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Abstract

Let {Z;;} be independent and identically distributed (i.i.d.) random variables with
EZ;j = 0, E|Z;;|> = 1 and E|Z;;|* < co. Define linear processes Y;; = Yoo bk Zi—k
with Y- [bi| < oco. Consider a p-dimensional time series model of the form: x; =
IIx; 1 + El/Zyt, 1<t <Twithy = (Y, - ,Yt,,)’ and X'/ be the square root of a
symmetric positive definite matrix. Let B = (1/p)XX* with X = (x1, -+ ,x7)" and X*
be the conjugate transpose. This paper establishes both the convergence in probability
and the asymptotic joint distribution of the first k£ largest eigenvalues of B when x; is
nonstationary. As an application, a new unit root test for a vector of high—dimensional

time series is proposed and then studied both theoretically and numerically.
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1 Introduction

There have been an increasing interest and significant developments on the theory and method-
ologies for handling high-dimensional data in recent years. Understanding high-dimensional sam-
ple covariance matrices, including its eigenvalues and eigenvectors, has proved to be extremely
useful for such developments. Indeed, random matrix theory has provided useful estimation and
testing procedures for high-dimensional data analysis. Recent discussions on this topic can be
found in Johnstone [15], Paul and Aue [21] and Yao, Zheng and Bai [28].

Research towards understanding the eigenvalues of sample covariance matrices dates back to
as early as the studies of Fisher [12], Hsu [13] and Roy [24], and has become increasingly active
since the publication of the celebrated work of Marcenko and Pastur [18], in which the authors
established a limiting spectral distribution (MP type distribution) for a sample covariance matrix

for the case where p and n are comparable. More recent research has been devoted to establishing
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asymptotic properties for the eigenvalues and eigenvectors of high-dimensional sample covariance
matrices.

There are currently two main lines of research about asymptotic distributions of the largest
eigenvalues of high—dimensional random matrices. The first line of research is concerned with the
Tracy-Widom law of the largest eigenvalues of random matrices. It is well known that limiting
distributions of the largest eigenvalues of high-dimensional random matrices, such as Wigner
matrices, follow the Tracy-Widom law, which was originally discovered by Tracy and Widom in
[26] and [27] for Gaussian Wigner ensembles. The largest eigenvalue of the Wishart matrix was
investigated in Johnstone [14]. Several progresses for general sample covariance matrices have
also been made, and we refer to [5] and [11] among others.

Empirical data from wireless communication, finance and speech recognition often suggest
that some extreme eigenvalues of sample covariance matrices are well separated from the rest.
This intrigues the second line of research about the spiked eigenvalues, which was first proposed
in Johnstone [14]. Significant progresses have been made in recent years on the behaviour of these
spiked eigenvalues. For instance, the CLT's of the largest eigenvalues of complex Gaussian sample
covariance matrices with a spiked population were investigated in Baik et al. [3], which also
reported an interesting phase transition phenomenon. Baik and Silverstein [4] further considered
almost sure limits of the extreme sample eigenvalues of the general spiked population. Paul [20]
established a CLT for the spiked eigenvalues under the Gaussian population and the population
spikes being simple. The fluctuation of the extreme sample eigenvalues of the general spiked
population with arbitrary multiplicity numbers was further reported in Bai and Yao [2].

Most of the above existing studies rely on the assumption that the observations of high
dimensional data are independent, although dimensional correlation structure can be allowed.
Observations of high—dimensional data in economics and finance, for example, are often highly
dependent on time-dimension. In view of this, Zhang [29] investigated the empirical spectral
distribution (ESD) of the sample covariance for the case where the data matrices are of the
form A,ZA,, where A; and A, are positive semidefinite matrices and Z has independent en-
tries satisfying some moment assumptions. This model is referred to as the separable covariance
model and allows for some dependence among observations recorded over different time points.
Liu, Aue and Paul [17] studied the ESD of sample covariance matrices and symmetrized sample
autocovariance matrices constructed from a linear process. Note that their setting also accom-
modates dependence among observations due to the fact that linear processes are built from the
same innovation vectors. However, the above two papers considered the ESD only.

To the best of our knowledge, there is no existing work available to deal with the largest
eigenvalues of sample covariance matrices generated from high—dimensional nonstationary time
series data. This paper belongs to the second line of research about the spiked eigenvalues. This
paper establishes a joint asymptotic distribution for the first several largest eigenvalues of a large
sample covariance matrix of high—dimensional nonstationary data. An additional contribution

of this paper is that it develops a new unit root test that is devoted to testing nonstationarity



for high—dimensional dependent time series.

We conclude this section by giving its organization. Section 2 establishes an asymptotic
distributional theory for the first several largest eigenvalues of the covariance matrix of a high—
dimensional dependent time series. Section 3 proposes a new unit root test that is devoted to
testing nonstationarity for high dimensional dependent data. Section 4 evaluates both the size
and power properties of the proposed test. Section 5 gives some concluding remarks. Appendix A
establishes some useful results for truncated versions of sample covariance matrices by truncating

linear processes. Appendix B gives the full proofs of the main theorems in Section 3.

2 Asymptotic Theory

This section first introduces some necessary assumptions before we establish new asymptotic
properties for the largest eigenvalues of the covariance matrix of a high—dimensional time series

vector.

2.1 Matrix models

The paper is to consider high—dimensional covariance matrices for nonstationary time series.

Specifically, define the following linear processes:

Y;gj - Z katfk,j (21)
k=0
with > |b;| < co. Suppose that y, = (Yi1,---,Y},)" is a p-dimensional time series where {Z;}
i=0

are inc_iependent and identically distributed (i.i.d.) random variables with EZ;; = 0, E|Z;;]* = 1

and F|Z;;|* < co. Consider a p-dimensional time series model of the form:
x, = x, 1 + Xy, 1<t <T, (2.2)

where the spectral norm of the coefficient matrix IT is bounded by one (0 < |[TI|y < 1). Let

B = lXX* (2.3)
p

with X = (x1,--+,x7)". We also define a T' X p matrix Xg = (Xg, - ,Xp)" consisting of the
initial vector xg of the time series. Here we would point out that when IT = 0, X satisfies
some conditions and Yi;’s are ii.d random variables, the Tracy-Widom distribution has been
established for the large eigenvalue of B in [5]. Also, when IT = 0, X is a block matrix with
spiked eigenvalues and Y};’s are i.i.d random variables, an asymptotic distribution (Gaussian
distribution under some conditions) for the largest eigenvalues of B has been discussed in [20]
and [2]. It is not clear yet how the largest eigenvalues of B may behave when Y};’s have some
dependence structure. One case is that IT = 0, but X is present in (2.1). When IT = I, (2.2)

becomes nonstationary. The main motivation for considering such a model is the proposal of

one unit root test to be discussed in the next section.



When II = I, the sample covariance matrix B can be rewritten as follows. Let Y =
(y1,---,¥7) be a T x p random matrix. Define C = (Cj;)1<;j<r to be a T x T lower tri-
angular matrix with

Ci;j=0 forj>iand C;; =1 for1 <j <. (2.4)

Now we may rewrite X = CYXY2 4+ X, so that

B = %XX* = %CYEY*C* + %CYE”QXO* + %onl/QY*c* + %XOXO*. (2.5)

This paper is to investigate the largest eigenvalues of B for the case where ITI =T or ||II||; =

¢ < 1. Throughout the paper, we make the following assumptions about the coefficients b; and
3

(A1) 220 1lbi| < oo.

(A2) > 2 b =s#0.

(A3) There exist two positive constants My and M; such that || X[ < M, and @ > M.
(A4) T — oo and p — oo such that limp_,., ‘/Tﬁ = 0.

Here || - ||o stands for either the spectral norm of a matrix or the Euclidean norm of a vector.
The linear process includes MA(g) models and AR(1) models. Assumption A2 is easily satisfied.
Note that we do not require p and T to be of the same order, which is being commonly used in
the random matrix theory literature. We also need to make some assumptions about Z;; and

Xo-

(A5) {Z,;} are ii.d random variables with mean zero, variance one and bounded forth moment.
Let z; = (Zu,- - , Zyp)’, where t can be either positive or negative integer (for the purpose

of introducing A7 below).
(A6) E||xoll3 = O(p).

(A7) x0 = S 01?2y + 1325727 + b_y, where [|[Z1s < My, [|Zalls < My and z =
k=0

(Zy,---, Z,) is independent of z, for any ¢, in which {Z;} are i.i.d random variables with
o0 ~ ~

mean zero, variance one and finite forth moments. The coefficients satisfy > |bg|+ [b_1| <
k=0

0o and ||b_y||> = O(p).

We would like to remark that Assumption A7 implies Assumption A6.

2.2 Main results

To characterize the limits in probability of the eigenvalues of B, define for k =1,--- T,

1 : 20+ 1—Fk)m
——— with 0, =
2(1 + cosby,) s " 2T +1 7

A = (2.6)



and

Vi = Ak (ao + Qiaj(—l)j cos(jek)> , (2.7)

j=1

where .
k=0
We first characterize the magnitude of A\ and ~.

Proposition 1. For any fixed constant k > 1, there is a constant c; such that

Yk
and \
1
lim 25 = lim 28 = — (2.10)

T—o0 "}/1 T—00 )\1 (2k — 1)2 ’

We are now at a position to state the main results; their proofs are given in Appendix B.
The first theorem develops an upper bound in probability for the spectral norm of B for the
stationary case. The second theorem gives a limit in probability for the first k largest eigenvalues
of B for nonstationary data. The third theorem establishes a joint distribution for the first k

largest eigenvalues of B for the nonstationary case.

Theorem 1. Suppose that Assumptions A1-A6 hold. When 0 < ||TI||; = ¢ < 1, we obtain

2
8D i=o @i T
lim P | ||B]; < MMO 1+4/— =1, (2.11)
T—o0 (1-¢) p

where My is a positive constant independent of p and T'.

Theorem 2. Suppose that Assumptions A1-A6 hold. Let py be the kth largest eigenvalue of B.
When I1 =1 and k is fixed, we have

Pk — ’Yk@ ;
— ™, (2.12)
M

where i.p. means convergence in probability.

Theorem 3. Suppose that Assumptions A1-A5 and A7 hold. Let py be the kth largest eigenvalue
of B. When II =1 and k is fixed, the random vector

VP (m _ tr;Z) t'r’(E)) (2.13)

N DY jpk —_— fyk
g p
converges weakly to a zero-mean Gaussian vector w = (wy, -+ ,wy) with the covariance function
cov(w;, wj) =0 for any i # j and var(w;) = % with § = lim ZE2)
p—oo P



Remark 1. The result holds for the complex case as well. In fact when Z is complex, set

Re(Zy) = Z§, and Im(Zy,) = Z};. (2.14)

v

/
Let Zi? and Zifj be independent. Then \7/—15 (,01 — %@7 R fyk@> converges weakly to

a zero-mean Gaussian vector w = (wy, - - ,wy)" with var(w;) = —(2391)4 (1-2E(ZK)?E(Z})?), in
which § = lim @. When i # j, cov(w;, w;) = 0.
p—00

Remark 2. If Assumption A7 does not hold but Assumption A6 is true, then Theorem 3 remains

true under Assumptions A1-A3 and lim £ = 0.

oo T
Remark 3. We would compare our results with those in [2]. [2] needs to assume that the
observations are independent and that 3 has a spiked structure. In our paper, the observations
are dependent. Furthermore, we don’t need to assume a spiked structure of 3 since the spiked

eigenvalues come naturally from the random walk structure.

3 Unit Root Test

This section is to explore an application of the main results to the proposal of a new unit root
test for a high—dimensional time series setting.

Unit root testing is a formal test to check whether time series data are stationary or non-
stationary. Existing studies on this topic can be found in [10], [6] and [23]. In the past two
decades, unit root testing in panels has received much attention. Many researchers (e.g. [9], [16]
and [22]) consider the time series case where the error process is independent across individuals.
There are also many results (e.g. [7]) that have investigated the case where the error process is
cross—sectional dependent. In these papers, researchers often need to first estimate the covariance
matrix about the cross—sectional dependence. However, when the dimensionality of the time
series becomes large, it is hard to consistently estimate it without imposing some structure on
the covariance matrix. We would like to propose one new test using the covariance matrix of a
high—dimensional time series under consideration.

To this end, a key observation is that Theorem 2 indicates that the largest eigenvalue of B
is of order T in probability (the order of v;, which is given in Proposition 1), while Theorem 1
and Assumption (A4) imply that when 0 < ¢ < 1, ||B||2 = 0,(T"). This motivates us to propose

a new unit root test based on the largest eigenvalues.

3.1 Test statistic

g T(E)
Theorem 3 states that when II = I, the statistic L, = % converges weakly to a

standard normal variable. Note that ’yl@ and v;v20 are both unknown in practice. We

) and 6 can not be estimated individually. However it is

possible to estimate their products as a whole. Specifically speaking, an estimator of 71”%) is

would like to emphasize that vy,

proposed below.



Theorem 4. Under the conditions of Theorem 3, we obtain

m1 T—j
(xi— X1 1 ) (xi—%i—-1) . (xi—xi—1) (Xitj—Xitj—1) | _ tr(X%)
(Z ) + 2j:1 = p(T—j—Jl) . ) 71 P
(3.1)
!
= Op(p_1/2)a

when my = [\/p], where Ay is given in (2.6).

However, finding a consistent estimator for v; 4/ 2@ is challenging. Our strategy is to find
an estimator for a;a;tr¥? first, which turns out to be S,z ; given below. To this end, let my be
a number to be specified later. For 0 < ¢ < j < my, define

[T)2-j  T—j

((xf —x¢-1)"(xg — Xg—1)) (X1 — Xe4i-1)"(Xg+j — Xg4j-1))
=2 g=f+[T/2]

2id = (T —j/2=31T/2)([T/2] - j - 1)

(3.2)

ma
We next approximate y; by A\; (ao +2>° aj> . By carefully selecting the appropriate terms
j=1

ma2
Se2 ;. and expanding the square of )\ (ao +2> aj> , we may then construct S,2, the estimator
j_

ma—1 mo

of’y“/Z(T, as follows: ng—ngoo—|—42802“+4250201+8 > > Ss2i . To make

=1 =1 =1 j=1+1
it nonnegative we below add the absolute value sign for S,.

Theorem 5. Let my tend to infinity such that m3 max{pT—2,p~'} = o(1). Under the conditions

of Theorem 3, we have

)\1 2—|S”2|
p
=1 1 .
—— =150 (33)
N »

where Ay is given in (2.6).

Once the two estimators are available, we can construct a test statistic, T, of the form:

T(x-x ) (x3—x% mlzjxl)x —X 1)
- {1 B

=2 7j=11i=

Iy = \/p ) (34)
/2022
p
where \; is given in (2.6).
Theorem 6. Under the conditions of Theorem 5, we have
Ty — N(0,1). (3.5)

Remark 4. The conditions imposed on my and mo can be further relaxed. For example, if there
exists a positive integer s such that b; = 0 for any i > s in (2.1), we find a; =0 for any i > s in
(2.8). So one can choose my = min{s, [\/p|} in this case. Also, one can choose my = s as long
as s*max{pT~2,p~t} = o(1). This point helps us to simplify the design and the verifications of

the assumptions for the simulation in Section 4 below.
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Now we investigate the power of Ty for the case where {Y};} in (2.1) are i.i.d, a type of local

alternatives under H;.
Theorem 7. Let Assumptions A1-A5 and A7 hold with b; = 0 for i > 1 and II = ¢l with
0 < < 1. Then under the case of m; = my = 0, we have
T—00
for some Cy > {,, where L, is the a—level critical value of the limiting distribution of Ty .
The proofs of Theorems 4-7 are given in Appendix B.

Remark 5. There are some well-known panel unit root tests (e.g. [9] and [16]). They considered
the case of II = diag(p1, - - - , @) and used the estimators of p; to test whether I = 1. Moreover,
when the covariance matrix 3 1s involved, it has to be estimated in order to test whether II =1
(e.g. [7]). So such existing tests may only work for the finite-dimensional case. By contrast, our
test makes the best use of the properties of the largest eigenvalues of B instead of estimators of

;. In addition, we do not impose special structures, such as sparsity on the covariance matriz

3.

The advantages of our test over existing tests will also be demonstrated by the finite—sample

evaluation in Section 4 below.

4 Simulation

This section is to conduct some simulations to investigate the size and power of Tx. We first

specify the initial vector o and the coefficients b; involved in the linear process. Let

1 =0, 0.6 i=0,
bi=403 i=1 b=1408 i=—1,

0 1> 2 0 otherwise
and
L i=y,
(BY2)y = (Z1'%)y = (B2 =q02 |i—jl=1,
0 li—jl>2

Let Z; follow the uniform distribution over the interval [—v/3,1/3]. Let Z;; be either the uniform
distribution over the interval [—\/5, \/3] or the standard normal distribution. We also consider
the case where the matrix IT is not diagonal. The respective entries of two such matrices IT;
and Il are given as follows:
0.599 =7,
M)y =402  |i—j| =1,
0 li — 7] > 2,



0.5 =y,
(M) =02 |i—j| =1,
0 li — 7] > 2.

One can verify that the largest eigenvalue of Il; is smaller than 0.999 and the smallest
eigenvalue of I, is bigger than 0.199. Similarly, the largest eigenvalue of II, is smaller than 0.9
and the smallest eigenvalue of Il is bigger than 0.1. We choose m; = my = 1 for such IT; and
I1, as pointed out by Remark 4.

The results of the test statistic Ty are based on 1000 replications. The nominal size is set to
be 0.05. We consider the case when both p and T" are large (regardless of whether T is larger
than p or smaller than p). Different values of p, T" and II are given in Tables 1-4. One can see

that the power increases when II moves away from the identity matrix.

Table 1: The empirical size for Ty

Zij Normal Uniform

p\T 40 60 80 40 60 80

40 0.057 0.051 0.052 0.068 0.058 0.051
60 0.065 0.035 0.052 0.056 0.058 0.048
80 0.061 0.052 0.045 0.062 0.046 0.063

Table 2: The empirical power for T when IT = 0.991

Zis Normal Uniform

p\T 40 60 80 40 60 80

40 0.085 0.167 0.348 0.088 0.161 0.354
60 0.136 0.349 0.5395 0.132 0.362 0.596
80 0.208 0.506 0.801 0.215 0.501 0.795

4.1 Comparison with some existing tests when p is large

There are several existing unit root tests available for panel data. The first type of statistics
considered the case where the random variables Z;; and Z;, are independent when ¢ # j. For
example one may see [9]. In this case the p-dimensional test can be converted into p independent
1-dimensional tests. As a consequence, this idea can use the sample size of O(pT’). Unfortunately,

when ¥ is unknown, this method doesn’t work.



Table 3: The empirical power for T when IT = 0.981

Zis Normal Uniform

p\T 40 60 80 40 60 80

40 0.327 0.658 0.948 0.319 0.662 0.946
60 0.520 0.922 0.999 0.531 0.917 1
80 0.717 0.986 1 0.709 0.990 1

Table 4: The empirical power for T when IT = I1;

Lis Normal Uniform

p\T 40 60 80 40 60 80

40 0916 0.967 0.980 0.919 0.965 0.982
60 0.983 0.998 0.999 0.981 0.996 0.998
380 0.998 1 1 0.999 1 1

When ¥ is unknown, an immediate idea is to estimate X. [7] showed that the Bootstrap
method with estimation of 3 performs better than the t-bar statistic for the case where p is
fixed and T is large. [7] also stated that the Bootstrap-OLS performs better than Bootstrap-
GLS when p is large. Furthermore, GLS doesn’t work when p > T. So we will compare Ty

*
ols

with the t-statistic corresponding to Bootstrap-OLS ¢
Bootstrap-OLS FJ..

In [7], when the error (y¢ in our paper) is an MA process, they used a finite order AR model to

and the F-statistic corresponding to

approximate it. Unfortunately, the approximation may perform poorly sometimes. For example,
one may consider the case where y; is an MA(1) process and by is near to 1. In contrast, Ty
can perform well even though b; = 0.99. We use the same ¥ as in Tables 1-4. The results are

given in Tables 5-8. In this case, one can see that Ty performs well.

Table 5: The empirical size for Ty when b; = 0.99

Zis Normal Uniform

p\T 40 60 80 40 60 80

40 0.041 0.039 0.043 0.049 0.057 0.048
60 0.052 0.046 0.039 0.059 0.048 0.049
80 0.044 0.047 0.054 0.055 0.049 0.043

Now we consider the case where y; is independent. In other words, we assume that b; = 0

10



Table 6: The empirical power for Ty when b; = 0.99 and II = 0.991

i Normal Uniform

p\T 40 60 80 40 60 80

40 0.086 0.174 0.369 0.089 0.182 0.366
60 0.148 0.365 0.634 0.155 0.359 0.631
80 0.249 0.549 0.817 0.256 0.542 0.825

Table 7: The empirical power for Ty when b; = 0.99 and IT = 0.981

Zis Normal Uniform

p\T 40 60 80 40 60 80

40 0.364 0.717 0949 0.359 0.722 0.956
60 0.574 0.945 0.998 0.580 0.939 1
80 0.748 0.989 1 0.752 0.992 1

Table 8: The empirical power for T when b; = 0.99 and IT = I1;

i Normal Uniform

p\T 40 60 80 40 60 80

40 0.956 0.982 0991 0.962 0.979 0.994
60 0.993 0.997 0.999 0.992 0.998 1
80 0.996 1 1 0.998 1 1

11



when ¢ > 1. The results of the three test statistics based on 1000 replications, 500 bootstrap
replications and different values of p, T" and IT are reported in Tables 9—11. The nominal size
is set to be 0.05.

Table 9: The empirical size for three tests when b; = 0 for i > 0.

F*

ols

test Tn t*

ols

p T Normal Uniform Normal Uniform Normal Uniform

40 40 0.038 0.052 0 0 0.001 0.002
40 60 0.044 0.055 0.001 0.001 0.004 0.003
40 80 0.053 0.046 0.004 0.008 0.012 0.015

60 40 0.046 0.049 0 0 0.006 0.001
60 60 0.052 0.047 0 0 0 0
60 80 0.050 0.044 0 0 0 0.002
80 40 0.056 0.052 0.001 0 0.004 0.003
80 60 0.041 0.048 0 0 0.001 0.001
80 80 0.048 0.053 0 0 0 0

One can find that the empirical sizes of ¢},, and F);, suffer from the size distortion when p is
large. This indicates that their asymptotic distributions may not hold under the null hypothesis
when p is large. One of the reasons is that when p is large and the population covariance
matrix is not assumed to have some special structures, we can’t find any consistent estimators
for the population covariance matrix and other unknown parameters. As a consequence, their
asymptotic distributions may fail to hold under the null. Meanwhile, their power is worse than
Tn when p is large and II is close to I. In addition, Ty doesn’t require bootstrap repetitions.

This saves computational time.

12



Table 10: The empirical power for three tests when b; = 0 for ¢ > 1 and IT = 0.991.

F*

ols

test Tn t*

ols

p T Normal Uniform Normal Uniform Normal Uniform

40 40 0.078 0.081 0.002 0 0.002 0
40 60 0.178 0.187 0.024 0.022 0.025 0.025
40 80 0.379 0.375 0.095 0.087 0.098 0.088
60 40 0.180 0.191 0.003 0.003 0.003 0.003
60 60 0.402 0.397 0.004 0.002 0.004 0.003
60 80 0.656 0.660 0.039 0.044 0.043 0.047
80 40 0.238 0.249 0.001 0.001 0.001 0.001
80 60 0.536 0.554 0.005 0.005 0.005 0.006
80 80 0.834 0.837 0.007 0.008 0.008 0.009

Table 11: The empirical power for three tests when b; = 0 for + > 1 and IT = 0.981.

F*

ols

test Twn t*

ols

p T Normal Uniform Normal Uniform Normal Uniform

40 40 0.378 0.382 0.012 0.012 0.013 0.012
40 60 0.768 0.777 0.145 0.152 0.153 0.156
40 80 0.947 0.953 0.381 0.386 0.386 0.388
60 40 0.634 0.641 0.019 0.019 0.019 0.022
60 60 0.955 0.957 0.064 0.059 0.065 0.061
60 80 0.998 0.999 0.363 0.347 0.373 0.355
80 40 0.820 0.814 0.017 0.016 0.018 0.017
80 60 0.995 0.996 0.096 0.117 0.104 0.121
80 80 1 1 0.226 0.251 0.236 0.263

13



5 Conclusions and Discussion

This paper has developed an asymptotic theory for the largest eigenvalues of the covariance
matrix of a high—dimensional time series vector. As an application, a new unit root test developed
for testing nonstationarity in high—dimensional time series vectors has been proposed and then
discussed both theoretically and numerically. The small sample properties discussed in Section

4 have offered the support to the theory established in Sections 2 and 3.
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A  Results for Truncated Matrices

This section is to consider the truncated version of the sample covariance matrix. To this end, define

!
Yiji = Z brZi—k.j
k=0

with [ = max{p, T}, a truncated version of Y;; in (2.1). However, to simplify notation, we let b; = 0 for
all 4 > [ in this section, so that we still use Yj; instead of Yj;;. In this way a; defined in (2.8) and Yy,

in (2.1) respectively become

1—i I
ai =Y bibrpin Y=Y Zi k.
k=0 k=0

Furthermore let F = (Fj;) be a T' x (T'+ [) matrix with

bis; i<j<itl,
Fy={ = (A1)

0 otherwise.

It follows that Y = FZ, where Zy, is a (T + ) x p random matrix with (Zp); ; = Z;—; ;. For the sake
of notation simplicity, we below denote Zy by Z and (Zp);; by Z;;. Let A = (Ajj)rxr = (%‘—j\)TxT-
We then have A = FF’. We would remind readers that [ depends on 7' so that aj;—;| depends on T.

We also assume that xg = 0 in this section.

A.1 Upper bound of the spectral norm of B from stationary data

This subsection is to investigate the upper bound of the spectral norm of B from stationary data.

Proposition 2. Suppose that Assumptions A1-A5 hold. When 0 < ||II|js = ¢ < 1,

8> iso lail T
lim P(||Bll, < —==%"" My(1 ) =1.
Jim P(|[B]lz < =L o1+ p))
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Proof of Proposition 2: By (2.2) we may write

t—1

Xt = Z Hk121/2)’t7k1~
k1=0

This, together with (2.3), implies that

t—1 t—1

T
- ;zxtxg LSS S sy, oy, 8

t 1 k1=0k2=0
T

T—1 T—
1
- E E Hk121/2 E Ytk Yioip) S 2T
p 1=0 k2=0 t=max (k1,k2)+1

Note that

T

} : / 1N
yt—kl ytsz =Y klck2Y
t=max (k1,k2)+1

where Cy is a T x T matrix with elements Cy;; = I(i — j = k). It’s easy to know ||Cg/|2 < 1. We then

conclude that

T—-1 T-1 M 1
* 0 *
II*X X< ) D 90’“1““2\\ Y'Yl 2lz = 75 I>Y7Y 2
kl ot (1-9)*'p
Mo
< 0 _1ZZ*Z|5|lAll. A2
(I_SO)QIIP 2]l Al (A.2)

As we know the matrix A is a Toeplitz matrix so that [|[All2 < 237,54 la;| (see [19]). From the

assumption (A4) and the results in [8] and [1] we have

: 1 * T 2
- < —)7) =1 .
Jim (|22 < 4144 )%) =1 (A.3)

Proposition then follows from Lemma 1, the assumption (A3) and (A.2).

O
A.2 Eigenvalues of CAC”
This subsection and the following subsections are to consider the case IT = I. In this case one has
= (1/p)XX* = (1/p)CYXY*C" = (1/p)CFZp2Z’I‘,F*C*. (A.4)

We below investigate the eigenvalues and eigenvectors of CFF*C* = CAC™ at first. These are crucial
steps.

Since it’s very hard to find the eigenvalues of CAC* directly we use the following strategy. At
first, we note that the eigenvalues of CAC* and AC*C are the same. We obtain the eigenvalues and
eigenvectors of C*C by first studying (C*C)~!. The next key step is to construct a matrix Ay, defined
in (A.27) below which has the same eigenvectors as C*C. In the mean time, it is easier to find the
eigenvalues of A,,C*C. We then use the eigenvalues of of CA,,C* to approximate those of CAC*.
Our results are summarized in the following series of Lemmas and Theorems.

The first two lemmas describe the eigenvalues of C*C and decide their limits.

15



Lemma 1. Let Ay > Ao > -+ > Ap > 0 be the eigenvalues of C*C. We then have

1 2(r+1—k)r

)\k:m, ek:ﬂ“—ﬂ’k:1"”’T' (A.5)
Lemma 2. Using the notation in Lemma 1,
Jm 5% = or 1 (4.6)
for any fized k.
Lemma 3 below specifies the eigenvectors of C*C.
Lemma 3. Let Xk = (zx1,- -, 2k 7) be a T x 1 vector with
Tpi = (—D)T 7 sin(T — i + 1)y, —1<i<T+1. (A7)
Then {Xx,1 < k < T} are orthogonal and satisfy for any k
C*'Cxy = \iXxk. (A.8)

Lemma 4 below specifies the eigenvalues of A, C*C and gives their approximation to those of
AC*C.

Lemma 4. Define vy, by
Yk = Ax(ao + 2 Z a;j(—1)7 cos(joh)). (A.9)
1<5<T-1
For any fixed constant k > 1, there is a constant cj such that

-k
zlgréo T2 = Ck > 0 (A.10)

and

lim — = lim MLt
T—o0 Y1  Toeo )\1 a (2k*1)2'

Let 1 > B2 > -+ > PBr be the eigenvalues of AC*C. If A satisfies the assumptions (A1) and (A2),
then for any fized integers i > 1 and j > 1 the following holds

|@| = O(T™). (A.12)

3

(A.11)

For any e > 0 there exists Ty and ko where kg is a fired number independent of T such that when T' > Ty
and k > ko,
!@\ <e (A.13)
M

Lemma 5. Suppose that A satisfies the assumptions (A1) and (A2). Then

. T +1)T . .
tr(AC*C) = ag(z) Z a;(T —j+1)(T - j) (A.14)
1<j<T-1
and
S | S 8 (A.15)

I - - .
Toeo tr(AC*C)  Tsoo tr(AC*C)  72(2k — 1)2

16



Lemma 6. Suppose that A satisfies the assumptions (A1) and (A2). For any € > 0, we can find Tj
and ko, where kg is a finite number independent of T', such that when T > Ty,

Zk>k0 ’Bk
4!

| | <e. (A.16)

Proof of Lemma 1:
Let Mg = (C*C)~!. Define the characteristic function of M by g7()\) = det(AlT — Mr). We can
verify that the entries of the inverse matrix C~!, a T' x T lower triangular matrix, are as following
1 i=j,
Cil=8 -1 i=j+1, (A.17)

0 otherwise.

It follows that M, j, the elements of M = (C*C) ™!, satisfy

1 1=j=1,
2 1=7>1,

M;j = (A.18)
0 otherwise.

By the cofactor expansion we obtain a recurrence relation as following

gr(A) = (A —2)gr-1(A) — gr—2(N). (A.19)

Consider A € (0,4) at first. Hence we may write A = () = 2+2cosf. We can further solve (A.19)

to get
sin7T0 + sin(T + 1)0
= : A2
gr(A) sin # (4.20)
When sin 6 # 0, gr(\) = 0 is equivalent to
sinT6 + sin(T 4+ 1)0 = 0. (A.21)

Let hr(0) = sinT6 + sin(T + 1)0 = 2sin(T + 1/2)0cosy. Note that (A.5) gives T different solutions

which satisfy h7 () = 0 and sinf # 0. On the other hand, observe that there are at most T solutions
for gr(X\) = 0. The proof of (A.5) is complete.
O

Lemmas 2 and 3 can be verified with some straightforward computations and the simple fact that
sin(k + j)0 + sin(k — j)0 = 2sin k6 cos 5. (A.22)
We ignore the details here.

Proof of Lemma 4:
Let’s prove (A.10) and (A.11) at first. Note that

0+2 Y a1 eos(it) —(@+2 Y a)l<2 Y laglleosCon D) 11423 fayl.

1<j<T-1 1<j<oo 1<j<T-1 T<j

17



(2k—1)7

For a fixed k, we can find a j to satisfy § < I 5771 = 5- 1t follows that

us
5

j(2k = 1)r 2k — )7
2 Y faglleos? e Ty 1) <2 Y oy ((EE LTy
1<5<7k 1<5<7k

21 (2k — 1)27? , (2k — 1)72 ,
S — 1 E Jlaj| £~ § Jlaj]
2 J J
QT+1% 53, @T+1) 52,

and that

k
2 Y laglleos e T 123 el <4 g

Ik<g<T-1 T<j J>Jk
3(2k — 1) ,
< Jr ~ly E jlaj| < ———= E Jlajl.
2T 4+ 1 -
J2Jk 1<j<o0

From the assumption (A2), (B.4) and truncation conditions we can find

T—o0 ‘ -
1<j<T—1 1<j<o0

In view of (A.6), (A.9) and (A.23), we can prove (A.10) and (A.11).
Now we consider the eigenvalues of AC*C. From (A.5)

sin(T' — )0, = —sin(T + i + 1)6.
In view of (A.7) and (A.24), we obtain
T = Th—i, —1L <1 <0

and

T = —Tporro—is 1 +2 <1 < 2T.

)

We construct a new matrix Ay, whose sth row, an g, satisfies that

am st = aQTk,s + Z Zli‘k 5—7] + zg s+j) (CLQ +2 Z aj(_l)jcosjgk)xk,s-

1<j<T—1 1<5<T—1

Let ag be the sth row of A. We can find that

agXyk = oL, + E ajTh,s—j + E ATk 45

1<j<s—1 1<j<T—s

We further define T' x T" matrix A; by

Ajtj—1 i+5<T,

(AD)ij = —aor—i_jyo i+j>T+3,

0 T'+1<i+j<T+2.

Let
AL =A+A
One can verify
Anxk = (ag+2 Z cosg@k)
1<;<T-1

lim (ag + 2 Z a;(—1)7 cos(j0)) = Tlgréo(ao +2 Z aj) = (Z b;)? = s> 0.
=0

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)



It follows that
AnC ' Cxy = M AmXk = VieXk, (A.32)

which implies that v is the eigenvalues of A, C*C.

Now we consider CA;C*. It is easily seen that,
[CALCT|2 < TH}HJ@X{\(CAlc*)i,j!}- (A.33)

Recalling (A.29) we can find that

T-1
maxl|(CAIC) 1 <23 ) (A.34)
We conclude from (A.33) that o
ICAIC*|]2 <2 z_: ila;|T.
=0
In view of (B.4), we have
[CAC <23 a7 = O(T). (A.35)
i=0

Let 47 > 49 > .-+ > 37 be the eigenvalues of CA,,C*. For fixed integers ¢, 5; is the ith largest
eigenvalue of CAC*. It follows that

— C(An —A)CH CA,C*
iy ICAm —A)C e _ [CACT: s

0 % Y
From (A.9) and (A.11) we can find T; for any fixed i such that when T' > T;, 4; = 7;. By (A.10) and
(A.35) we can prove (A.12).

(A.13) follows from Lemma 6 directly.

O
Proof of Lemma 5:
One can verify (A.14) with some computation. Observe that
T—j+1)(T-j) _
lagp + Z aj( 0T — (ap+2 Z a;)| = O(T 1).
1<j<T—1 3 1<j<o0
This, together with (A.6), (A.9), (A.23), (A.12) and the assumption (A2), implies (A.15). O
Proof of Lemma 6:
Observe that )
— 1 3 en 1w
E—— A.37
2 E1E i s (437
k=1 k=1
For any € > 0, we can find kg such that
ko 2
1 T €
—_— - —| < <. A.
|kzl(2k:—1)2 s1<3 (4.38)
From (A.11), (A.12) and (A.15), we can also find Ty such that when T' > Tp,
ko k
— == =. A.39



and ( ) )
tr(AC*C T €

It follows from (A.38)-(A.40) that

Zk>ko Bk’ _ |tT(AC*C) - Z]]zozl Bk

it 71 71

| | <e. (A.41)

A.3 Eigenvectors of CAC*

This section is to investigate the eigenvectors of CAC*. At first we normalize {Xyk}i<k<7 to get
{¥xti<k<r. Then we study the eigenvectors of of AC*C by representing them with {yx}i<p<r. At
last we give some result about the eigenvectors of CAC* which is necessary for the future proof in

Section 3.4. Our results are the following.

Lemma 7. Recall the eigenvectors Xy defined in Lemma 3. Then

2T 41

i (k) = = (A.42)
Let -
~ Xk
- Tk A.43
Then {Yx}i<k<T are orthogonal and the jth element of Yx, yr j, satisfies
|k, 2
i = : . A.44
[ 27+1 /2T +1 ( )
1
Lemma 8. Let {ux}i<k<r be orthogonal and real vectors such that |ug|| =1 and
CAC*uk = Bkuk. (A.45)
Define £y, = e wuch that
k= e Twd]
fk = E;‘F:lakjyj (A46)
with
STjap; =1 (A.47)
Then when k > 1 is fixed,
M o) (A.48)
ST a7 ’
where {\;} are given in Lemma 1.
Lemma 9. Let (S, - ,Skr+1) =sk = F*\(/:%“k Then {sx}i1<k<T are orthogonal and
T+
> Sp;=0(. (A.49)
j=1
Proof of Lemma 7: From (A.7) we obtain
|zl < 1.
Lemma 7 can be then proved with some straightforward computations. We ignore details here. O
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Proof of Lemma 8: From fy o and (A.45), we have |[fx| =1 and

1
_HCI

AC*Cfy = Bi.fi. (A.50)

From (A.30) and (A.50), we have

ffC*CAC*Cfi,  £fC*C(Am — A))C*Cfi
| CAie[|? IChic|?

Br =

It follows that

£C*CAmC Ci| — [fiC"CAIC"Ch _ , _ [fiC"CAmC Cfi + [f;C*CAIC Ci|
| Ctic[|? | Ctic[|?

(A51)

By (A.8), (A.43) and (A.46), we have

ICi|l = \/2T_ 07N (A.52)

(A.8), (A.32), (A.43) and (A.46) imply that
C*CA,C'Cfy =C" CZT 10 AnC*Cy; = C* CEJ 1YY = E] 1%V Y5

This and (A.46) ensure
fiC*CA,LC*Cfy = 1akﬂ])\ (A.53)
From (A.35), we have
|f:C*CA,C*Cfy|
| Cic]|?
This, together with (A.51)-(A.53), implies that

< ||ICACH ]2 = O(T).

ZT 104%]%-)\' ET laij'yj)\-

-O(T) < B < +O(T).
ET lak])\ ET 1O‘kj)‘
By Lemma 4, for any fixed k we have
az aZ
s7 Ll’—orl <1<’ L I+ o(T A.54

Note that {uy}i<k<r are orthogonal and {yy}1<k<r are orthogonal. When k # m, from (A.8),
(A.43) and (A.46) we have

0= Ul — KO Ol Zim0i0mdy
IChi[[[|Chm[l  [[CHic/[[| Chial|
This implies that
E?ZlakjamjAj =0. (A55)
Moreover let vy; = BCIEIVAYES . We have
ET ozkj)\
ST vi =1 (A.56)
Note that (A.54) is equivalent to
7. - Vi —
zlevkjﬁi —o(ThH<i1< zleuzjﬁ—; +O(T™h). (A.57)



Also (A.55) implies that
E?Zlvkjvmj =0. (A.58)

We consider vy; for fixed k below. When k£ =1 and T is big enough, Lemma 4, (A.56) and (A.57)

imply
Pr—m2 o |B—

IS Yo
In view of (A.10)-(A.12), we have % = O(T7!) and '815;172 = 8 +0(1). It follows that (A.59) implies
that v?; =14+ O(T~1) and ZJT:zvfj = O(T~'). From (A.58), for any k # 1 we have

OT ) =1 -5 022> (1 -2

j=1Y ljﬁ (A.59)

|Uk1’l)11‘ = ‘Z?:Q’Ukjvlj’ S \/E]T:QU,%j\/E;‘F:jU%j = O(T_1/2). (A.GO)

This implies vZ; = O(T~!). It’s similar to obtain that v3, = 1+ O(T~!) and v, = O(T~!) for any

kE # 2.
By repeating these steps we conclude that v, =1+ O(T~!) for any fixed k. This implies (A.48).
0

Proof of Lemma 9: Note that {sk}i<x<7 are orthogonal and real due to orthogonality of {uy}i<i<7.
We conclude from (A.8) and (A.46) that

" - A F' Y5 = skM + Sk R, A.61
k= TCR] ~ O] -t AT Ti = skt skr (A.61)
where
TS T AN (a62)
Sk M = e T YkEARE Yk, SKkR = —— 572k A E Y .
" VIcd R RICL AT
By Holder’s inequality, we have
serl = e A < [F /5 sl N2
S Y A s . I SWCBY]
el =gy S eni A Vil < g IF ey ZisaiiA)

Recalling A = FF*, we have

[F[l2 = v/l All2-

Since A is a Hermitian Toeplitz matrix, from [19],

1Allz <2 > axl-

0<k<l

By (B.4) we can get

[Fll2 = [[All2 < oo

From Lemma 2, (A.48), and (A.52) we can obtain that for any fixed k,

NIy
|Ctx

2 #kakj ]\/7 O T1/2

Jlkj

This, together with (A.10), implies that for any fixed k,
Iskrl = O(T'/). (A.63)
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Similarly, we can also obtain that makk}\k is bounded for any fixed k.
Let Sy ar,; be the jth element of sy v and Sy g j be the jth element of sy r. From (A.44), (A.48)
and (A.62) and the assumption (A1) we can obtain that for any fixed k,

!
1 2 —1/2
|Sk, 5] < JnlCE | ook | A TS| }?:0 |br| = O(T~/7) (A.64)

It follows from (A.61), (A.62) and (A.64) that for any fixed k,

T+I T+l
Y Sii <8 (Sing+Siary)

j=1 j=1
T+l T+l

<8 Spar;+80 Sig;)? =0T (A.65)
j=1 j=1

A.4 Convergence in Probability

This section is to establish convergence in probability of the spiked eigenvalues of a kind of separable

sample covariance matrices, which is enough for our purpose.

Lemma 10. Let D = %WZZZ*W*, where W is a T x (T + 1) matriz, ¥ is a p X p positive-definite
matriz with | X2 < My, and Z is defined below (A.1). Order the eigenvalues of WW™* as 14 > -+ > 7p

with 71 being bounded. Suppose that {T; }h1<k<T satisfy the following conditions.

(C1) For any fixed k, there is a constant ¢ > 0 such that
lim Tk = Ck. (A66)
T—o00

(C2) For any € > 0 there exist Ty and ko, where ko is a constant independent of n and T, such that

when T > Ty,
1l <e (A.67)
k>ko
For any fizved k, denote the first k largest eigenvalues of D by p1 > --- > pp. Then pj — c; ) 0 in
probability.
Proof. We can find V such that
VW*WV* = diag(r1,- -+ ,7741) = A1,
VV* =V*V =1Ip,,,
where 7, = 0 when £ > T. So D* = %VZZZ*V*ATH has the same nonzero eigenvalues as
SZEZFWHW.
To prove the lemma, it suffices to prove that for any ¢ > 0 and fix number k,
tr(X
lim P(lpr — e | 5 5) = o0, (A.68)
T—o00
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In view of (A.67), we can find kg > 0 such that

0
—. A.
|§jm|<4M0 (A.69)
k>ko
Write Ary) = A.I}‘/IH + A%_H, where
A’l}‘/I-f—l = dia’g{TlvT27 5y Tkg s 07 o 70}
A¥+1 = diag{0, -+ ,0, Tho+1, Tko+2, " * » TT+1}- (A.70)
Let h = tr(LVZZ*V*AR,)). Note that E(VZZ*V*)y, = p and YVEZVIe « o0 We can
evaluate the mean and variance of h as follows
T+
(VZZ V* )kka
E(h E =
= > - =2 "< nr
k=ko+1 k>ko
and .
VZZ*V*
Var(h) = Var( Y (( )’f“‘“))
k=ko+1 p

(VZZ*V* 75)? 1
(3 v o _ o2kt _ o)
bot1 p p p
Since 3 is positive-definite, we have ||; VZEZ*V*AR 2 < tr(;VZEZ*V*AR,}) < Moh. It follows
that

g) = 0. (A.71)

Denote the kth largest eigenvalue of 1VZ2Z*V*AT_~_1 by p,ﬁ‘:/[. From the definition of Al\r{q, we

Jim P(||7VZ2Z VAR |2 >

conclude that iVZEZ V*Alr}_f[+l has the same nonzero eigenvalues as its upper left ky x kg block. By
Theorem 7.1 of [2] it’s easy to prove that the limit of off-diagonal elements in the upper left ko x ko
block is 0 in probability. Recall that kg is a a constant which doesn’t depend on T'. We conclude that
the nonzero eigenvalues of %VZEZ*V*A%/IH are diagonal elements of the upper left kg x kg block. From
Theorem 7.1 of [2], the limit of diagonal elements in the upper left ky x ko block can be obtained as

follow

tr®), g) = 0. (A.72)

o P(lpy" =,
It follows from (A.64), (A.71) and (A.72)that
tr(3X)
p

lim P(|p — M2 | > 6)
T—o00

. tr(3
< aim P - M o > 6)
T—o00 p
. tr(X ) )
< gim POl ~ TS 0 4 im PO - ] > D)
) tr(X%) 5 . )
< Tlgréop(\py =M= > 3) + lim P(vazzz VAT 2 > 3) =0

O

We apply Lemma 10 with D = ,% where B is defined in (A.4). Lemma 4 and Lemma 6 ensure that

conditions in Lemma 10 are satisfied so that Proposition 3 below holds.

b
pr—i )

71

Proposition 3. Let py be the kth largest eigenvalue of B. When ¢ =1, — 0 in probability.
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A.5 CLT of the first k£ largest eigenvalues

This section is to develop central limit theorems of the first k largest eigenvalues of B.

Proposition 4. Let p, be the kth largest eigenvalue of B. When ¢ = 1, (\/f)%, e ,\/ﬁpk;lv’“)’

converges weakly to a zero-mean Gaussian vector w = (wy,--- ,wy)" with covariance cov(w;, w;) =
2

0 iy (2 — AB(ZF)2E(Z1)?) and 0 = lim,, o 7).

Proof. Recalling the definitions of uy and sy in Section 3.2, we denote (uy,--- ,ur) by U and F%U

by S. Note that {uk}i<k<r and {sk}i<i<7 are both orthogonal and real. Since sj"si =0 for i # j we

have
SS* :A:diag{@,--- ,B—T . (A.73)
71 "
In view of (A.4), let
U*BU 1
D= A YA (A.74)
4! p
The eigenvalues of D are ordered as ’;—? <. ... < %.

To rewrite D as a block matrix we first introduce the following notation. For a fixed number
k > 0, let zj = (le,--- ,Z(T+l)j)/- Set V1 = %(51, ,fp) = %le = %(Sl*,--- ,Sk*)/z and
Vy = ﬁ(m,'“ Mp) = ﬁQzZ = ﬁ(skﬂ*,'“ ,sT*)'Z where Q1 = (s1%,--- ,s¢") and Q2 =
(Sk+1*, s ,ST*)/. Then

&= (&), (k) = (sizg, - siz) (A.75)
and
my = (mi(k+1), -, mj(p))" = (sir12j, - 571%5)"- (A.76)
Let Ay = cov(§5) = Q1Q1" and Az = cov(n;) = Q2Qz2". In view of (A.73), we have
Ay = diag{@, LB A, dmg{ﬁk“,..- ,Bl}. (A.77)
gt 7 71 gt

From Lemmas 4, 5 and (A.37) we can find a constant M}, such that

2

k
71'
1 A2 =1 —tr(A1)| = |—= Mj,. A.
dim [tr(Ag)| = Jim [tr(A) — tr(Aq)| = | ;2_12|< : (A.78)

In view of (A.74)-(A.76), we can rewrite D as

D Vi¥V1* ViEVo* N Wi1 Wiz ' (A.79)

V22V1* VQEVZ* W21 W22

The characteristic polynomial of D is

0= [Mt —D| = [AIt_x — Waa||AIx — Ky (V)] (A.80)
where

Kp(\) = Wit + Wia(AIp_x — Wa) "Way. (A.81)
We conclude from Lemmas 4 and 6 that Wag = VX Vo* = %QZZEZ*QE satisfies the conditions of
Lemma 10. Lemma 10 immediately implies that the largest eigenvalue of Was, p, tends to ,YH;ZT(E)
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tr(X)

Pi—";
"
probability. Since we want to study the first k largest eigenvalues, from Lemma 4 and (A.80), it’s

in probability. On the other hand, from Lemma 10, we also see that when j < k, — 0 in

sufficient to consider the characteristic polynomial

0= [AIx - Kp()| = |G(N)], (A-82)
where
G(\) = {Gy(Mhsijck = Al — Kp(A). (A.83)
From (A.81) we write
Kp(\) =Wi1+ Wiag(AIp_g — W22)71W21

=ViZV* + ViZVo* (M — Wa2) 1V EV,*
= Vi(Z+ Ap(A) V17,

where
Ap(\) =2V (MIp_ i — Wag) 1V, X, (A.84)
It follows that
1 tr(X
Kp()\) = %Rp + Aq ; ) + VlAp()\>V1*, (A.85)
where
tr(3) tr(%)

Rp = {Rij}i<ij<k = vPV1EVL" —

oA = VPVIEVE - Vb (A.86)

Now we consider the Hermitian matrix V1 Ap(A\)V1* in (A.85). When A is a solution of (A.82), we
have A > |[Waz||2 in probability due to Lemma 10. Hence the eigenvalues of (AIt_i — Wa2)™! and
VPV1Ap(A) V1™ are non-negative in probability when X is a solution of (A.82). Evidently we have

IVPV1Ap(M V1|2 < [IZ3[(Alr-ic = Wa2) 7 l2tr(y/pV1 V3 V2 Vi7). (A.87)

Note that eigenvalues of \/13V1V§V2V1* are also non-negative.
The next aim is to prove E(,/pV1V35V2aV1") = 0,(1). Let h; = (/pV1V5V2V1¥);; > 0. we can
claim that h; = 0,(1). In fact

h]’ p\[ JZZ Q2Q2ZZ Sj. (A88)
Let EZ7 =y, E(Z};)* = z and E|Z;|* = x + 1. Write
1 * * * *
E(hj) = p%sj E(ZZ Q2Q2ZZ )Sj
1 p
= p% ; z_:l s;" E(ziz; Q3Q22Zmz5, )S;
p p
- Z > 8" E(z:2; Q3 Qa2Zmzm*)sj + Y _ 85" F (275 Q5 Qazizi)sy). (A.89)
\/> i=1 m#i i=1

Consider the first term on the right hand of (A.89). When i # m,
Sj*E(ZiZi*QzQ2ZmZm*)Sj = Sj*E(Zizi*)QngE(ZmZm*)Sj = S;Q§Q2Sj.
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Recall that {Sy}1<k<r are orthogonal and real. Since j < k, from the definition of Qa2,

which implies the first term of on the right hand of (A.89) equals 0.
Consider the second term on the right hand of (A.89) now. Let P = (Prt)1<rt<7+1

HY = (H}

m

It follows that

By (A.90)

Also,

IN

* *
N<im<T+1 = ZvZyQ5Q22zvzy" = zyz;Pzyz,". Then

E(H},) = E(ZiZny Y. PrZisZu)
1<rt<T+l

PiE|Zip|* + 3, Prr B Zio|* E| Zp | i=m,
PinE|Ziy|?E| Zimo|* + PriEZ2 E(Z%,)% i #m.
Pz + ZTH P.. i=m,
Py + Priyz i # m.

NE

si"E(zvzyPzyzy")s;

S
Il
—

NE

Sj*E(HV)Sj

S
Il
—_

I T+
S5iSimE(Hjy,)

1

~
+
+

-
gm

S

T+ p T+l T+

>S5S i(Pax + Z P)+Y Y Y S5iSim(Pin + Pmiyz)

i=1 v=1 i=1 m=1,m#i
T+ T+ p T+l THI

M@

v=1

p l
v=1 1=1 v=1 1=1 m=1
p T+l n T4l T+l

tT(P)(|$—1—yZ‘+1)ZZSJES +ZZZ jm zm"‘szyz)

v=1 i=1 v=1 i1=1 m=1
T+l T+I

tr(P)(lx — 1= yz| + Vplisl® +p Y > S5iSjm(Pom + Priy?)

i=1 m=1

tr(P)(Jz — 1 — yz| + 1)pIs;|? + ps; Psj + pyzs; Ps;.

and P = Q35Q2, we have

p
ZS;E(ZVZT,PZVZV*)SJ <tr(P)(Jx — 1 —yz| + L)pllsj||*.

v=1

tr(P) = tr(Q3Qz2) = tr(Az).

From (A.78), (A.88) and (A.90) we can obtain

B(hj) < —=tr(P)(|lz — 1 — yz| + 1)]sjl|* = 0,

L
NG
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= Q5Q2 and

1—yz +ZPT7~ +ZZZ im zm+Pmiyz)

(A.91)



as claimed.

Since k is a fix number, we can obtain
k
E(tr(ypV1V3V2V1")) = > E(h;) = op(1). (A.92)
j=1

It follows from [|(AIT—x — Waz) |2 = O,(1), (A.87) and (A.92) that
IV1AR(N))V1i*[l2 = 0p(p~ /). (A.93)

Now we consider TRp = %(Rij) in (A.85). From (A.86) and the definition of V1, Q1 and Aj,

1
R;; = %(S?ZEZ*Sj — sistr(X)). (A.94)

Note that E(s{z1z]s;) = sis;j. With Theorem 7.1 of [2], we can prove that R;; converges weakly to a
zero-mean Gaussian variable 7;; with bounded variance. It follows that
1

N

Note that Altr(pE) is a diagonal matrix and hence we can find that any off-diagonal element of \I}, —

Kn()\) is Op(p~1/2). This, together with (A.83), implies that for any i # j, Gi;(\) = O,(p~'/?) with

A satisfying |G(N\)| = 0. Similarly, Gi;(\) = X — % + Op(p~"/?) is absolutely bounded with X
satisfying |G(X)| = 0.

Denote by € all permutations o of the set {1,2,--- ,k}. By the Laplace formula of a determinant

Rij = Op(p~'/?). (A.95)

we have

0 =|GN)|= > sgn(o

o€y,

= Z sgn(o

UeraU7£[1’2:"' 7k]

.7‘7]

k
e
k k

H Js UJ H GJJ<)‘)

Recall that any off-diagonal element of G()\) is O,(p~/2). We conclude that when o # [1,2,--- , k],
H?Zl Gio;(N) = O,(p~!) since there are at least two different j; and ja such that o, # ji and o, # Jjo.
Since k is fixed, we have
IT ¢ =- > sgn(o H G0y (A) = Op(p™1). (A.96)
1<j<k o€, 0£[L2, k] =1
Then when A satisfies |G(X\)| = 0, there exists j (not bigger than k) such that |G;;(\)| = o(1). When
i # j, from (A.85), (A.93) and (A.95)

|Gjj(A) = Gii(N)]

E

tr(X 1 1
> ; (A5 — (Al T = Bl = (VA& VA )y = (VA
_ tr(X)1B - Bil ~1/2
- B 0,71

By Lemma 4 we can obtain that for any i # 7, |Gy (\)| > tr;E) (| (21'711)2 (2] 1) 5])+0p(1). This, together
with (A.96), implies that |Gj;(A\)| = Op(p~'). Hence |Gj;(Aj)] = Op(p™!) for any Ay > Ag > -+ > g

satisfying |G(\;)| =0 for 1 < j < k. Write

(A, A2, 5 k) = (M1 — Gii(M) + Op(p™ ), -+, Ak — Gre (M) + Op(p1h)). (A.97)
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It follows that

(Vo = 2B e - B
(VA j”z) G + 0 ) B — T )+ 0,7 1).

Via this, by (A.83), (A.85), (A.77), (A.86), (A.93) and Lemma 4 we further obtain

VP — zitrggz) = G(\) + Op(p71)]
= VPl - ,Zitrf) — A fﬁtrf) + \}ﬁRjj + (V1AL (A) V1) + Op(p7")]
=  Rj; +O0(/DT 1) +0,(1). (A.98)

Recalling (A.94), we have
1 1
(Ri1,- , Ru) = (%(siZZZ*sl —sis1tr(X)), - 7%(sf{ZEZ*sk — sisitr(X))).

Note that E(s{z1z}s;) = sisj. From Theorem 7.1 of [2], we can find that (Ri1,---, R) converges
weakly to a zero-mean Gaussian vector w = (wy, -+ ,wg)".
We next determine the covariance between w; and w; for the complex case and the real case in a

2 2 .
Licicp¥ii IO = timy oo ") When

unified way. To this end, let w = lim, and 0 = lim,_,o

i # j, from Theorem 7.1 of [2], we have

cov(wi, wy)

= lim w(E|&6) P1&66) F =66 )E]6G) )

Tlgnoo(ig — @) (EQOGQG)EG ()& 0) + lim (0 —w)(E& (DG 0)) (B (D)4 (7).
Recalling (A.75), we have
E(l&@) PlaG) P) - E( &) P)E(&6) 1)
—  E(s{ZaZisis|ZaZis;) — E(s{ZnZisi) E(s{Z1Zs;). (A.99)

Recall that {si}1<p<r are orthogonal and real. We obtain

k * * *
E(s{z12]si8;21715;j)

T+l T+l T+ T+
= Z > SinSinZiZi,) Z > SinSinZiZi,)
fi=1 fa=1 f1=1 fa=1
T+l T+ T+
= DD SinSipSinSip(BZ41(Z51)° + BIZpa P Zal?) + E(Y S5 1201 ) (D Sipl Zpa )
fi=1 fo#f1 fi=1 fa=1
T+l T+l T+
= WD YD SinSinSinSin+ B SinlZH (Y SilZp ). (A.100)
fi=1fo#f1 fi=1 fa=1
Since {sk}1<k<7 are orthogonal, we conclude from (A.49) that
T+l
(z+1)> > SipSip,SinSis
f1=1 fa#f1
T+ T+ T+l
= W+ DY SinSin Y SipSin— w2+ 1) Y S Sh,
fi=1 fo=1 fi=1
T+
= —(z+1)) S} S, =0T (A.101)
fi=1
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and

T+l T+
ECOY " SHZiaP) OO 83,1 Zeal?)
fi=1 fa=1
T+
= > SH S (B Zpal* - 1) + E(s{z1z}s;) E(s{z12]s;)
fi=1

= E(s;{z1z3si)E(sjz1218j) + o(T™h).
Summarizing (A.99), (A.100), (A.101) and (A.102), we conclude that
Jim w(E &) Pl &) P =(B] &) )(E &) %) =0.

Since {sk}1<k<7 are orthogonal and real, we also have

E&(1)&1(5) = 0, B&(5)é1() = 0
and

E&(1)61() = 0, B& (1)61(j) =
This implies that

cov(w;, wj) = 0.
By (2.14) and (A.75) we can get

Var(w;)

= wlim {E|&@) ' 2B &) ) — (BG)) (B&())
+0 Tim (B[ &(0) [*)* + 0 lim (B€()*)(E& (7))

= wlim (B[&0) ' 2B &) )~ (B&(0))(EGL))}

1 1
=y gl

1—4B(Z[)?E(Z])?).
From Lemma 4
dim {E | &(0) [* =2(E | &) ) — (B&(0)*) (B (1))}

T+ B; B;
= Tlim{E|Z Zjn |' =2(20)° = (COXEZ? - B(Z5)")%

7 il
T+l T+
: R4 7 \4
= Thjgo{E(Z SijZi1)" + E(Z SijZj1)" +
7=1 j=1
T+ T+l )
Z SiZit) Z SiiZ] Tl)z;@ + (E(Z}})? = E(Z})*)?).

Recalling Z q and Z1 1 are independent, we have

T+ T+l T+l T+l

2E()_S528) (> SuZ))? = 2E 252 (Z5)? 252 z1)?
j=1 i=1
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and

T+l T+l T+ T+l

ZS’LJ ]1 +EZS’U ]1 +2EZS’LJ ]1 ES@J

T+l T+

=3[ _SEE(ZR))+ (O SEE(ZL)?)?
- -
T+i :
Z Y+ E(Z)) - 3(E((Z])*)? + (BE(Z]))?)]
T+ T+
+2E ZSQ Zh 252 zh
T+l T+l
= Z Z
T—I—l
Z L B(Z) - 3((B(ZE)?)? + (B(Zh)2)?) -
T+l T+
252 V4 252 (zh
T+l T+l
= Q+(EZH?-EZ))HO_SH) Z Y+ E(Z) = 3((B(Z])?) + (B(Z),)%)?)]-
j=1

In view of Lemma 4, (A.49) and (A.73), we have

T+
(2o (B2~ B 5 (B(ZE =~ BZ1)) Gy + O ™)
and
T+l
3 SHEE) + B2} - (B + (B = 0™

So we can obtain

Jim (B &60) [* —2E | &6) ) - (Ba()*)(B&()*)} = 0.

It follows that

1

Var(w;) = HW

(2 - 4B(Z{)*B(Z})?).

This, together with (A.98), (A.103) and the assumption (A4), implies Theorem 4.

B The Proof of the Main Results

This section is to prove that the results obtained in Section 4 still hold for the general linear processes

(without the truncation step performed there) and the general initial vector xq (not necessarily zero).
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Lemma 11. Recall the definitions of Y, A\x and vy in Section 1. Let | = max{p,T} and Y, be the

truncated matriz of Y in Section 4. Define

Vit =Melaos +2 D aji(—1) cos(jbr))
1<j<T—1

where
a1 = Z bkbk_j. (B.l)
J<k<I
Then when IT =1,
(1/p)C(YXY* - Y 1XY)C*
1,1

2= 0p(p~"/%) (B.2)

and

b = vl _ o(1). (B.3)
1,1

Proof of Lemma 11: We consider (B.3) first. To this end, observe that the assumption (A1) implies
that

o0

> ] < oo, (B.4)
=0
because - o = - - - -
D ilail <> i [brllberal = Y 1bel( Z bkal) < D10kl ilbal).-
=0 =0 k=0 k=0 =0 k=0 =0
Write

Pt = ml Wzbuzzzrbknbk 142 lasl)

T k> J=1 k>l J>T
A

Zk Zb2+221b > bkl + 2 ).

L=t =1 k>l i>T

From the assumption (A1) and (B.4), we obtain that
oo
S 42 S 23 = o)
k> j=1 k>l i>T

Moveover, Lemma 2 and assumption (A1) (or (A.9)) imply that % is bounded. So we conclude (B.3).

Now we consider (B.2). Via Lemma 1, observe that

1/p)C(YZY* - Y XY *)C* C 3 . .
| (/9 2V IOk vy - viEve) I
71,1 71,1
A . .
= lel | (1/p)(YEY* = Y1ZYY) |2 .

As before % is bounded. So we just need to consider || (1/p)(YXY™* — YXY ") [|2. Let K =
(KZ])lﬁlSTJS]SP =Y — Y. We can obtain that Kij = ZZO:I—H kai—k,j and

E|Ki;|* = Z b2.
k=l+1
By the assumption (A1) we can get

E|K;|* = Z by <172 Z E2|b? = o(i7?),

k=Il+1 k=Il+1
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which ensures that

1
E || —K [|2= o(T17?).
II\@ 7= o( )

This, together with (A.3), implies that

I (1/p)(YEY" = Y1ZYY) [2=[| (1/p)(KEY:1" + V13K + KXKY) |2
1 1 1 _
<2 %K e 1=l | ==Y 2 + | —=K I [15]l2 = 0p(p~"/2). (B.5)

VP VP

So we can conclude (B.2). O

Proof of Theorems 2: Recalling (2.5),
1 * 1 * vk 1 1/2 * 1 1/2~7* vk 1 *
B=-XX"=-CYXY*'C"+ -CYX /"Xp"+ -XoX/°Y*"C* + —X¢Xp".
p p p p p
The assumption A6 implies that

1 *
HI;XOXO l2 = Op(T) (B.6)
and that
1 12~ % 121 s e 1/2
HECYE Xo*|l2 _OP(T HBCYZY C H2 ). (B.7)
(1/p)CYEY*C*
71
(1/p)CYXY*C* B M(l/p)CYEY*C*
il g4l Y1,
V1,1 (1/p)CY12YikC* Y1,1 (1/p)C(YEY* — Y]EYl*)C*

= - + : (B.8)
71 Y1, 71 1,1

We can write as

From (B.3) we have lim7_, % = 1. This, together with (2.5), Proposition 3, Lemma 4, (B.2), (B.6)
and (B.7) , implies Theorem 2. O

Proof of Theorem 4: Let m = [\/p]. From (2.6) and (B.4) we have

and

_ 1/2 ~1/2
< 2 E laj|(1 — cos 2T n 1) O(p*T72) = o(p~1/?). (B.10)
In view of (2.7) it suffices to prove that

|7 Z y12y1+2 Z T J_l Z YIEYHrJ +2 Z a]

2<7,<T 1<j<m 2<i<T—j 1<j<m

— 0p(p~1/2). (B.1L)

A direct calculation shows the following mean and variance

( — Z y12y1 +2 Z Z y12Y1+J)_(a0+2 Z aj)@:(L (B.12)

2<i<T 1<j<m 2<i<T—j 1<j<m

T—j7—1
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Z y12y1+J

2<i<T—j p

Var( Z

1<j<m

DD IEEDY

1<i,j<m 2< f<T—i 2<g<T—j

T—]—

ViZyeri YeX¥etj
Covp(H=5, =8 )
(T—i-1)(T—-j5-1)

Moreover
552
/ / i
VeXVeri Yg2Ygti 1riz1
Cop(I=XEH TEZEH) 2 Zijl" D orbkeibhrg kg 471k g- 120)
P P pl o p o
tr(%?) 9
+ B\|Zij|™(a)5—g)01f+i-g—j| + Glf+i=g|O15~g—51) |-

p
From the above, the assumption (A1) and (B.4) we conclude that

Var Z y‘2y1+2 Z

2<2<T 1<j<m

Z ylz}’l-i-_] O(pflmTfl) _ O(pil). (B.l?))

‘7 2<’L<T i p

(B.12) and (B.13) imply (B.11). O

Proof of Theorem 5: Throughout the proof of this theorem, in order to simplify notation we use m to

replace my. In view of (2.6) and (2.7) it suffices to show that
Sy2

. =1 1).
w0+ 25 a1y eosonpire) o
(B.9) and (B.10) imply
(a0 +2 > aj)— (a0 + 22 a;(—1)7 cos(j61))] = o(m™1) = o(1). (B.14)
1<j<m
It then suffices to prove that
Sz — (ap + 2 Zl<j<m aj)*tr(X?)
== = op(1).

(a0 +23 1< < aj)tr(X2)

Recall that So.2 = o2 ,0,0 + 4 Z SO.Q i + 4 Z SO.Z ,0,i + 8 Z Z SO.Q FR R Let SUQ,i,j = 0'2,1'7,]' —
=1 =1 =1 j=1i+1

aja;tr(X2). It is then sufficient to show that

~ 82004—4232124—42502014-82 Z 80.2”]
502 i=1 j=i+1

= = 0. 1 .
(ap +2 Z1§j§m a;)*tr(X2) (aO +2 Zlgjgm a;)*tr(X2?) (1)
From the assumptions A2, A3 and (B.14) we have for big enough T
1
(a0 +2 Y aj)’tr(T?) > 5SZpr, (B.15)
1<j<m
where we use the fact that )
tr3
pr(s?) > 27
p
When T is big enough, for ¢ and j not bigger than m,
, 3 , T2
(T =j/2=Sr/2NT/2 -5 -1) 2 - (B.16)
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We next expand S’gz’m in terms of Z;; and write it a sum of the terms involving the high order of

Z;; and the terms involving the low order of Z;;. Specifically write S’U%J = 5’027i’j’h + 5‘0271-7]»71, where

i . /21— T p T
S 25ih = - 3 i Sini Z3 T
S R TR (i R I S ngz] 2 a3 Ao

(bf—81b9781bf+i—81bg+j782 + bf—81bgfs’1bf+i szbg+j s1 T 0f—s1bg—s2bf4ios30g1j-51

055509510 fims1bg1j— 51) 3221111 Z slzlbf s10g—s1bf+i—s bg4j— s1)- (B.17)

Zl 1 §1=—00

Note that by = 0 when k& < 0. We then can conclude from the assumption Al and (B.14) that
ElSye 1 0] = opT2). (B.18)

Moreover write S,2 = S,2 j, + S,2 ;, where

So2n = 0200h+4zsa2“h+425 201h+8z Z S jh-

=1 j=1+1

(B.15) and (B.18) imply that

E"gﬂ h‘ 2 =2
J = T =o0(1). B.1
(a0 +2> 1<jem aj)*tr(X2) ompT™") = oll) (B.19)

A direct calculation shows that

(T —35/2 = 31T/2D(T/2) = § = 1)ESy2,
(T/2]-5 T—j
= 2 > (agrj-pag-p-itr(E?) + ag—ragj—p—i(tr(X))?) = o(p*T ™). (B.20)
f=2 g=f+[T/2]

This, together with (B.15) and (B.16), implies that

ES,2, e
(a0 + 230 < jam @) *tr(2%) o pT™) = oll). (B-21)

Via (B.15), (B.16), the assumption Al and (B.14) one can also verify that

Scrz,l
(a0 +23 1< < aj)?tr(X2)

This, together with (B.19) and (B.21), completes the proof.

Var( ) =o(m*(pT 2 +p~ 1)) = o(1). (B.22)

O

Proof of Theorems 3 : We prove Remark 2 at first. Recalling the proof of Theorem 2, we just need to

prove
1 . _
| CYS X" o = 007 T%) (B.23)

(B.7) implies that || LCYS/?X*(|2 = Op(T%?). Remark 2 then follows.

We now prove Theorem 3. The assumption A7 implies that

1
||];X0X0*||2 = 0,(T). (B.24)
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Our aim is to prove (B.23). Note that rank(CYXY?Xo*) = 1. Recalling the assumption A7 we can
then find that

T T t
H Loyslex,y > Zygzlﬂxo)? (B.25)
t=1 i=

t t 00 t t
D ovisixo =Y yiZ2Y hiZiVPzoc+ ) yiZVh5: 22+ Y yiZ/Pbo,. (B.26)
=1 =1 k=0 =1 i=1

By (2.1) and a variable change we may write

t

t t 0 t
D=2 B0 b+ Y A0 i) (B.27)
=1 j=1 =3

j=—o00  i=1

Let (G_9.1,...,¢ 2p) = & 9 = B/?b_,. The assumptions A3 and A7 imply ||_2> = O(p). Then

t

t
STYEVh L, =3 yle .

=1 =1
It follows that
t -~
E() yiZ'?b_g) =0 (B.28)
=1

and

t 0 t

Var()_yi=!?b_,) = [|&_o? Z Zbi_j)u > O bi)?) =O0(pt). (B.29)

i=1 J=—o0 =1

These imply that

t
N YiS2hoy = 0,(pV2Y?). (B.30)
=1
As in (B.27) write
t _ B t t 0 t
DB %P =ba (YA BE(Y big) + Y ABIS Y b))
i=1 j=1 i=j j=—00 i=1

The assumption A7 implies that Z is independent of z¢ and that b_ is bounded. It follows that
t ~
> yiEVh 13517 = 0,(p'/?t?). (B.31)
i=1

Now we consider the first term of the right hand of (B.26). From (B.27), write
t ©
Zyizl/Q Zbkall/QZ—k
= ZZZ ®2%, Y2 by Zbl =) Z Zz »2%, 22\, Zb, =)

7=1 k=0 j=—00 k=0

36



Direct calculations indicate that

t o0 ] t
EQ yim2Y h 2 Pa) = > tr(BPS 2D bigs) = O(p)
i=1 k=0 k=0 i=1

and

t o0
Var(z yiZl/2 Z b1 %z_y) = O(pt).
i=1 k=0

(B.30)-(B.33) and the assumption A4 imply that
1 N _ _
| CYE2Xy" s = Oyfmax(p™ /T, 1)) = o,(p"/*T?).

The proof of Theorem 3 is complete.

Proof of Theorem 1: Define Xorp = (IIxq, - -+ ,IITxq)" and X1 = X — Xopp. Write

B = (1/p)XX*

=  (1/pXioXio" + (1/p)XinXorn™ + (1/p)XonXam™ + (1/p) XonXomr ™

Observe that

T
1(1/p)Xor Xom|l2 = [[(1/p) Y T'xoxpIT" |2 < [
t=1

1
p(l = ¢?)
This, together with the assumption A6, implies
1(1/p)Xom" Xorll2 = Op(1).
Recalling (A.2) we have

I(1/p) X1 Xamll2 < 511(1/p)Y Y |2,

_Mo
(1-¢)
We then conclude from (A.2), (A.3) and (B.5) that

. X 23 >0 lail T,
TIE};O P(|(1/p) X1 Xamlf2 < WMOG + g) ) =1

By Holder’s inequality

1(1/p)XonXam |2 < v/[[(1/p)Xorr* Xom|2 ]| (1/p) X1 * X 2.

(B.37)-(B.39) ensure Theorem 1.

Proof of Theorem 7: We claim that

XT: (xi = Xi—1)"(Xi = Xi-1) _ 2a0tr(%) ip
2 T p(1+9)
and ) 9
[So2|  4dagtr(E 2) i)
p pll+y)
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(B.35)

(B.36)

(B.37)

(B.38)

(B.39)
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(B.41)



Indeed, the proofs of (B.40) and (B.41) are similar to those of Theorem 4 and 5 ( replacing m; = mg
there by 0). Moreover from Theorem 1 we have p; = 0,(T"). This, together with (B.40) and (B.41),

ensures that
T tr(3X) )
Ny p__ Iy, (B.42)

which implies (3.6).

C The simulation for the traditional case

We investigate the performance of T for the case where p is small and T is large.

Table 12: The results of the test Ty for the case where Z;; ~ N(0,1)

p T I(size) 0.99I(power) 0.97I(power) 0.95I(power) 0.9I(power) IIy(power)

10 40 0.061 0.018 0.040 0.107 0.272 0.331
10 80  0.058 0.007 0.044 0.171 0.393 0.274
10 160  0.047 0.004 0.102 0.289 0.485 0.200
10 300  0.046 0.007 0.270 0.468 0.586 0.147
20 40  0.066 0.043 0.218 0.546 0.918 0.921
20 80 0.048 0.077 0.742 0.987 1 0.997
20 160  0.038 0.393 1 1 1 1
20 300  0.068 0.964 1 1 1 1

Table 13: The results of the test Ty when Z;; follows a uniform distribution over [—v/3, v/3]

p T I(size) 0.99I(power) 0.97I(power) 0.95I(power) 0.9I(power) IIy(power)

10 40  0.053 0.023 0.035 0.101 0.291 0.322
10 80  0.062 0.007 0.040 0.154 0.383 0.266
10 160  0.051 0.007 0.119 0.272 0.492 0.222
10 300  0.042 0.009 0.263 0.459 0.603 0.143
20 40 0.047 0.027 0.229 0.524 0.931 0.911
20 80  0.052 0.060 0.778 0.989 1 0.998
20 160  0.039 0.377 1 1 1 1
20 300  0.041 0.963 1 1 1 1
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Different values of p, T' and II are given in Tables 12 and 13, which indicate that the size is

approximately 0.05 even if p is as small as 10 and T is as small as 40. Its power increases as the sample

size increases.
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