce the following notation. For a fixed number

k > 0, let zj = (Z1j , · · · , Z(T+l)j)
′. Set V1 = 1√

p(ξ1, · · · , ξp) = 1√
pQ1Z = 1√

p(s1
∗, · · · , sk

∗)′Z and

V2 = 1√
p(η1, · · · , ηp) = 1√

pQ2Z = 1√
p(sk+1

∗, · · · , sT
∗)′Z where Q1 = (s1

∗, · · · , sk
∗)′ and Q2 =

(sk+1
∗, · · · , sT

∗)′. Then

ξj = (ξj(1), · · · , ξj(k))′ = (s∗1zj, · · · , s∗kzj)
′ (A.75)

and

ηj = (ηj(k + 1), · · · , ηj(p))′ = (s∗k+1zj, · · · , s∗Tzj)
′. (A.76)

Let Λ1 = cov(ξj) = Q1Q1
∗ and Λ2 = cov(ηj) = Q2Q2

∗. In view of (A.73), we have

Λ1 = diag{β1

γ1
, · · · , βk

γ1
}, Λ2 = diag{βk+1

γ1
, · · · , βT

γ1
}. (A.77)

From Lemmas 4, 5 and (A.37) we can find a constant Mk such that

lim
T→∞

|tr(Λ2)| = lim
T→∞

|tr(Λ)− tr(Λ1)| = |π
2

8
−

k∑
j=1

1

(2i− 1)2
| < Mk. (A.78)

In view of (A.74)-(A.76), we can rewrite D as

D =

 V1ΣV1
∗ V1ΣV2

∗

V2ΣV1
∗ V2ΣV2

∗

 4
=

 W11 W12

W21 W22

 . (A.79)

The characteristic polynomial of D is

0 = |λIT −D| = |λIT−k −W22||λIk −Kp(λ)|, (A.80)

where

Kp(λ) = W11 + W12(λIT−k −W22)−1W21. (A.81)

We conclude from Lemmas 4 and 6 that W22 = V2ΣV2
∗ = 1

pQ2ZΣZ∗Q∗2 satisfies the conditions of

Lemma 10. Lemma 10 immediately implies that the largest eigenvalue of W22, ρ, tends to
γk+1

tr(Σ)
p

γ1
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in probability. On the other hand, from Lemma 10, we also see that when j ≤ k,
ρj−γj tr(Σ)

p

γ1
→ 0 in

probability. Since we want to study the first k largest eigenvalues, from Lemma 4 and (A.80), it’s

sufficient to consider the characteristic polynomial

0 = |λIk −Kp(λ)| = |G(λ)|, (A.82)

where

G(λ) = {Gij(λ)}1≤i,j≤k = λIk −Kp(λ). (A.83)

From (A.81) we write

Kp(λ) = W11 + W12(λIT−k −W22)−1W21

= V1ΣV1
∗ + V1ΣV2

∗(λIT−k −W22)−1V2ΣV1
∗

= V1(Σ + Ap(λ))V1
∗,

where

Ap(λ) = ΣV2
∗(λIT−k −W22)−1V2Σ. (A.84)

It follows that

Kp(λ) =
1
√
p
Rp + Λ1

tr(Σ)

p
+ V1Ap(λ)V1

∗, (A.85)

where

Rp = {Rij}1≤i,j≤k =
√
pV1ΣV1

∗ − tr(Σ)
√
p

Λ1 =
√
pV1ΣV1

∗ −√pΛ1
tr(Σ)

p
. (A.86)

Now we consider the Hermitian matrix V1Ap(λ)V1
∗ in (A.85). When λ is a solution of (A.82), we

have λ > ‖W22‖2 in probability due to Lemma 10. Hence the eigenvalues of (λIT−k −W22)−1 and
√
pV1Ap(λ)V1

∗ are non-negative in probability when λ is a solution of (A.82). Evidently we have

‖√pV1Ap(λ)V1
∗‖2 ≤ ‖Σ‖22‖(λIT−k −W22)−1‖2tr(

√
pV1V∗2V2V1

∗). (A.87)

Note that eigenvalues of
√
pV1V∗2V2V1

∗ are also non-negative.

The next aim is to prove E(
√
pV1V∗2V2V1

∗) = op(1). Let hj = (
√
pV1V∗2V2V1

∗)jj ≥ 0. we can

claim that hj = op(1). In fact

hj =
1

p
√
p
s∗j ZZ∗Q∗2Q2ZZ∗sj. (A.88)

Let EZ2
ij = y, E(Z∗ij)

2 = z and E|Zij |4 = x+ 1. Write

E(hj) =
1

p
√
p
sj
∗E(ZZ∗Q∗2Q2ZZ∗)sj

=
1

p
√
p

p∑
i=1

p∑
m=1

sj
∗E(ziz

∗
i Q
∗
2Q2zmz∗m)sj

=
1

p
√
p

(

p∑
i=1

∑
m6=i

sj
∗E(ziz

∗
i Q
∗
2Q2zmzm

∗)sj +

p∑
i=1

sj
∗E(ziz

∗
i Q
∗
2Q2zizi

∗)sj). (A.89)

Consider the first term on the right hand of (A.89). When i 6= m,

sj
∗E(ziz

∗
i Q
∗
2Q2zmzm

∗)sj = sj
∗E(zizi

∗)Q∗2Q2E(zmzm
∗)sj = s∗j Q

∗
2Q2sj.
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Recall that {Sk}1≤k≤T are orthogonal and real. Since j ≤ k, from the definition of Q2,

sj
∗E(ziz

∗
i Q
∗
2Q2zmzm

∗)sj = s∗j Q
∗
2Q2sj = 0, (A.90)

which implies the first term of on the right hand of (A.89) equals 0.

Consider the second term on the right hand of (A.89) now. Let P = (Prt)1≤r,t≤T+l = Q∗2Q2 and

Hv = (Hv
im)1≤i,m≤T+l = zvz∗vQ∗2Q2zvzv

∗ = zvz∗vPzvzv
∗. Then

E(Hv
im) = E(ZivZ

∗
mv

∑
1≤r,t≤T+l

PrtZ
∗
rvZtv)

=

PiiE|Ziv|4 +
∑

r 6=i PrrE|Ziv|2E|Zrv|2 i = m,

PimE|Ziv|2E|Zmv|2 + PmiEZ
2
ivE(Z∗mv)

2 i 6= m.

=

Piix+
∑T+l

r=1 Prr i = m,

Pim + Pmiyz i 6= m.

It follows that

p∑
v=1

sj
∗E(zvz∗vPzvzv

∗)sj

=

p∑
v=1

sj
∗E(Hv)sj

=

p∑
v=1

T+l∑
i=1

T+l∑
m=1

S∗jiSjmE(Hv
im)

=

p∑
v=1

T+l∑
i=1

S∗jiSji(Piix+
T+l∑
r=1

Prr) +

p∑
v=1

T+l∑
i=1

T+l∑
m=1,m 6=i

S∗jiSjm(Pim + Pmiyz)

=

p∑
v=1

T+l∑
i=1

S∗jiSji(Pii(x− 1− yz) +
T+l∑
r=1

Prr) +

p∑
v=1

T+l∑
i=1

T+l∑
m=1

S∗jiSjm(Pim + Pmiyz)

≤ tr(P)(|x− 1− yz|+ 1)

p∑
v=1

T+l∑
i=1

S∗jiSji +

n∑
v=1

T+l∑
i=1

T+l∑
m=1

S∗jiSjm(Pim + Pmiyz)

= tr(P)(|x− 1− yz|+ 1)p‖sj‖2 + p

T+l∑
i=1

T+l∑
m=1

S∗jiSjm(Pim + Pmiyz)

= tr(P)(|x− 1− yz|+ 1)p‖sj‖2 + ps∗j Psj + pyzs∗j Psj.

By (A.90) and P = Q∗2Q2, we have

p∑
v=1

s∗jE(zvz∗vPzvzv
∗)sj ≤ tr(P)(|x− 1− yz|+ 1)p‖sj‖2.

Also,

tr(P) = tr(Q∗2Q2) = tr(Λ2).

From (A.78), (A.88) and (A.90) we can obtain

E(hj) ≤
1
√
p
tr(P)(|x− 1− yz|+ 1)‖sj‖2 → 0, (A.91)
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as claimed.

Since k is a fix number, we can obtain

E(tr(
√
pV1V∗2V2V1

∗)) =
k∑
j=1

E(hj) = op(1). (A.92)

It follows from ‖(λIT−k −W22)−1‖2 = Op(1), (A.87) and (A.92) that

‖V1Ap(λ))V1
∗‖2 = op(p

−1/2). (A.93)

Now we consider 1√
pRp = 1√

p(Rij) in (A.85). From (A.86) and the definition of V1, Q1 and Λ1,

Rij =
1
√
p

(s∗i ZΣZ∗sj − s∗i sjtr(Σ)). (A.94)

Note that E(s∗i z1z∗1sj) = s∗i sj. With Theorem 7.1 of [2], we can prove that Rij converges weakly to a

zero-mean Gaussian variable rij with bounded variance. It follows that

1
√
p
Rij = Op(p

−1/2). (A.95)

Note that Λ1
tr(Σ)
p is a diagonal matrix and hence we can find that any off-diagonal element of λIk −

Kn(λ) is Op(p
−1/2). This, together with (A.83), implies that for any i 6= j, Gij(λ) = Op(p

−1/2) with

λ satisfying |G(λ)| = 0. Similarly, Gii(λ) = λ − tr(Σ)βi
pγ1

+ Op(p
−1/2) is absolutely bounded with λ

satisfying |G(λ)| = 0.

Denote by Ωk all permutations σ of the set {1, 2, · · · , k}. By the Laplace formula of a determinant

we have

0 = |G(λ)| =
∑
σ∈Ωk

sgn(σ)

k∏
j=1

Gj,σj (λ)

=
∑

σ∈Ωk,σ 6=[1,2,··· ,k]

sgn(σ)
k∏
j=1

Gj,σj (λ) +
k∏
j=1

Gjj(λ).

Recall that any off-diagonal element of G(λ) is Op(p
−1/2). We conclude that when σ 6= [1, 2, · · · , k],∏k

j=1Gj,σj (λ) = Op(p
−1) since there are at least two different j1 and j2 such that σj1 6= j1 and σj2 6= j2.

Since k is fixed, we have∏
1≤j≤k

Gjj(λ) = −
∑

σ∈Ωk,σ 6=[1,2,··· ,k]

sgn(σ)

k∏
j=1

Gj,σj (λ) = Op(p
−1). (A.96)

Then when λ satisfies |G(λ)| = 0, there exists j (not bigger than k) such that |Gjj(λ)| = o(1). When

i 6= j, from (A.85), (A.93) and (A.95)

|Gjj(λ)−Gii(λ)|

≥ tr(Σ)

p
|(Λ1)jj − (Λ1)ii| − |

1
√
p
Rjj −

1
√
p
Rii| − |(V1Ap(λ)V1

∗)jj − (V1Ap(λ)V1
∗)ii|

=
tr(Σ)|βj − βi|

pγ1
+Op(p

−1/2).

By Lemma 4 we can obtain that for any i 6= j, |Gii(λ)| ≥ tr(Σ)
p (| 1

(2i−1)2
− 1

(2j−1)2
|)+op(1). This, together

with (A.96), implies that |Gjj(λ)| = Op(p
−1). Hence |Gjj(λj)| = Op(p

−1) for any λ1 > λ2 > · · · > λk

satisfying |G(λj)| = 0 for 1 ≤ j ≤ k. Write

(λ1, λ2, · · · , λk) = (λ1 −G11(λ1) +Op(p
−1), · · · , λk −Gkk(λk) +Op(p

−1)). (A.97)
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It follows that

(
√
p(λ1 −

γ1

γ1

tr(Σ)

p
), · · · ,√p(λk −

γk
γ1

tr(Σ)

p
)) =

(
√
p(λ1 −

γ1

γ1

tr(Σ)

p
−G11(λ1) +Op(p

−1)), · · · ,√p(λk −
γk
γ1

tr(Σ)

p
−Gkk(λk) +Op(p

−1))).

Via this, by (A.83), (A.85), (A.77), (A.86), (A.93) and Lemma 4 we further obtain

√
p[λj −

γj
γ1

tr(Σ)

p
−Gjj(λj) +Op(p

−1)]

=
√
p[λj −

γj
γ1

tr(Σ)

p
− λj +

βj
γ1

tr(Σ)

p
+

1
√
p
Rjj + (V1An(λj)V1

∗)jj +Op(p
−1)]

= Rjj +O(
√
pT−1) + op(1). (A.98)

Recalling (A.94), we have

(R11, · · · , Rkk)′ = (
1
√
p

(s∗1ZΣZ∗s1 − s∗1s1tr(Σ)), · · · , 1
√
p

(s∗kZΣZ∗sk − s∗ksktr(Σ)))′.

Note that E(s∗i z1z∗1sj) = s∗i sj. From Theorem 7.1 of [2], we can find that (R11, · · · , Rkk)′ converges

weakly to a zero-mean Gaussian vector w = (w1, · · · , wk)′.
We next determine the covariance between wi and wj for the complex case and the real case in a

unified way. To this end, let ω = limp→∞

∑
1≤i≤p Σ2

ii

p and θ = limp→∞
tr(Σ2)
p = limp→∞

tr(ΣΣ′)
p . When

i 6= j, from Theorem 7.1 of [2], we have

cov(wi, wj)

= lim
T→∞

ω(E | ξ1(i) |2| ξ1(j) |2 −(E | ξ1(i) |2)(E | ξ1(j) |2))

+ lim
T→∞

(θ − ω)(Eξ̄1(i)ξ1(j))(Eξ̄1(j)ξ1(i)) + lim
T→∞

(θ − ω)(Eξ1(i)ξ1(j))(Eξ̄1(i)ξ̄1(j)).

Recalling (A.75), we have

E(| ξ1(i) |2| ξ1(j) |2)− E(| ξ1(i) |2)E(| ξ1(j) |2)

= E(s∗i Z1Z∗1sis
∗
j Z1Z∗1sj)− E(s∗i Z1Z∗1si)E(s∗j Z1Z∗1sj). (A.99)

Recall that {sk}1≤k≤T are orthogonal and real. We obtain

E(s∗i z1z∗1sis
∗
j z1z∗1sj)

= E(

T+l∑
f1=1

T+l∑
f2=1

Sif1Sif2Zf11Z
∗
f21)(

T+l∑
f1=1

T+l∑
f2=1

Sjf1Sjf2Zf11Z
∗
f21)

=

T+l∑
f1=1

∑
f2 6=f1

Sif1Sif2Sjf1Sjf2(EZ2
f11(Z∗f21)2 + E|Zf11|2|Zf21|2) + E(

T+l∑
f1=1

S2
if1 |Zf11|2)(

T+l∑
f2=1

S2
jf2 |Zf21|2)

= (yz + 1)

T+l∑
f1=1

∑
f2 6=f1

Sif1Sif2Sjf1Sjf2 + E(

T+l∑
f1=1

S2
if1 |Zf11|2)(

T+l∑
f2=1

S2
jf2 |Zf21|2). (A.100)

Since {sk}1≤k≤T are orthogonal, we conclude from (A.49) that

(yz + 1)

T+l∑
f1=1

∑
f2 6=f1

Sif1Sif2Sjf1Sjf2

= (yz + 1)
T+l∑
f1=1

Sif1Sjf1

T+l∑
f2=1

Sif2Sjf2 − (yz + 1)
T+l∑
f1=1

S2
if1S

2
jf1

= −(yz + 1)

T+l∑
f1=1

S2
if1S

2
jf1 = O(T−1) (A.101)
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and

E(

T+l∑
f1=1

S2
if1 |Zf11|2)(

T+l∑
f2=1

S2
jf2 |Zf21|2)

=

T+l∑
f1=1

S2
if1S

2
jf1(E|Zf11|4 − 1) + E(s∗i z1z∗1si)E(s∗j z1z∗1sj)

= E(s∗i z1z∗1si)E(s∗j z1z∗1sj) +O(T−1). (A.102)

Summarizing (A.99), (A.100), (A.101) and (A.102), we conclude that

lim
T→∞

ω(E | ξ1(i) |2| ξ1(j) |2 −(E | ξ1(i) |2)(E | ξ1(j) |2)) = 0.

Since {sk}1≤k≤T are orthogonal and real, we also have

Eξ̄1(i)ξ1(j) = 0, Eξ̄1(j)ξ1(i) = 0

and

Eξ1(i)ξ1(j) = 0, Eξ̄1(i)ξ̄1(j) = 0.

This implies that

cov(wi, wj) = 0. (A.103)

By (2.14) and (A.75) we can get

V ar(wi)

= ω lim
T→∞

{E | ξ1(i) |4 −2(E | ξ1(i) |2)2 − (Eξ1(i)2)(Eξ̄1(i)2)}

+θ lim
T→∞

(E | ξ1(i) |2)2 + θ lim
T→∞

(Eξ1(i)2)(Eξ̄1(i)2)

= ω lim
T→∞

{E | ξ1(i) |4 −2(E | ξ1(i) |2)2 − (Eξ1(i)2)(Eξ̄1(i)2)}

+θ
1

(2i− 1)4
+ θ

1

(2i− 1)4
(1− 4E(ZRi1)2E(ZIi1)2).

From Lemma 4

lim
T→∞

{E | ξ1(i) |4 −2(E | ξ1(i) |2)2 − (Eξ1(i)2)(Eξ̄1(i)2)}

= lim
T→∞

{E |
T+l∑
j=1

SijZj1 |4 −2(
βi
γ1

)2 − (
βi
γ1

)2(E(ZRi1)2 − E(ZIi1)2)2}

= lim
T→∞

{E(
T+l∑
j=1

SijZ
R
j1)4 + E(

T+l∑
j=1

SijZ
I
j1)4 +

2E(
T+l∑
j=1

SijZ
R
j1)2(

T+l∑
j=1

SijZ
I
j1)2} − 1

(2i− 1)4
(2 + (E(ZRi1)2 − E(ZIi1)2)2).

Recalling ZRj1 and ZIj1 are independent, we have

2E(
T+l∑
j=1

SijZ
R
j1)2(

T+l∑
j=1

SijZ
I
j1)2 = 2E(

T+l∑
j=1

S2
ij(Z

R
j1)2)E(

T+l∑
j=1

S2
ij(Z

I
j1)2)
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and

E(

T+l∑
j=1

SijZ
R
j1)4 + E(

T+l∑
j=1

SijZ
I
j1)4 + 2E(

T+l∑
j=1

SijZ
R
j1)2(

T+l∑
j=1

SijZ
I
j1)2

= 3[(

T+l∑
j=1

S2
ijE(ZRj1)2)2 + (

T+l∑
j=1

S2
ijE(ZIj1)2)2] +

T+l∑
j=1

S4
ij [E(ZRj1)4 + E(ZIj1)4 − 3(E((ZRj1)2)2 + (E(ZIj1)2)2)]

+2E(

T+l∑
j=1

S2
ij(Z

R
j1)2)E(

T+l∑
j=1

S2
ij(Z

I
j1)2)

= 3[

T+l∑
j=1

S2
ijE(ZRj1)2 +

T+l∑
j=1

S2
ijE(ZIj1)2]2

+

T+l∑
j=1

S4
ij [E(ZRj1)4 + E(ZIj1)4 − 3((E(ZRj1)2)2 + (E(ZIj1)2)2)]−

4E(

T+l∑
j=1

S2
ij(Z

R
j1)2)E(

T+l∑
j=1

S2
ij(Z

I
j1)2)

= (2 + (E(ZRi1)2 − E(ZIi1)2)2)(

T+l∑
j=1

S2
ij)

2 +

T+l∑
j=1

S4
ij [E(ZRj1)4 + E(ZIj1)4 − 3((E(ZRj1)2)2 + (E(ZIj1)2)2)].

In view of Lemma 4, (A.49) and (A.73), we have

(2 + (E(ZRi1)2 − E(ZIi1)2)2)(
T+l∑
j=1

S2
ij)

2 = (2 + (E(ZRi1)2 − E(ZIi1)2)2)(
1

(2i− 1)4
+O(T−1))

and

T+l∑
j=1

S4
ij [E(ZRj1)4 + E(ZIj1)4 − 3((E(ZRj1)2)2 + (E(ZIj1)2)2)] = O(T−1).

So we can obtain

lim
T→∞

{E | ξ1(i) |4 −2(E | ξ1(i) |2)2 − (Eξ1(i)2)(Eξ̄1(i)2)} = 0.

It follows that

V ar(wi) = θ
1

(2i− 1)4
(2− 4E(ZRi1)2E(ZIi1)2).

This, together with (A.98), (A.103) and the assumption (A4), implies Theorem 4.

B The Proof of the Main Results

This section is to prove that the results obtained in Section 4 still hold for the general linear processes

(without the truncation step performed there) and the general initial vector x0 (not necessarily zero).

31



Lemma 11. Recall the definitions of Y, λk and γk in Section 1. Let l = max{p, T} and Yl be the

truncated matrix of Y in Section 4. Define

γk,l = λk(a0,l + 2
∑

1≤j≤T−1

aj,l(−1)j cos(jθk))

where

aj,l =
∑
j≤k≤l

bkbk−j . (B.1)

Then when Π = I,

‖
(1/p)C(YΣY∗ −YlΣY∗l )C∗

γ1,l
‖2= op(p

−1/2) (B.2)

and
|γk,l − γk|

γ1,l
= o(1). (B.3)

Proof of Lemma 11: We consider (B.3) first. To this end, observe that the assumption (A1) implies

that
∞∑
i=0

i|ai| <∞, (B.4)

because
∞∑
i=0

i|ai| ≤
∞∑
i=0

i

∞∑
k=0

|bk||bk+i| =
∞∑
k=0

|bk|(
∞∑
i=0

i|bk+i|) ≤
∞∑
k=0

|bk|(
∞∑
i=0

i|bi|).

Write

|γk,l − γk|
γ1,l

≤ λk
γ1,l

(
∑
k>l

b2k + 2
T−1∑
j=1

∑
k>l

|bk||bk−j |+ 2
∑
j≥T
|aj |)

≤ λk
γ1,l

(
∑
k>l

b2k + 2
∞∑
j=1

|bj |
∑
k>l

|bk|+ 2
∑
j≥T
|aj |).

From the assumption (A1) and (B.4), we obtain that

∑
k>l

b2k + 2
∞∑
j=1

|bj |
∑
k>l

|bk|+ 2
∑
j≥T
|aj | = o(1).

Moveover, Lemma 2 and assumption (A1) (or (A.9)) imply that λk
γ1,l

is bounded. So we conclude (B.3).

Now we consider (B.2). Via Lemma 1, observe that

‖ (1/p)C(YΣY∗ −YlΣYl
∗)C∗

γ1,l
‖2 ≤ ‖ C ‖22

γ1,l
‖ (1/p)(YΣY∗ −YlΣYl

∗) ‖2

=
λ1

γ1,l
‖ (1/p)(YΣY∗ −YlΣYl

∗) ‖2 .

As before λ1
γ1,l

is bounded. So we just need to consider ‖ (1/p)(YΣY∗ − YlΣYl
∗) ‖2. Let K =

(Kij)1≤i≤T,1≤j≤p = Y −Yl. We can obtain that Kij =
∑∞

k=l+1 bkZi−k,j and

E|Kij |2 =
∞∑

k=l+1

b2k.

By the assumption (A1) we can get

E|Kij |2 =

∞∑
k=l+1

b2k ≤ l−2
∞∑

k=l+1

k2|bk|2 = o(l−2),
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which ensures that

E ‖ 1
√
p
K ‖2F= o(T l−2).

This, together with (A.3), implies that

‖ (1/p)(YΣY∗ −YlΣYl
∗) ‖2=‖ (1/p)(KΣYl

∗ + YlΣK∗ + KΣK∗) ‖2

≤ 2 ‖ 1
√
p
K ‖F ‖Σ‖2 ‖

1
√
p
Yl ‖2 + ‖ 1

√
p
K ‖2F ‖Σ‖2 = op(p

−1/2). (B.5)

So we can conclude (B.2).

Proof of Theorems 2: Recalling (2.5),

B =
1

p
XX∗ =

1

p
CYΣY∗C∗ +

1

p
CYΣ1/2X0

∗ +
1

p
X0Σ1/2Y∗C∗ +

1

p
X0X0

∗.

The assumption A6 implies that

‖1

p
X0X0

∗‖2 = Op(T ) (B.6)

and that

‖1

p
CYΣ1/2X0

∗‖2 = Op(T
1/2‖1

p
CYΣY∗C∗‖1/22 ). (B.7)

We can write (1/p)CYΣY∗C∗

γ1
as

(1/p)CYΣY∗C∗

γ1
=
γ1,l

γ1

(1/p)CYΣY∗C∗

γ1,l

=
γ1,l

γ1

(1/p)CYlΣY∗l C∗

γ1,l
+
γ1,l

γ1

(1/p)C(YΣY∗ −YlΣYl
∗)C∗

γ1,l
. (B.8)

From (B.3) we have limT→∞
γ1,l
γ1

= 1. This, together with (2.5), Proposition 3, Lemma 4, (B.2), (B.6)

and (B.7) , implies Theorem 2.

Proof of Theorem 4: Let m = [
√
p]. From (2.6) and (B.4) we have

|(a0 + 2
∑

1≤j≤m
aj(−1)j cos(jθ1))− (a0 + 2

∑
1≤j≤∞

aj(−1)j cos(jθ1))| ≤ 2
∑

1+m≤j≤∞
|aj | = o(p−1/2) (B.9)

and

|(a0 + 2
∑

1≤j≤m
aj(−1)j cos(jθ1))− (a0 + 2

∑
1≤j≤m

aj)|

≤ 2
∑

1≤j≤m
|aj |(1− cos

jπ

2T + 1
) = O(p1/2T−2) = o(p−1/2). (B.10)

In view of (2.7) it suffices to prove that

| 1

T − 1

∑
2≤i≤T

y′iΣyi

p
+2

∑
1≤j≤m

1

T − j − 1

∑
2≤i≤T−j

y′iΣyi+j

p
−(a0+2

∑
1≤j≤m

aj)
tr(Σ)

p
| = op(p

−1/2). (B.11)

A direct calculation shows the following mean and variance

E
( 1

T − 1

∑
2≤i≤T

y′iΣyi

p
+ 2

∑
1≤j≤m

1

T − j − 1

∑
2≤i≤T−j

y′iΣyi+j

p

)
− (a0 + 2

∑
1≤j≤m

aj)
tr(Σ)

p
= 0, (B.12)
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V ar(
∑

1≤j≤m

1

T − j − 1

∑
2≤i≤T−j

y′iΣyi+j

p
)

=
∑

1≤i,j≤m

∑
2≤f≤T−i

∑
2≤g≤T−j

Cov(
y′fΣyf+i

p ,
y′gΣyg+j

p )

(T − i− 1)(T − j − 1)
.

Moreover

Cov(
y′fΣyf+i

p
,
y′gΣyg+j

p
) =

1

p

[ p∑
i=1

Σ2
ii

p
E|Zij |4

∞∑
k=0

bkbk+ibk+g−fbk+g−f+j1(k+g−f≥0)

+
tr(Σ2)

p
E|Zij |2(a|f−g|a|f+i−g−j| + a|f+i−g|a|f−g−j|)

]
.

From the above, the assumption (A1) and (B.4) we conclude that

V ar(
1

T − 1

∑
2≤i≤T

y′iΣyi

p
+ 2

∑
1≤j≤m

1

T − j − 1

∑
2≤i≤T−j

y′iΣyi+j

p
) = O(p−1mT−1) = o(p−1). (B.13)

(B.12) and (B.13) imply (B.11).

Proof of Theorem 5: Throughout the proof of this theorem, in order to simplify notation we use m to

replace m2. In view of (2.6) and (2.7) it suffices to show that

Sσ2

(a0 + 2
∑∞

j=1 aj(−1)j cos(jθ1))2tr(Σ2)
= 1 + op(1).

(B.9) and (B.10) imply

|(a0 + 2
∑

1≤j≤m
aj)− (a0 + 2

∞∑
j=1

aj(−1)j cos(jθ1))| = o(m−1) = o(1). (B.14)

It then suffices to prove that

Sσ2 − (a0 + 2
∑

1≤j≤m aj)
2tr(Σ2)

(a0 + 2
∑

1≤j≤m aj)
2tr(Σ2)

= op(1).

Recall that Sσ2 = Sσ2,0,0 + 4
m∑
i=1

Sσ2,i,i + 4
m∑
i=1

Sσ2,0,i + 8
m−1∑
i=1

m∑
j=i+1

Sσ2,i,j . Let S̃σ2,i,j = Sσ2,i,j −

aiajtr(Σ
2). It is then sufficient to show that

S̃σ2

(a0 + 2
∑

1≤j≤m aj)
2tr(Σ2)

=

S̃σ2,0,0 + 4
m∑
i=1

S̃σ2,i,i + 4
m∑
i=1

S̃σ2,0,i + 8
m−1∑
i=1

m∑
j=i+1

S̃σ2,i,j

(a0 + 2
∑

1≤j≤m aj)
2tr(Σ2)

= op(1).

From the assumptions A2, A3 and (B.14) we have for big enough T

(a0 + 2
∑

1≤j≤m
aj)

2tr(Σ2) ≥ 1

2
s2M2

1 p, (B.15)

where we use the fact that

tr(Σ2) ≥ (trΣ)2

p
.

When T is big enough, for i and j not bigger than m,

(T − j/2− 3

2
[T/2])([T/2]− j − 1) ≥ T 2

9
. (B.16)
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We next expand S̃σ2,i,j in terms of Zij and write it a sum of the terms involving the high order of

Zij and the terms involving the low order of Zij . Specifically write S̃σ2,i,j = S̃σ2,i,j,h + S̃σ2,i,j,l, where

S̃σ2,i,j,h =
1

(T − j/2− 3
2 [T/2])([T/2]− j − 1)

[T/2]−j∑
f=2

T−j∑
g=f+[T/2]

(

p∑
i1,i2=1

Σi1i1Σi1i2

T∑
s1,s2=−∞

Z3
s1i1Zs2i2

(bf−s1bg−s1bf+i−s1bg+j−s2 + bf−s1bg−s1bf+i−s2bg+j−s1 + bf−s1bg−s2bf+i−s2bg+j−s1

+bf−s2bg−s1bf+i−s1bg+j−s1)− 3

p∑
i1=1

Σ2
i1i1

T∑
s1=−∞

Z4
s1i1bf−s1bg−s1bf+i−s1bg+j−s1). (B.17)

Note that bk = 0 when k < 0. We then can conclude from the assumption A1 and (B.14) that

E|S̃σ2,i,j,h| = o(p2T−2). (B.18)

Moreover write S̃σ2 = S̃σ2,h + S̃σ2,l, where

S̃σ2,h = S̃σ2,0,0,h + 4

m∑
i=1

S̃σ2,i,i,h + 4

m∑
i=1

S̃σ2,0,i,h + 8

m−1∑
i=1

m∑
j=i+1

S̃σ2,i,j,h.

(B.15) and (B.18) imply that

E|S̃σ2,h|
(a0 + 2

∑
1≤j≤m aj)

2tr(Σ2)
= o(m2pT−2) = o(1). (B.19)

A direct calculation shows that

(T − j/2− 3
2 [T/2])([T/2]− j − 1)ES̃σ2,i,j,l

=
[T/2]−j∑
f=2

T−j∑
g=f+[T/2]

(ag+j−fag−f−itr(Σ
2) + ag−fag+j−f−i(tr(Σ))2) = o(p2T−1). (B.20)

This, together with (B.15) and (B.16), implies that

ES̃σ2,l

(a0 + 2
∑

1≤j≤m aj)
2tr(Σ2)

= o(m2pT−3) = o(1). (B.21)

Via (B.15), (B.16), the assumption A1 and (B.14) one can also verify that

V ar(
S̃σ2,l

(a0 + 2
∑

1≤j≤m aj)
2tr(Σ2)

) = o(m4(pT−2 + p−1)) = o(1). (B.22)

This, together with (B.19) and (B.21), completes the proof.

Proof of Theorems 3 : We prove Remark 2 at first. Recalling the proof of Theorem 2, we just need to

prove

‖1

p
CYΣ1/2X0

∗‖2 = op(p
−1/2T 2). (B.23)

(B.7) implies that ‖1
pCYΣ1/2X0

∗‖2 = Op(T
3/2). Remark 2 then follows.

We now prove Theorem 3. The assumption A7 implies that

‖1

p
X0X0

∗‖2 = Op(T ). (B.24)
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Our aim is to prove (B.23). Note that rank(CYΣ1/2X0
∗) = 1. Recalling the assumption A7 we can

then find that

‖1

p
CYΣ1/2X0

∗‖2 =

√
T

p

√√√√ T∑
t=1

(

t∑
i=1

y′iΣ
1/2x0)2 (B.25)

t∑
i=1

y′iΣ
1/2x0 =

t∑
i=1

y′iΣ
1/2

∞∑
k=0

b̃kΣ1
1/2z−k +

t∑
i=1

y′iΣ
1/2b̃−1Σ2

1/2z̃ +

t∑
i=1

y′iΣ
1/2b̃−2. (B.26)

By (2.1) and a variable change we may write

t∑
i=1

y′i =

t∑
j=1

z′j(

t∑
i=j

bi−j) +

0∑
j=−∞

z′j(

t∑
i=1

bi−j). (B.27)

Let (c̃−2,1, . . . , c̃−2,p)
′ = c̃−2 = Σ1/2b̃−2. The assumptions A3 and A7 imply ‖c̃−2‖2 = O(p). Then

t∑
i=1

y′iΣ
1/2b̃−2 =

t∑
i=1

y′ic̃−2.

It follows that

E(
t∑
i=1

y′iΣ
1/2b̃−2) = 0 (B.28)

and

V ar(
t∑
i=1

y′iΣ
1/2b̃−2) = ‖c̃−2‖2(

t∑
j=1

(
t∑
i=j

bi−j)
2 +

0∑
j=−∞

(
t∑
i=1

bi−j)
2) = O(pt). (B.29)

These imply that

t∑
i=1

y′iΣ
1/2b̃−2 = Op(p

1/2t1/2). (B.30)

As in (B.27) write

t∑
i=1

y′iΣ
1/2b̃−1Σ2

1/2z̃ = b̃−1(
t∑

j=1

z′jΣ
1/2Σ2

1/2z̃(
t∑
i=j

bi−j) +
0∑

j=−∞
z′jΣ

1/2Σ2
1/2z̃(

t∑
i=1

bi−j)).

The assumption A7 implies that z̃ is independent of zt and that b̃−1 is bounded. It follows that

t∑
i=1

y′iΣ
1/2b̃−1Σ2

1/2z̃ = Op(p
1/2t1/2). (B.31)

Now we consider the first term of the right hand of (B.26). From (B.27), write

t∑
i=1

y′iΣ
1/2

∞∑
k=0

b̃kΣ1
1/2z−k

=

t∑
j=1

∞∑
k=0

z′jΣ
1/2Σ1

1/2z−kb̃k(

t∑
i=j

bi−j) +

0∑
j=−∞

∞∑
k=0

z′jΣ
1/2Σ1

1/2z−kb̃k(

t∑
i=1

bi−j).
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Direct calculations indicate that

E(
t∑
i=1

y′iΣ
1/2

∞∑
k=0

b̃kΣ1
1/2z−k) =

∞∑
k=0

tr(Σ1/2Σ1
1/2)b̃k(

t∑
i=1

bi+k) = O(p) (B.32)

and

V ar(
t∑
i=1

y′iΣ
1/2

∞∑
k=0

b̃kΣ1
1/2z−k) = O(pt). (B.33)

(B.30)-(B.33) and the assumption A4 imply that

‖1

p
CYΣ1/2X0

∗‖2 = Op(max(p−1/2T 3/2, T )) = op(p
−1/2T 2). (B.34)

The proof of Theorem 3 is complete.

Proof of Theorem 1: Define X0Π = (Πx0, · · · ,ΠTx0)′ and X1Π = X−X0Π. Write

B = (1/p)XX∗

= (1/p)X1ΠX1Π
∗ + (1/p)X1ΠX0Π

∗ + (1/p)X0ΠX1Π
∗ + (1/p)X0ΠX0Π

∗. (B.35)

Observe that

‖(1/p)X0Π
∗X0Π‖2 = ‖(1/p)

T∑
t=1

Πtx0x′0Π′
t‖2 ≤

1

p(1− ϕ2)
‖x0‖2. (B.36)

This, together with the assumption A6, implies

‖(1/p)X0Π
∗X0Π‖2 = Op(1). (B.37)

Recalling (A.2) we have

‖(1/p)X1Π
∗X1Π‖2 ≤

M0

(1− ϕ)2
‖(1/p)Y∗Y‖2.

We then conclude from (A.2), (A.3) and (B.5) that

lim
T→∞

P (‖(1/p)X1Π
∗X1Π‖2 ≤

2
∑

i≥0 |ai|
(1− ϕ)2

M0(1 +

√
T

p
)2) = 1. (B.38)

By Holder’s inequality

‖(1/p)X0ΠX1Π
∗‖2 ≤

√
‖(1/p)X0Π

∗X0Π‖2‖(1/p)X1Π
∗X1Π‖2. (B.39)

(B.37)-(B.39) ensure Theorem 1.

Proof of Theorem 7: We claim that

T∑
i=2

(xi − xi−1)′(xi − xi−1)

p(T − 1)
− 2a0tr(Σ)

p(1 + ϕ)

i.p.−→ 0 (B.40)

and
|Sσ2 |
p
− 4a2

0tr(Σ
2)

p(1 + ϕ)2

i.p.−→ 0. (B.41)
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Indeed, the proofs of (B.40) and (B.41) are similar to those of Theorem 4 and 5 ( replacing m1 = m2

there by 0). Moreover from Theorem 1 we have ρ1 = op(T ). This, together with (B.40) and (B.41),

ensures that

TN√
p

+

tr(Σ)
p√

2tr(Σ2)
p

i.p.−→ 0, (B.42)

which implies (3.6).

C The simulation for the traditional case

We investigate the performance of TN for the case where p is small and T is large.

Table 12: The results of the test TN for the case where Zij ∼ N(0, 1)

p T I(size) 0.99I(power) 0.97I(power) 0.95I(power) 0.9I(power) Π2(power)

10 40 0.061 0.018 0.040 0.107 0.272 0.331

10 80 0.058 0.007 0.044 0.171 0.393 0.274

10 160 0.047 0.004 0.102 0.289 0.485 0.200

10 300 0.046 0.007 0.270 0.468 0.586 0.147

20 40 0.066 0.043 0.218 0.546 0.918 0.921

20 80 0.048 0.077 0.742 0.987 1 0.997

20 160 0.038 0.393 1 1 1 1

20 300 0.068 0.964 1 1 1 1

Table 13: The results of the test TN when Zij follows a uniform distribution over [−
√

3,
√

3]

p T I(size) 0.99I(power) 0.97I(power) 0.95I(power) 0.9I(power) Π2(power)

10 40 0.053 0.023 0.035 0.101 0.291 0.322

10 80 0.062 0.007 0.040 0.154 0.383 0.266

10 160 0.051 0.007 0.119 0.272 0.492 0.222

10 300 0.042 0.009 0.263 0.459 0.603 0.143

20 40 0.047 0.027 0.229 0.524 0.931 0.911

20 80 0.052 0.060 0.778 0.989 1 0.998

20 160 0.039 0.377 1 1 1 1

20 300 0.041 0.963 1 1 1 1
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Different values of p, T and Π are given in Tables 12 and 13, which indicate that the size is

approximately 0.05 even if p is as small as 10 and T is as small as 40. Its power increases as the sample

size increases.
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