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Abstract

This paper develops a structural framework to estimate the e¤ects of uncer-

tainty on investment behaviour and capital accumulation at the �rm level.

Our model allows uncertainty to a¤ect capital accumulation through three

possible channels that have been highlighted in the literature: the Hartman-

Abel-Caballero e¤ect; di¤erent forms of capital adjustment costs; and a risk

premium component in the discount rate. We discuss identi�cation of these

three distinct e¤ects, and allow for unobserved heterogeneity in both �rm size

and growth. Parameters are estimated using simulated method of moments,

matching empirical data for UK manufacturing �rms. The estimated model

indicates that higher uncertainty reduces both �rm size and capital intensity

in the long run, primarily through the discount rate e¤ect.
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1 Introduction

The central question that this paper aims to answer is what are the e¤ects of un-

certainty on a �rm�s investment behaviour and the resulting capital accumulation.

The relationship between uncertainty and investment has interested economists for a

long time. The literature has suggested di¤erent channels through which uncertainty

could a¤ect investment behaviour and capital accumulation.

One channel is through the curvature of the marginal revenue product of capital

in the stochastic variable that characterises uncertainty. In the special case of perfect

competition and constant returns to scale production technology, as �rst established

in Hartman (1972) and Abel (1983, 1984, 1985), the marginal revenue product of

capital is convex in the stochastic price, so that a mean-preserving spread in the price

increases the expected desired capital stock due to the Jensen�s inequality e¤ect. This

relationship is generalised in Caballero (1991) for the case of imperfect competition.

In the literature, the e¤ect of uncertainty through this channel is known as the

Hartman-Abel-Caballero e¤ect (HAC e¤ect, hereafter).

A second channel emphasizes the option value of investment in the presence of

irreversibility. If investment is irreversible and can be postponed, waiting for new

information to arrive before committing resources becomes a valuable call option.

Since investing extinguishes this option, and since the option value increases with

uncertainty, irreversibility implies a negative e¤ect of uncertainty on the incentives

to invest. This insight is �rst formalized in Bertola (1988) and Pindyck (1988), and

systematically investigated in Dixit and Pindyck (1994).

A third channel considers the possibility of a risk premium component in the

�rm�s required rate of return, discount rate or cost of capital. Suppose the �rm is

owned by a representative consumer. In a consumption-CAPM framework, if the

consumer is fully-diversi�ed, as Craine (1989) emphasizes, only the component of

�rm-level uncertainty that is positively correlated with aggregate risk would lower

investment. If the consumer is not fully-diversi�ed, either because of incomplete

markets, as analysed in Angeletos and Calvet (2006), or as the result of an optimal

incentive scheme due to agency con�ict, as modelled in Himmelberg, Hubbard and

Love (2002), idiosyncratic risks would also a¤ect the required rate of return, reducing

investment at a higher level of uncertainty.

Given the importance of this research topic and the rich implications from dif-
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ferent theoretical approaches, it is not surprising that much empirical work has been

done aimed at signing the e¤ects of uncertainty and sorting the relative importance

of these various channels. For example, Leahy and Whited (1996) study the relation-

ship between investment rates and uncertainty by performing various sample splits

in order to test comparative static implications of the theories outlined above. The

main �ndings of the paper, as they conclude, appear to be at variance with the HAC

e¤ect and the discount rate e¤ect, leaving irreversibility as the most likely explana-

tion of the uncertainty-investment relationship. The signi�cant role of irreversibility

has also been found in Bond, Bloom and Van Reenen (2007), both numerically for

a model with a rich mix of adjustment costs, and also empirically for a panel of UK

manufacturing �rms. More recently, in a structural framework, Bloom (2007) �nds

the e¤ect of irreversibility on investment dominates the response of investment to any

moderate change in the discount rate after a large uncertainty shock. In short, com-

pared with the importance of irreversibility, there has been little empirical evidence

for the HAC e¤ect and the discount rate e¤ect.

Instead of the uncertainty-investment relationship, the focus of this paper is the

e¤ects of uncertainty on capital accumulation. This is motivated for three reasons.

First, although the impact of uncertainty on investment dynamics has extremely im-

portant business cycle implications, in the long run it is the level of capital stock

and capital intensity that determines economic growth and development. Second,

the �ndings from existing empirical work re�ect the di¢ culty of identifying the HAC

e¤ect if we only consider the relationship between investment dynamics and uncer-

tainty, while in this paper we illustrate the possibility to identify the HAC e¤ect by

studying uncertainty-capital stock relationship. Third, the discount rate essentially

determines the Jorgensonian user cost of capital, and the relative price of capital to

other inputs. In the short run, investment rates vary with this user cost of capital,

but are mainly constrained by the capital adjustment costs. Given that the observed

capital stock data is aggregated over periods of both positive and zero investment,

and given that the observed capital intensity depends on the relative price, the study

of uncertainty-capital stock and uncertainty-capital intensity relationship provides

the possibility to identify the discount rate e¤ect.

In this paper, we specify an investment model under uncertainty, which features

all three possible channels highlighted in the theoretical literature. Under the speci-
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�cation of this model, with an increase in the level of uncertainty, the discount rate

e¤ect could increase, decrease or leave unchanged both the expected capital stock

and the expected capital intensity, depending on how uncertainty a¤ects the risk

premium; the HAC e¤ect could increase, decrease or leave unchanged the expected

capital stock, depending on the source of the uncertainty and the demand elasticity;

all three forms of capital adjustment costs could a¤ect both the expected capital

stock and the expected capital intensity, depending on the form of the adjustment

costs.

This implies that the necessary condition for identi�cation of all three channels is

to allow for some variation in the level of uncertainty. Our model allows for variation

across �rms in the level of uncertainty. In addition, we also allow for heterogeneity

in the trend growth rate of the stochastic process in order to get robust estimates for

adjustment costs, and allow for heterogeneity in the level of the stochastic process in

order to control for other unobserved factors that may lead to permanent di¤erences

in �rm size. Our speci�cation also allows for the possibility of both permanent and

transitory measurement errors in investment rates and sales in the �rm-level data.

With this empirical strategy, estimating the e¤ects through each channel sepa-

rately is transformed into estimating a set of structural parameters of the model.

Using a simulated minimum distance estimator, these parameters are then estimated

by matching simulated model moments with empirical data moments from a panel

of UK manufacturing �rms in Datastream. Finally, counterfactual simulations are

implemented to estimate the sign and sort the magnitude for each channel based on

the estimated model parameters.

Our estimated investment model �nds signi�cant empirical evidence for both the

HAC e¤ect and the discount rate e¤ect, together with a combination of both convex

and non-convex capital adjustment costs. Counterfactual simulations suggest that a

permanent lower level of uncertainty would increase both average capital stock levels

and aggregate capital intensity. These outcomes are the net e¤ect of a small, negative

capital adjustment costs e¤ect, a moderate, positive HAC e¤ect and a large, negative

risk-adjusted discount rate e¤ect.

To the best of our knowledge, this is the �rst paper that studies and �nds the

empirical importance of the HAC e¤ect and the discount rate e¤ect in a structural

framework; and also the �rst paper that explicitly allows for unobserved heterogeneity
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across �rms in the investment literature using structural estimation.

The rest of the paper is organised as follows. Section 2 outlines the investment

model under uncertainty that we estimate. Section 3 investigates how uncertainty

would a¤ect the expected capital stock and expected capital intensity through three

possible channels, which provides the theoretical basis for our identi�cation strategy

discussed in Section 4. Section 5 reports the empirical results. Section 6 illustrates

the counterfactual simulations. And Section 7 concludes.

2 An Investment Model under Uncertainty

This section sets up a standard model of investment for a �rm operating under

uncertainty. The functional forms are chosen following three principles: �rst, they

are widely adopted in the literature; second, they are tractable enough to derive

closed-form solution in special cases; and �nally, the feasibility for identi�cation.

2.1 Production and Demand

Assumption 1 Timing: Time is discrete and horizon is in�nite. By paying capital

adjustment costs, new investment It contributes to productive capital bKt immediately

in period t, which depreciates at the end of each period.1 The capital accumulation

formula is therefore

Kt+1 = (1� �) (Kt + It) � (1� �) bKt (1)

where � is the constant depreciation rate.

Assumption 2 Production: The �rm uses capital bKt and a variable input Lt to

produce output Qt, according to a constant returns to scale Cobb-Douglas technology

Qt = AtL
1��
t

bK�
t (2)

where At represents the randomness in productivity and � corresponds to the coe¢ -

cient on productive capital in the production function.

1Compared with alternative lagged timing assumption, such asKt+1 = (1��)Kt+It, Assumption
1 does not a¤ect the qualitative implication of our model, but allows for a closed-form solution to
the investment problem in the frictionless case, which provides a convenient benchmark for studying
the e¤ets of captial adjustment costs.
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Assumption 3 Demand: The �rm faces isoelastic, downward-sloping, stochastic

demand schedules of the form

Qt = XtP
�"
t (3)

where Pt is price and �" < �1 is the demand elasticity with respect to price. Xt rep-

resents the randomness in demand and can be interpreted as changes in the quantity

demanded for any given price.2

De�nition 1 Operating Pro�t �(Xt; At; bKt) is the maximized short-run pro�t for

given capital stock and factor price by choosing optimal variable inputs.

Denote sales as Yt = PtQt. Suppose the price for variable input is a constant w.3

Lemma 1 summarises the relationship between the operating pro�t, variable inputs

and sales.

Lemma 1 Properties from short-run pro�t maximization

�t = const0 �X
t (A


t )
"�1 bK1�

t (4)

Lt =
"� 1
w

� �t (5)

Yt = " � �t (6)

where

0 <
1

"
<  =

1

1 + �("� 1) < 1 (7)

and

const0 =

�
"� 1
w

�"�1
(")�" (8)

Proof: See Appendix 1.1.

2This is called "horizontal demand shocks" in Abel and Eberly (1999). Alternatively, if we model
"vertical demand shocks", such as Pt = XtQ

�1="
t in Caballero (1991), the operating pro�t can be

derived as �(Xt; At; bKt) = const0 � (X
t )
"
(At )

"�1 bK1�
t . As it will become clear in Section 3.2, this

speci�cation does not allow us to estimate the relative importance of the HAC e¤ect. On the other
hand, both horizontal and vertical demand shocks could be justi�ed to model demand uncertainty
faced by a monopoly (Klemperer and Meyer, 1986).

3As it will become clear in section 2.2 and 3.2, if w is also stochastic, �(Xt; At; bKt) = const0
0 �

X
t (A


t )
"�1

(wt )
(1��)(1�") bK1�

t . Assuming wt has the same structure as Xt and At in its law

of motion, it can also be incorporated into Pt with �2 = �2x + ("� 1)
2
�
(1� �)2 �2w + �2a

�
. This

implies uncertainty in factor prices will also lead to a positive Hartman-Abel-Caballero e¤ect and
its magnitude depends on the share of variable inputs in the production function, consistent with
the insight in Lee and Shin (2000). However, given we cannot identify �2w and �

2
a separately within

this model and given they both lead to a positive Hartman-Abel-Caballero e¤ect, we simplify this
issue by assuming non-stochastic factor prices.
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2.2 Stochastic Processes

The demand shift parameter Xt and the level of productivity At are the two possible

sources of uncertainty in this model.

Assumption 4 Demand Stochastic: The law of motion for Xt is

xt = logXt

xt = cx + �xt+ �
x
t (9)

�xt = �x�
a
t�1 + e

x
t = �

x
0 +

t�1X
s=0

�sxe
x
t�s

where 0 < �x < 1 and e
x
t
i:i:d� N (0, �2x).

Assumption 5 Productivity Stochastic: The law of motion for At is

at = logAt

at = ca + �at+ �
a
t (10)

�at = �a�
a
t�1 + e

a
t = �

a
0 +

t�1X
s=0

�sae
a
t�s

where 0 < �a < 1 and e
a
t
i:i:d� N (0, �2a).

(9) and (10) imply that demand shocks ext and productivity shocks e
a
t have e¤ects

that are persistent but not permanent, decaying at the rate 0 < �x < 1 and 0 <

�a < 1, and on average demand and productivity grow at the trend rates �x and �a,

respectively.

Firms making decisions in period t know Xt and At, but are uncertain about

future levels of demand and productivity, which depend on future realizations of the

demand and productivity shocks. Hence the variance of these shocks, i.e. �2x and �
2
a,

measure the level of uncertainty from demand and productivity faced by the �rm in

our model.

Furthermore, as (4) indicates, it is X
t (A


t )
"�1 that jointly determines the mar-

ginal revenue product of capital hence the investment decision.

Lemma 2 By imposing �x = �a = �, and assuming that ext and e
a
t are independent,

Xt and At can be combined into one single random variable, i.e.

Zt = Xt (At)
"�1 (11)
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The law of motion for Zt is given by

zt = logZt

zt = c+ �t+ �t (12)

�t = ��t�1 + et = �0 +
t�1X
s=0

�set�s

where 0 < � < 1 and et
i:i:d� N (0, �2). In particular,

�0 = �x0 + ("� 1) �a0
c = cx + ("� 1) ca

� = �x + ("� 1)�a
�2 = �2x + ("� 1)

2 �2a (13)

Proof: See Appendix 1.2.

With this reparameterization, the operating pro�t can be written as

�(Zt; bKt) = const0 � Zt bK1�
t (14)

where Zt incorporates stochastic from both demand and productivity, which is called

"pro�tability" in Cooper and Haltiwanger (2006), or "business condition" in Bloom

(2007). If �2a = 0, it is equivalent to a model where all the uncertainty is from

demand; if �2x = 0, it is equivalent to a model where all the uncertainty is from

productivity. When uncertainty comes from both demand and productivity, �2 is a

measure of the overall uncertainty faced by the �rm.

Assumption 6 Constant Proportion of Demand Uncertainty: Among the

overall uncertainty, there is a constant proportion � of uncertainty coming from de-

mand, i.e.

�2x = ��
2 (15)

Since �2 = �2x + ("� 1)
2 �2a, this assumption also implies a constant proportion

of uncertainty from productivity, i.e. �2a =
(1��)
("�1)2�

2. Now � = 1 is equivalent to a

model where all the uncertainty is from demand; and � = 0 is equivalent to a model

where all the uncertainty is from productivity.

Remark 1 The operating pro�t �t and therefore the optimal variable inputs Lt and

the sales Yt are all linear homogenous in (Zt; bKt).
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2.3 Adjustment Cost Function

Besides the demand conditions and the level of productivity, the �rm�s investment

behaviour also depends on capital adjustment costs. The investment literature of the

last four decades has focused on three forms of cost in capital adjustment.

2.3.1 Quadratic Adjustment Costs

Quadratic adjustment costs re�ect those costs that increase convexly in the level of

investment or disinvestment. We consider a speci�cation that includes three features.

First, the costs are quadratic in investment rate, to re�ect higher costs due to more

rapid changes and to allow for analytical tractability. Second, the costs attain their

minimum value of zero at zero investment, so that the �rm can avoid these costs by

setting investment equal to zero. Third, the level of these costs is proportional to

capital stock, so that a given investment rate imposes costs that increase with the

size of the �rm, and do not become irrelevant as the �rm grows larger.

Assumption 7 Quadratic Adjustment Costs: The functional form of quadratic

adjustment costs is

G(K; It) =
bq
2

�
It
Kt

�2
Kt

where bq measures the magnitude of quadratic adjustment costs.

2.3.2 Partial Irreversibility

Partial irreversibility allows a gap between the purchase price of capital pI and the

sale price of capital pS, as a result of capital speci�city, or more generally, the adverse

selection in the market for used capital goods. We normalise the purchase price pI

to one and denote bi = 1�pS > 0, so that the parameter bi can be interpreted as the
di¤erence between the purchase price and the sale price expressed as a percentage

of the purchase price. For example, pS = 0:8 gives bi = 0:2, indicating that the sale

price is 20% lower than the purchase price. Letting pS approach zero or letting bi

approach one ensures that the �rm never chooses to sell any capital, and mimics

investment behaviour under a complete irreversibility constraint.

Assumption 8 Partial Irreversibility: The functional form of partial irreversibil-

ity is

G(It) = �biIt1[It<0]
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where 1[It<0] is an indicator equal to one if investment is strictly negative.

2.3.3 Fixed Adjustment Costs

Fixed adjustment costs re�ect those costs that are independent of the level of in-

vestment or disinvestment and are paid at each point of time if any investment or

disinvestment is undertaken. We model the level of these costs to be proportional to

the operating pro�t, so that �rst, these costs can be rationalized as output loss due to

the interruption in production during periods of large investment or disinvestment;

second, these costs again do not become irrelevant as the �rm grows larger; third,

they can be avoided by choosing zero investment.

Assumption 9 Fixed Adjustment Costs: The functional form of �xed adjust-

ment costs is

G(Zt; Kt; It) = bf1[It 6=0]�t

where 1[It 6=0] is an indicator equal to one if investment is non-zero. The parameter bf

is interpreted as the fraction of operating pro�t loss due to any non-zero investment.

Our model allows for these three forms of adjustment costs, specifying the ad-

justment cost function to be

G(Zt; Kt; It) =
bq
2

�
It
Kt

�2
Kt � biIt1[It<0] + bf1[It 6=0]�t (16)

Remark 2 The adjustment cost function G(Zt; Kt; It) is linear homogenous in (Zt; Kt; It).

2.4 Investment Decisions

Denote �(Zt; Kt; It) as the net revenue of the �rm in each period t. That is

�(Zt; Kt; It) = �(Zt; Kt; It)�G(Zt; Kt; It)� It (17)

Assumption 10 The �rm is owned by a representative consumer who values future

net revenue with a discount rate adjusted with the level of uncertainty in the form of

r = r + �� (18)

where r is a risk-free interest rate; � is a parameter which could be positive, negative

or zero.
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In each period investment is chosen to maximize the present value of current

and expected future net revenues, where expectations are taken over the distribution

of future demand/productivity shocks. According to the Principle of Optimality

(Theorem 9.2, Stokey and Lucas, 1989), this investment decision can be represented

as the solution to a dynamic optimization problem de�ned by the stochastic Bellman

equation

V (Zt; Kt) = max
It
f�(Zt; Kt; It) +

1

1 + r
Et [V (Zt+1; Kt+1)]g (19)

together with the law of motion (1) and (12) for Kt and Zt. Here V (Zt; Kt) is the

value of the �rm in period t; Et [V (Zt+1; Kt+1)] is the expected value of the �rm in

period t+ 1 conditional on information available in period t.

2.4.1 Frictionless Case

Lemma 3 Investment Policy in the Frictionless Case: in the absence of any

capital adjustment cost, the Euler equation for this optimization problem is

const0 � (1� ) �
�
ZtbKt

�
= 1� 1� �

1 + r
(20)

Hence the optimal investment rate can be derived as

I�t
Kt

= const1 � Zt
Kt

� 1 (21)

Or equivalently expressed in levels, the optimal productive capital stock is

bK�
t = I

�
t +Kt = const1 � Zt (22)

where

const1 =

�
const0 � (1� ) =

�
1� 1� �

1 + r

�� 1


(23)

Proof: See Appendix 1.3.

The right hand side of equation (20) is simply the marginal revenue product of

capital, while the left side is known as the Jorgensonian user cost of capital. Hence

in spite of the uncertainty about future demand/productivity, this intertemporal

optimality condition is equivalent to the �rst order condition in a static decision

problem of the neoclassical producer theory. This is solely the result of the �rm

being able to adjust its capital stock instantaneously and costlessly in this case.
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Equation (21) and (22) imply that without any friction, the optimal investment

rate is a linear function of demand/productivity relative to inherited capital stock

to meet the imbalance between the productive capital stock and the level of de-

mand/productivity in each period, where the slope term const1 re�ects production

technology (�), demand elasticity ("), factor price (w), and the Jorgensonian user

cost of capital.

2.4.2 Friction Cases

In the presence of capital adjustment costs, uncertainty about future de-

mand/productivity a¤ects current investment since future adjustment of capital stock

incurs costs. Optimal investment then needs to take into account the intertemporal

linkage between current investment and future returns to capital and becomes in-

deed an interesting dynamic problem. However, with capital adjustment costs that

we consider in equation (16), there is in general no closed-form solution. Appendix

2.1 explains how we solve the dynamic programming (19) numerically.

Figures 1-3 present the investment decision rules derived from the numerical so-

lutions. We plot the optimal investment rate (It=Kt) against (const1 � Zt=Kt � 1),
that is the scaled demand/productivity, where the 45o line for the frictionless case

(21) is plotted as a benchmark. With this scaling, both in the absence and presence

of adjustment costs, a value of zero on the horizontal axis would always be associated

with zero investment on the vertical axis. In the absence of any adjustment costs,

investment occurs at all levels of scaled demand/productivity beyond zero while dis-

investment occurs below zero. In the presence of adjustment costs, we show these

decision rules separately for three special cases of the model.4

Figure 1 illustrates the optimal investment policy with quadratic adjustment costs

only. Investment and disinvestment still occur at all levels of scaled demand/productivity

beyond and below zero. However, with quadratic adjustment costs, the increasing

marginal adjustment costs penalize high rates of investment or disinvestment, capi-

tal stock adjusts to new information about demand/productivity through a series of

small and continuous adjustments. Hence, compared with the 45o line, the investment

policy in this case is also smooth but much dampened.

Figure 2 illustrates a region of inaction in the investment policy determined by

4These �gures impose common parameters: � = 0:10, " = 6:00, w = 0:50, r = 0:065, � = 0:02,
� = 0:90, � = 0:02, and � = 0:10.
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two critical values with partial irreversibility. With partial irreversibility, there is

no positive investment unless scaled demand/productivity reaches a right critical

level that is larger than zero; and for further higher levels of demand/productivity

the investment rate continues to be lower than what would be chosen in the fric-

tionless case. Similarly, no disinvestment occurs unless scaled demand/productivity

falls to a left critical level that is smaller than zero; and for further lower levels

of demand/productivity the rate of disinvestment that occurs is much lower than

what would be chosen in the frictionless case. In the extreme case of complete ir-

reversibility, no disinvestment would ever happen, no matter how low is the level of

demand/productivity relative to the inherited capital stock.

Figure 3 illustrates both a region of inaction and investment bursts as a re-

sult of corner-solution in the investment policy with �xed adjustment costs. Sim-

ilar to partial irreversibility, investment or disinvestment occurs only when scaled

demand/productivity exceeds the right and left critical values that are larger and

smaller respectively than zero. Outside this region of inaction, the optimal invest-

ment decisions are quite di¤erent from those under partial irreversibility. Small

adjustments to the capital stock do not generate bene�ts that are su¢ ciently high

to warrant paying a �xed cost to implement them. Therefore capital stock adjusts

to new information about demand/productivity through infrequent but large adjust-

ments. When the scaled demand/productivity exceeds the right or left critical value,

optimal investment jumps discontinuously to an investment policy, in which positive

investment rate is higher than those in the frictionless case and negative investment

rate is lower than those in the frictionless case.

3 The E¤ects of Uncertainty

This section analyses the e¤ects of uncertainty on two interesting quantities. Given

� is the measure of overall uncertainty in this model, we de�ne these quantities as

explicit functions of �.

De�nition 2 Expected Capital Stock E
h bKt (�)

i
is the mathematical expectation

for the optimal productive capital stock in period t.
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De�nition 3 Expected Capital Intensity E
h bKt (�) =Yt (�)

i
is the mathematical

expectation for the ratio of optimal productive capital stock to sales in period t. 5

Lemma 4 In the absence of any capital adjustment cost,

E
h bK�

t (�)
i
= const1 � E [Zt]

E
h bK�

t (�) =Yt (�)
i
= const2

where

const2 = �

�
1� 1

"

�
=

�
1� 1� �

1 + r

�
(24)

Proof: See Appendix 1.4.

Lemma 4 implies that in the frictionless case, uncertainty would a¤ect the ex-

pected capital stock only if const1 or E [Zt] depends on �; and would a¤ect the

expected capital intensity only if const2 depends on �. In the friction cases, the

e¤ects of uncertainty on these quantities also depend on di¤erent forms of capital

adjustment costs. Therefore, our model provides a structural framework, which al-

lows for uncertainty to a¤ect capital accumulation through three possible channels:

the risk-adjusted discount rate e¤ect (through const1 and const2); the HAC e¤ect

(through E [Zt]); and the capital adjustment costs. We examine these three channels

separately one by one.

3.1 Uncertainty and the Discount Rate E¤ect

In order to abstract from any e¤ects of uncertainty through the HAC e¤ect and

capital adjustment costs, we impose E [Zt] to be invariant to � and G(Zt; Kt; It) = 0

in this subsection.

According to (23) and (24), both const1 and const2 re�ect production technology

(�), demand elasticity ("), depreciation rate (�) and the discount rate (r).

Lemma 5 All else being equal, @const1=@� > 0, @const2=@� > 0, @const1=@" >

0, @const2=@" > 0, @const1=@� < 0, @const2=@� < 0, @const1=@r < 0, and

@const2=@r < 0.

5An alternative measure for capital intensity is the capital-labour ratio. By Lemma 1,

E
h bKt (�) =Lt (�)

i
= "w

"�1 �E
h bKt (�) =Yt (�)

i
. Therefore as long as (; "; w) is uncorrelated with �,

the sign of the e¤ect of uncertainty on capital intensity does not depend on which measure we use.
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Proof: Comparative static analysis. Intuitively, an increase in � and " would both

decrease  so that the operating pro�t function becomes less concave in capital stock,

hence leads to more capital stock and capital intensity. In contrast, an increase in �

and r would both increase the Jorgensonian user cost of capital, hence leads to less

capital stock and capital intensity.

Therefore uncertainty would a¤ect the expected capital stock and capital intensity

if any of these four parameters varies with the level of uncertainty. Under Assump-

tion 10, for the discount rate r = r + ��, if the demand/productivity shocks are

systematic, � would be greater than, less than or equal to 0, depending on whether

the marginal utility of the owner is negatively correlated, positively correlated or un-

correlated with the marginal revenue product of capital. If the demand/productivity

shocks are idiosyncratic and the owner is fully-diversi�ed, � would be 0. If the de-

mand/productivity shocks are idiosyncratic, but the owner is not fully-diversi�ed and

a large proportion of his consumption comes from the revenue of the �rm, � would

be greater than 0, as rationalized in Angeletos and Calvet (2006), or Himmelberg,

Hubbard and Love (2002).

Proposition 1 When E [Zt] is invariant to � and G(Zt; Kt; It) = 0,

@E
h bK�

t (�)
i
=@�

�
< 0 if � > 0
> 0 if � 6 0 and @E

h bK�
t (�) =Yt (�)

i
=@�

�
< 0 if � > 0
> 0 if � 6 0 ,

i.e. the e¤ects of uncertainty on the expected capital stock and expected capital inten-

sity depend on the sign of �.

Proof: By Assumption 10, Lemma 5 and applying the chain rule in partial di¤er-

entiation.

3.2 Uncertainty and the HAC E¤ect

In order to abstract from any e¤ects of uncertainty through discount rate e¤ect and

capital adjustment costs, we impose � = 0 and G(Zt; Kt; It) = 0 in this subsection.

To study the e¤ects of uncertainty through the HAC e¤ect, it is standard to

apply a mean-preserving spread for the underlying stochastic process. Equation

(9) and (10) imply that keeping �xand �a constant while increasing �
2
x and �

2
a, is a

mean-preserving spread for xt and at respectively. Since the demand shift parameter

Xt and the level of productivity At are the two stochastic variables that expectation

14



is taken over, we would like to focus on increases in uncertainty that preserve the

mean of Xt and At. This is easily achieved by Lemma 6.

Lemma 6 By setting cx = �0:5�2x= (1� �2) and ca = �0:5�2a= (1� �2), E [Xt] =

exp (�x0 + �xt) and E [At] = exp (�a0 + �at), i.e. keeping �xand �a constant while

increasing �2x and �
2
a, is a mean-preserving spread for Xt and At, respectively.

Proof: See Appendix 1.5.

Recall the operating pro�t is �(Zt; bKt) = const0 �Zt bK1�
t , where Zt = Xt (At)

"�1.

Since � = �x+("� 1)�a and �2 = �2x+("� 1)
2 �2a, keeping �xand �a constant while

increasing �2x and �
2
a also implies keeping � constant while increasing �

2. However,

this is in general not a mean-preserving spread for Zt.

Lemma 7 Keeping � constant while increasing �2 is in general not a mean-preserving

spread for Zt. In particular,

E [Zt] = exp

�
�0 + �t+

("� 2) (1� �)
2 ("� 1) (1� �2)�

2

�
(25)

Proof: See Appendix 1.6.

Lemma 7 implies that the e¤ect of keeping � constant while increasing �2 on

E [Zt] includes three cases. First, either when all uncertainty is from demand so

that �2x = �2 or equivalently � = 1, or when the demand elasticity " = 2, then

@E [Zt] =@� = 0. Second, if there is any uncertainty from productivity so that �2a > 0

or equivalently � < 1, and the demand elasticity " > 2, then @E [Zt] =@� > 0. Finally,

if there is any uncertainty from productivity so that �2a > 0 or equivalently � < 1,

and the demand elasticity 1 < " < 2, then @E [Zt] =@� < 0.

Proposition 2 When � = 0 and G(Zt; Kt; It) = 0,

@E
h bK�

t (�)
i
=@�

8<:
= 0 if � = 1 or " = 2
> 0 if � < 1 and " > 2
< 0 if � < 1 and 1 < " < 2

and @E
h bK�

t (�) =Yt (�)
i
=@� = 0,

i.e. the e¤ects of uncertainty on the expected capital stock depend on the value of

� and ", but uncertainty has no e¤ect on the expected capital intensity through the

HAC e¤ect.

Proof: It is straightforward to derive the results for @E
h bK�

t (�)
i
=@� by Lemma

7 and @E
h bK�

t (�) =Yt (�)
i
=@� = 0 by Lemma 4.
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The �rst part of Proposition 2 implies that our model allows for the uncertainty

to a¤ect the expected capital stock through the marginal revenue product of capi-

tal, and this e¤ect could be positive, negative or zero under our setting, depending

on the source of uncertainty and the demand elasticity. The cases studied in the

literature that lead to the HAC e¤ect, for example, uncertainty in output price

(Hartman, 1972; Abel, 1983), in the price of variable input (Abel, 1985; Lee and

Shin, 2000), or in horizontal demand shocks (Caballero, 1991; Pindyck, 1993) can be

represented by the case of � < 1 and " > 2. Furthermore, within this case, we have

@
�
@E
h bK�

t (�)
i
=@�

�
=@" > 0, which veri�es the insight in Caballero (1991) about

the role of degree of competition in determining the importance of the HAC e¤ect.

In the extreme case of perfection competition, i.e. " =1, the magnitude of the HAC
e¤ect is in�nitely large and dominates the e¤ects of uncertainty through any other

channel, one special case studied in Abel and Eberly (1994).

The second part of Proposition 2 implies that due to the linear homogeneity

property of our investment model, the HAC e¤ect would a¤ect all the variables in

levels, such as capital stock, investment, variable input, sales and operating pro�t,

in the same proportion; hence it would not a¤ect any variable in ratio, such as

investment rate, capital-to-sales ratio, pro�t-to-sales ratio and sales growth rate. This

might explain why in empirical research, such as Leahy and Whited (1996), that only

consider the e¤ects of uncertainty on investment rate rather than on capital stock,

the HAC e¤ect has not been detected.

3.3 Uncertainty and the Adjustment Cost E¤ect

In order to abstract from any e¤ects of uncertainty through discount rate e¤ect and

the HAC e¤ect, we impose � = 0 and � = 1 so that E
h bK�

t (�)
i
= const1 �exp(�0+�t)

is invariant to � in this subsection. Given there is no closed-form solution to the

investment model in the presence of capital adjustment costs, we provide intuition

and illustrate simulation results as proof to the following results.

Proposition 3 When � = 0 and � = 1,

@E
h bKt (�)

i
=@�

�
< 0 if bq > 0
Q 0 if bi > 0 or bf > 0

and

@E
h bKt (�) =Yt (�)

i
=@� Q 0, if bq > 0, bi > 0 or bf > 0.
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Proof: The �rst part of Proposition 3 implies that an increase in the level of

uncertainty must lower the expected capital stock in the presence of quadratic ad-

justment costs; but has an ambiguous e¤ect on the expected capital stock in the

presence of partial irreversibility or �xed adjustment costs.

For quadratic adjustment costs only, analogy to Abel (1984), for any given inher-

itated capital stock Kt, if  = 0, equation (19) represents a linear-quadratic problem

in which certainty-equivalence applies, hence E [It (�)] would be invariant to �. Take

this case as a benchmark. The case under our consideration is  > 0, so certainty-

equivalence fails since (19) is no longer a linear-quadratic problem. Given  > 0

implies �(Kt; Zt; It) being concave in It, E [It (�)] is decreasing in � due to Jensen�s

inequality e¤ect. Since bKt = Kt + It, this implies E
h bKt (�)

i
is decreasing in �, or

@E
h bKt (�)

i
=@� < 0 if bq > 0.

For partial irreversibility only, Abel and Eberly (1999) demonstrate that complete

irreversibility and uncertainty increase the user cost of capital which tends to reduce

the capital stock. Working in the opposite direction is a hangover e¤ect, which

arises because irreversibility prevents the �rm from selling capital even when the

marginal revenue product of capital is low. Neither the user cost e¤ect nor the

hangover e¤ect dominates globally, so that irreversibility may increase or decrease

the expected capital stock E
h bKt (�)

i
relative to that under reversibility E

h bK�
t

i
.

Furthermore, both the user cost e¤ect and the hangover e¤ect are stronger with

higher level of uncertainty, again neither of them dominates globally. Hence the sign

of @
�
E
h bKt (�)

i
=E
h bK�

t

i�
=@� is ambiguous. Given E

h bK�
t

i
is invariant to �, this

implies the ambiguity in the sign of @E
h bKt (�)

i
=@� if bi > 0:

For �xed adjustment costs only, Cooper, Haltiwanger and Power (1999) provide

intuition for the trade-o¤ between the threshold e¤ect and the target e¤ect in the

presence of �xed adjustment costs. Under a higher level of uncertainty, the thresholds

for investment and disinvestment enlarge, but meanwhile the �rm has more incentive

to overshoot its investment target to adjust capital stock due to physical depreciation

and demand/productivity shocks. This implies an increase in uncertainty will lead to

both more frequent investment inaction and larger investment/disinvestment bursts,

hence the ambiguity in the sign of @E
h bKt (�)

i
=@� if bf > 0:

In Bond, Söderbom andWu (2007), we replicate the analytical results in Abel and

Eberly (1999) for complete irreversibility by numerical simulation, and generalize the
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analyses for quadratic adjustment costs, partial irreversibility and �xed adjustment

costs, which con�rms the claim in Proposition 3.

The second part of Proposition 3 implies that an increase in the level of uncer-

tainty has an ambiguous e¤ect on the expected capital intensity in the presence of

adjustment costs.

As Lemma 1 indicates, the sales Yt is linear homogeneous in Zt and bKt. Together

with Lemma 3, in the frictionless case, Yt is always proportional to bK�
t hence bK�

t =Yt =

const2 is invariant to �. In the friction case, when Zt decreases due to negative shocks,

all three forms of capital adjustment costs make bKt decrease less than Zt, linear

homogeneity implies Yt would decrease more than bKt but less than Zt. Hence bKt=Yt

must be higher than bK�
t =Yt conditional on et < 0. When Zt increases due to positive

shocks, quadratic adjustment costs and partial irreversibility make bKt increase less

than Zt, linear homogeneity implies Yt would increase more than bKt but less than Zt.

Fixed adjustment costs have ambiguous e¤ect, depending on the relative importance

of the threshold e¤ect and the target e¤ect. Hence bKt=Yt tends to be lower thanbK�
t =Yt conditional on et > 0. When � increases, Zt would decrease or increase both

with a larger magnitude, which means bKt=Yt would be higher or lower than bK�
t =Yt

both with a larger magnitude. Since the expectation is taken over both positive and

negative shocks, this implies the ambiguity in the sign of @E
h bKt (�) =Yt (�)

i
=@�.

4 Empirical Strategy

The analyses in Section 3 illustrate the rich implications about the e¤ects of uncer-

tainty in our investment model: with an increase in the level of uncertainty, a risk-

adjusted discount rate e¤ect would increase/decrease/unchange both the expected

capital stock and the expected capital intensity, depending on the sign of � (Proposi-

tion 1); the HAC e¤ect would increase/decrease/unchange the expected capital stock,

depending on the value of � and " (Proposition 2); capital adjustment costs would

a¤ect both the expected capital stock and the expected capital intensity, depending

on the exact form of the adjustment costs (Proposition 3). This implies the e¤ects

of uncertainty on capital accumulation is fundamentally an empirical question.
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4.1 Dataset

We use an empirical sample from Bloom, Bond and Van Reenen (2007), which studies

the investment dynamics under uncertainty and partial irreversibility. This sample

contains �rm-level data for an unbalanced panel of 672 publicly traded U.K. man-

ufacturing �rms between 1972 and 1991. These company data are taken from the

consolidated accounts of manufacturing �rms listed on the U.K. stock market and

are obtained from the Datastream on-line service. Our identi�cation strategy only

requires four key variables: Investment (Ij;t); Capital stock (Kj;t); Sales (Yj;t); and

Operating Pro�t (�j;t) where j denotes �rm and t denotes year. The data appendix

of Bloom, Bond and Van Reenen (2007) explains how these variables are constructed,

cleaned and de�ated.

4.2 Uncertainty Heterogeneity

In order to identify the discount rate e¤ect and the HAC e¤ect, the necessary con-

dition is to have some variation in the level of uncertainty. In theory, this variation

could be modelled either across time or across �rms. Since the empirical sample we

use in this paper is a short panel, and a main feature in �rm-level investment data

is the importance of "�xed-e¤ects" (Bond and Van Reenen, 2003), we model this

variation as cross-sectional.

Assumption 11 Uncertainty Heterogeneity: The measure of overall uncertainty

for �rm j is �j, where log �j
i:i:d� N (�l�, �

2
l�).

That is each �rm j faces a �rm-speci�c measure of uncertainty �j, where log �j

is drawn independently from an identical normal distribution with mean �l� and

standard deviation �l�.

Under this assumption, Proposition 1 predicts that the sign of cov[Kj;t; �
2
j ] and

cov[Kj;t=Yj;t; �
2
j ] depends on �, through the discount rate e¤ect; Proposition 2 predicts

the sign of cov[Kj;t; �
2
j ] > 0 depends on � and ", through the HAC e¤ect, which means

we have transformed the problem of identifying the discount rate e¤ect and the HAC

e¤ect into estimating �l�, �
2
l�, �, � and ".
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4.3 Growth Rate Heterogeneity

In order to identify the capital adjustment costs e¤ect, the investment policies illus-

trated in Section 2 indicate the possibility of identifying di¤erent forms of capital

adjustment costs from di¤erent features in the investment rate. However, as recog-

nized in both Cooper and Haltiwanger (2006) and Bloom (2007), a key challenge in

estimating adjustment costs is to distinguish the persistent di¤erences in the stochas-

tic process from the adjustment costs. For example, both di¤erences across �rms in

the demand/productivity growth rate and high quadratic adjustment costs can lead

to persistent di¤erences across �rms in the investment rate. Given the important

role of quadratic adjustment costs in determining the e¤ects of uncertainty on the

expected capital stock, it is important to distinguish between unobserved heterogene-

ity and state dependence. Therefore, we explicitly model heterogeneity in the growth

rate in order to get robust estimates for the adjustment costs

Assumption 12 Growth Rate Heterogeneity: The combined growth rate for �rm

j is �j, where �j
i:i:d� N

�
��; �

2
�

�
and cov

�
�j; �j

�
= 0.

That is each �rm j has a �rm-speci�c combined growth rate �j, where �j is drawn

independently from an identical normal distribution with mean �� and standard

deviation ��. With heterogeneities in both � and �, we further assume that they are

uncorrelated with each other so that the e¤ects of uncertainty can be separated from

the e¤ects of growth rate.

Both the level of uncertainty and the growth rate would a¤ect the investment

policy. Hence the dynamic programming described in (19) must be solved for each

�rm j with value �j and �j, which is una¤ordable even for a small sample. Therefore

we adopt a standard approach used in the literature, for example, Eckstein and

Wolpin (1999), to allow for a �nite mixture of types.

Assumption 13 A Finite Mixture of Types: There are a �nite mixture of types,

say U � V types of �rms, each comprising a �xed proportion 1=(U � V ) of the popu-
lation, where the type set is de�ned as z = f(�u; �v) : u = 1; � � � ; U ; v = 1; � � � ; V g.

Appendix 2.2 explains how we solve the dynamic programming and Appendix 2.3

explains how we simulate the data under this assumption.
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4.4 Relating Zj;t to Observable Variables

We have shown how optimal investment would response to the scaled demand/productivity

(const1 �Zj;t= bKj;t� 1) with di¤erent forms of capital adjustment costs. We have also
allowed for two dimension heterogeneities in the demand/productivity (Zj;t). Given

the stochastic process is known to the �rm but is in general not observable to econo-

metrician, we construct following two proxies.

Denote ykj;t = log (Yj;t=Kj;t), i.e. the log of sales-to-capital ratio for �rm j in

period t. In the absence of capital adjustment costs,

log (Yj;t=Kj;t) = log
�
const0 � Zj;t bK1�

j;t =
bKj;t

�
= log const0 +  log

�
Zj;t= bKj;t

�
which is a monotonic increasing transformation of (const1 � Zj;t= bKj;t � 1). Since in
the presence of capital adjustment costs, Zj;t is also a non-decreasing function of Zj;t,

we use ykj;t as the proxy for the scaled demand/productivity (const1 �Zj;t= bKj;t� 1).
Denote dyj;t = log (Yj;t)� log (Yj;t�1), i.e. the sales growth rate for �rm j in period

t. In the absence of capital adjustment costs,

log (Yj;t)� log (Yj;t�1) = log (Zj;t)� log (Zj;t�1) = �j + �j;t � �j;t�1
�j;t = ��j;t�1 + ej;t

where 0 < � < 1 and ej;t
i:i:d� N

�
0, �2j

�
. Then

Edyj = meant (dyj;t) = �j

SDdyj = sdt (dyj;t) ' �j

That is the within-group mean of the sales growth rate for �rm j is equal to

�j; and the within-group standard deviation of the sales growth rate for �rm j is

approximately (exactly i¤ � = 1) equal to �j. Since in the presence of capital

adjustment costs, Yj;t is also a non-decreasing function of Zj;t, we use Edyj and

SDdyj as the proxies for the growth rate and level of uncertainty for �rm j.

4.5 Intercept Heterogeneity

In addition to the discount rate e¤ect, the HAC e¤ect and the capital adjustment

costs e¤ects that we have explicitly modelled, Lemma 4 indicates that the expected

capital stock also depend on production technology (�), demand elasticity ("), de-

preciation rate (�), relative price of variable input (w), the time period a �rm has
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operated (t), the unit in measuring capital stock ($ or $1000), and �nally the inter-

cept in the stochastic process (�0). Any di¤erences in these factors across �rms will

lead to permanent di¤erences in the expected capital stock across �rms. Our empiri-

cal strategy is to impose common value for �, " and � at their sample average, choose

arbitrary value for w, t, and the unit of measurement, while model and estimate the

distribution of �0.

Assumption 14 Intercept Heterogeneity: The intercept in the stochastic process

for �rm j is �0j , where �0j
i:i:d� N

�
��0 ; ��0

�
and cov

�
�0j; �j

�
= 0, cov

�
�0j; �j

�
= 0.

That is each �rm j has a �rm-speci�c intercept �0j in the stochastic process,

where �0j is drawn independently from an identical normal distribution with mean

��0 and standard deviation ��0. With heterogeneities in �, � and �0, we further

assume that they are uncorrelated with each other so that the factors that lead to

permanent di¤erences in the expected capital stock are uncorrelated with the level

of uncertainty and the growth rate of the �rms.

This technical devise is based on the important property summarized by the

following lemma.

Lemma 8 Denote �j = �(�j; "j; �j; wj; tj). If cov (�j; �j) = 0, the e¤ect of imposing

common value for (�; "; �; w; t) on the dispersion of the expected capital stock can be

accounted for by adjusting ��0; the e¤ect of choosing arbitrary value for (w; t) and

the unit of measurement on the level of the expected capital stock can be accounted

for by adjusting ��0.

Proof: See Appendix 1.7.

Di¤erent from the level of uncertainty and the growth rate, the value of �0 doesn�t

a¤ect the investment policy due to the linear homogeneity property of the investment

model. Hence there could be "in�nite" type for the intercept in the stochastic process.

Appendix 2.3 explains how we normalize the dynamic programming and simulate the

data under this assumption.

4.6 Measurement Errors

Given the important role of investment rate and sales in our identi�cation strategy, we

allow for a rich structure of measurement errors in our empirical speci�cation. This is
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motivated by two reasons. First, measurement error is a common feature in �rm-level

recorded data. Second and more fundamentally, allowing for permanent components

of measurement errors in the investment rate and sales is a computationally tractable

way, to control for persistent di¤erences between �rms in investment rate and sales,

which might not have been fully controlled for through modelling heterogeneities in

the stochastic process.

Assumption 15 Measurement Errors in Investment Rate: Denote invest-

ment rate ij;t = Ij;t=Kj;t. Suppose ij;t = i�
j;t
exp(eI

j;t
), where eIj;t = eITj;t + e

IP
j , and

eIPj
i:i:d� N(0; �2IP ), e

IT
j;t

i:i:d� N(0; �2IT ).

That is there is a standard multiplicative structure for measurement error in the

investment rate, where ij;t denotes the observed investment rate, i�j;t denotes the true

underlying investment rate which is not measured accurately in the data, and the

measurement error eIj;t has both transitory and permanent components with mean

zero and standard deviation �IT and �IP , respectively. This speci�cation has the

property that the sign of recorded investment rate is not a¤ected by measurement

error, and treats observations with zero investment in the data as true zeros.

Assumption 16 Measurement Errors in Sales: Suppose Yj;t = Y �j;t exp(e
Y
j;t),

where eYj;t = e
Y T
j;t + e

Y P
j , and eY Pj

i:i:d� N(0; �2Y P ), e
Y T
j;t

i:i:d� N(0; �2Y T ).

That is there is a standard multiplicative structure for measurement error in sales,

where Yj;t denotes the observed level of sales, Y �j;t denotes the true underlying level

of sales which is not measured accurately in the data, and the measurement error

eYj;t has both transitory and permanent components with mean zero and standard

deviation �Y T and �Y P , respectively.

Appendix 2.3 explains how we simulate the data under these two assumptions.

4.7 Aggregation at the Firm-Level

Another feature for �rm-level accounting data is that these data might be consoli-

dated across several plants within the �rm. Table 4 compares the investment rate

data from a sample of the Longitudinal Research Database (plant-level) in Cooper

and Haltiwanger (2006) and from a sample of the Compustat Dataset (�rm-level)

in Bloom (2007), in which investment rate is featured by spikes and zeros at the
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plant-level but by smooth and continuous serials at the �rm-level. Without account-

ing for possible aggregation in the �rm-level data could lead to an overestimate for

the quadratic adjustment costs and an underestimate for the non-convex adjustment

costs. Given the Datastream is a �rm-level dataset, it is important for us to consider

the possible aggregation at the �rm-level.

Assumption 17 Aggregation: Each �rm is made of m plants, where m � 1. For
plant i of �rm j in period t, the law of motion for Zi;j;t is given by

zi;j;t = logZi;j;t

zi;j;t = cj + �jt+ � i;j;t (26)

� i;j;t = �� i;j;t�1 + ei;j;t = �0j +
t�1X
s=0

�sei;j;t�s

where 0 < � < 1, ei;j;t
i:i:d� N

�
0, �2j

�
, cj = �

h
� + (1��)

("�1)

i
�2j

2(1��2) .

That is there are heterogeneities across �rms in the level of uncertainty, growth

rate and intercept; however, plants within the same �rm are all identical except

the idiosyncratic demand/productivity shocks ei;j;t. Appendix 2.3 explains how we

simulate the data under this aggregation assumption.

Lemma 9 The e¤ect of any arbitrary choice of m on the level of expected capital

stock can be accounted for by adjusting ��0.

Proof: See Appendix 1.7.

5 A Structural Estimation

Since the e¤ects of uncertainty on capital accumulation are working through di¤er-

ent channels simultaneously, it is di¢ cult to estimate these channels separately and

reliably using standard regression techniques for reduced-form investment models.

Instead, our strategy is fully parametric, i.e. to recover the structural parameters

in the model explicitly by simulated method of moments and to apply counterfac-

tual simulations to gauge the qualitative and quantitative importance of these e¤ects

through each channel.
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5.1 Simulated Method of Moments

The simulated method of moments (SMM hereafter) aims at estimating a vector of

unknown parameters by solving a minimum quadratic distance problem. Formally,

following Gouriéroux and Monfort (1996), the SMM estimator �� solves

b� = argmin
�

 b�D � 1

H

HX
h=1

b�Sh (�)
!0



 b�D � 1

H

HX
h=1

b�Sh (�)
!

(27)

where � is the vector of parameters of our interest; b�Dis a set of empirical moments
estimated from an empirical dataset; b�S (�) is the same set of simulated moments
estimated from a simulated dataset of the structural model; H is the number of

simulation path; 
 is a positive de�nite weighting matrix.

Suppose the empirical dataset is a panel with N �rms and T years. Given we

model unobserved heterogeneities across �rms, the asymptotics is for �xed T and

N ! 1. At the e¢ cient choice for the weighting matrix 
�, the SMM procedure

provides a global speci�cation test of the overidentifying restrictions of the model, i.e.

if the model is well-speci�ed, the test statistics OI follows a chi-square distribution

with degree of freedom equal to the di¤erence between the number of moments and

the number of parameters:

OI =
NH

1 +H

 b�D � 1

H

HX
h=1

b�Sh (�)
!0

�

 b�D � 1

H

HX
h=1

b�Sh (�)
!

� �2
h
dim

�b��� dim (�)i : (28)

At the e¢ cient choice for the weighting matrix 
�, the SMM estimator is asymp-

totically normal for �xed H and T , and N !1, i.e.
p
N
�b����� D! N (0;W (H;
�)) (29)

where

W (H;
�) =

�
1 +

1

H

��
E
h
@b�S0 �b�� =@�i
�E h@b�S �b�� =@�0

i��1
De�ne binding function as b�S = b�S (�), that is how the simulated moments

change with the structural parameters. De�ne the Jacobian matrix for the binding

functions as J =
h
@b�S0 �b�� =@�i. The crucial point of SMM is that the simulated

moments b�S0 �b�� depend on the structural parameters b� used in that particular
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round of simulation. Therefore identi�cation requires the variation in the simulated

moments being informative about the changes in the underlying structural parame-

ters. The su¢ cient condition for local identi�cation is that the Jacobian matrix J

has full row rank.

Appendix 2.4 reports how we estimate the e¢ cient weighting matrix, solve the

minimum quadratic distance problem, calculate the numerical derivatives and check

the local identi�cation.

5.2 Structural Parameters

Table 1 lists the set of parameters � that we aim to estimate, which can be divided

into 6 categories. [1] parameter determining the importance of the discount rate e¤ect

�. [2] parameter measuring the importance of the HAC e¤ect 1�� , given the demand
elasticity " 6= 2. [3] parameters measuring the magnitude of capital adjustment costs,
i.e. quadratic adjustment costs bq, partial irreversibility bi and �xed adjustment costs

bf . Denote b = (bq; bi; bf ). [4] parameters characterising technology and demand, i.e.

the capital share in production function � and the demand elasticity with respect to

price ". [5] parameters characterising the stochastic process, i.e. the serial correlation

of shocks �; the mean and standard deviation of the growth rate �� and ��; the mean

and standard deviation of the log of level of uncertainty �l� and �l�; and the mean

and standard deviation for the intercept �z0 and �z0. [6] parameters measuring the

magnitude of measurement errors in the data, i.e. the standard deviation of transitory

and permanent measurement errors in investment rate �IT and �IP , and in sales �Y T

and �Y P .

Besides these 18 structural parameters, there are another 2 parameters in our

investment model that are exogenous but would also a¤ect the investment policy

and capital accumulation. First, the depreciation rate �. We impose � = 0:08, the

number used in constructing the capital stock series with perpetual inventory method

in the empirical sample. Second, the risk-free interest rate r. We impose r = 0:065,

which is in line with the value used in the literature such as Bloom (2007).

5.3 Moments and Identi�cation

Table 2 lists the set of moments b�D that we aim to match. The selection of moments
follows the "informativeness" principle and is guided by the properties of the model
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we discussed in previous sections. In column 1, left panel, Table 3, we report the

value of these moments estimated from the empirical sample.

Denote EKj = meant

� bKj;t

�
and EKYj = meant

� bKj;t=Yj;t

�
, i.e. the within-

group mean of the capital stock and capital-to-sales ratio. Recall SDdyi is the within-

group standard deviation of sales growth rate and the proxies for the level of uncer-

tainty. Hence the �rst two key moments corr (EKj; SDdyj) and corr (EKYj; SDdyj)

calculate the between-group correlation coe¢ cients for capital stock and uncertainty,

and for capital intensity and uncertainty. According to our investment model, all

else being equal, corr (EKj; SDdyj) is informative about the discount rate e¤ect �,

the HAC e¤ect � and capital adjustment costs b; corr (EKYj; SDdyj) is informative

about the discount rate e¤ect �, and capital adjustment costs b. Conditional on b

being identi�ed by other moments, corr (EKYj; SDdyj) identi�es �. Conditional on

b and � being identi�ed by other moments, corr (EKj; SDdyj) identi�es � . In our

empirical sample, both these two correlation coe¢ cients are negative and small. This

implies either all these three e¤ects are weak, or these e¤ects are strong individually

but basically balance each other, leaving an overall small, negative e¤ect across �rms.

The third moment prop (ij;t < �0:01), fourth moment prop (jij;tj < 0:01) and �fth
moments prop (ij;t > 0:20) report the proportion of disinvestment, investment inac-

tion and investment spikes. Recall our investment model predicts that both partial

irreversibility bi and �xed adjustment costs bf would generate zero investment, how-

ever, partial irreversibility would lead to less disinvestment, while �xed adjustment

costs more investment spikes. Furthermore, quadratic adjustment costs bq dampen

investment hence predicts less investment spikes. Very few disinvestment and zero in-

vestment are recorded in our empirical sample. This either implies the insigni�cance

of the non-convex adjustment costs or re�ects the importance of aggregation.

The correlation coe¢ cient corr (ij;t; ykj;t) re�ects the responsiveness of invest-

ment rate to the log sales-to-capital ratio. Recall ykj;t is the proxy for the scaled

demand/productivity. The investment policies illustrated in Section 2 imply that

high values of bq and bi decrease this coe¢ cient; while any measurement errors in in-

vestment rate (�IT ; �IP ) or sales (�Y T ; �Y P ) can cause attenuation in this coe¢ cient.

The serial correlation of investment rate corr (ij;t; ij;t�1) re�ects both the importance

of bq and the persistence of the stochastic process �. Transitory measurement errors

(�IT ) attenuate this coe¢ cient while permanent measurement errors (�IP ) blow it
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up. The serial correlation of the log sales-to-capital ratio corr (ykj;t; ykj;t�1) is also

informative about �; meanwhile, transitory (�Y T ) and permanent (�Y P ) measure-

ment errors a¤ect this coe¢ cient in the opposite direction. Empirically, we observe a

low correlation between investment rate and the log sales-to-capital ratio, high serial

correlation in investment rate and very high serial correlation in log sales-to-capital

ratio, which may re�ect the importance of adjustment costs, the persistence of the

stochastic process, or the existence of measurement errors.

The next two moments are derived more directly through the �rst-order conditions

of the model. The mean of pro�t-to-sales ratio mean (�j;t=Yj;t) and capital-to-sales

ratio mean (EKYj) are informative for the capital share in production function �

and the demand elasticity with respect to price ". First, Lemma 1 claims, no matter

whether there is adjustment cost or not, the �rst-order condition of the short-run

pro�t maximization problem indicates that sales is always proportional to the op-

erating pro�t. i.e. �j;t=Yj;t = 1=", where  = 1= (1 + � ("� 1)). Furthermore,
Lemma 4 claims, in the absence of adjustment costs, the �rst-order condition of

the dynamic programming indicates that capital-to-sales ratio is always a constant,

i.e. Kj;t=Yj;t = const2, where const2 = [� ("� 1) (1 + r)] = [" (r + �)]. Therefore, for
given �, b, and �, identifying � and " is equivalent to solving two equations (6) and

(24) for two unknowns simultaneously. Table 3 reports a sample average of 26.6%

pro�t-to-sales ratio and 49.7% capital-to-sales ratio.

For given adjustment costs parameters b and depreciation rate �, the �rst moment

of investment rate mean (ij;t) is informative about the mean of the growth rate ��;

while the second moment sd (ij;t) is informative about the heterogeneities in the

stochastic process �� and �l�, and measurement errors in investment rate (�IT ; �IP ).

The mean and standard deviation of the investment rate for these U.K. manufacturing

�rms are both about 12%.

Denote Edyi and SDdyi as the within-group mean and standard deviation of

the sales growth rate for plant i, hence are the proxies for the growth rate �i and

level of uncertainty �i for plant i. Our aggregation assumption implies plants in

the same �rm have the same level of growth rate and uncertainty, hence subject

to the smoothness during aggregation, Edyj and SDdyj are also informative about

�j and �j. Therefore mean (Edyj) and sd (Edyj) are informative about �� and ��;

mean (SDdyj) and sd (SDdyj) are informative about �l� and �l�. Figure 4a and 4b
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plot the empirical distribution of Edyj and SDdyj, respectively. There is a clear

pattern of "normal" for Edyj and "log-normal" for SDdyj, which is consistent with

our assumption about the distribution of �j and �j in Section 4.

The last three moments mean (EKj), sd (EKj), and sd (EKYj) capture the em-

pirical distribution of capital stock and capital intensity. Given the critical role of

these two variables in identifying the e¤ects of uncertainty, it is important that we

could match their empirical distribution. In particular, conditional on � and � being

identi�ed by the �rst two moments, adjustment costs b being identi�ed by invest-

ment dynamics, as Lemma 8 claims, ��0 accounts for any e¤ect of arbitrary choice

of w, t, unit of measurement and number of plants m on the level of capital stock

mean (EKj); ��0 accounts for any e¤ect of imposing common value for (�; "; �; w; t)

on the dispersion of capital stock sd (EKj) : Measurement errors in sales (�Y T ; �Y P )

is a crude way to account for the e¤ect of any unobserved heterogeneity in (�; "; �) on

the dispersion of capital-to-sales ratio sd (EKYj). The moments we report in Table

3 is measured in the unit of $100; 000 for capital stock. There is large dispersion in

the empirical distribution for both capital stock and capital intensity.

5.4 Estimates

Table 3 presents our estimation results for the full model, imposing the number of

plants within each �rm to be 10. The �rst column in the right panel reports the

estimates of the structural parameters and the second column lists the numerical

standard errors of these estimates.

The estimate for � is 0.675, positive and signi�cantly di¤erent from zero, which

is a strong indication for the empirical relevance of the risk-adjusted discount rate

e¤ect. The estimated � is about 0.5 and signi�cantly below 1. Together with the

estimated demand elasticity " being signi�cantly greater than 2, this implies strong

empirical relevance for a positive HAC e¤ect.

The estimates for all three forms of capital adjustment costs are found to be

signi�cantly di¤erent from zero. In particular, bbq = 0:319 implies a quadratic ad-

justment cost, which is about 0.12% of the total sales, evaluated with an investment

rate and capital-to-sales ratio at the sample average. bbi = 0:284 implies that resale
of a capital goods would incur a sell-loss, which is about 28% of its original pur-

chase price. bbf = 0:070 implies any investment or disinvestment would result in a
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7% loss of operating pro�t, which is about 1.86% of the total sales, evaluated with a

pro�t-to-sales ratio at the sample average.

The estimated b� = 0:127, a capital share in the production function that is in line
with most empirical research for estimating production function for manufacturing

�rms. The estimate for the demand elasticity with respect to price is b" = 6:387, which
implies a mark-up coe¢ cient b"b"�1 = 1:186. These two estimates together determine
the estimate for the capital coe¢ cient in the operating pro�t 1 � b = 0:407, an

indication of strong concavity.

The estimated serial correlation parameter for the stochastic process is 0.931

but signi�cantly di¤erent from 1, which implies the e¤ect of the shocks are very

persistent but not permanent. The estimates for the mean and standard deviation of

the growth rate are 0.017 and 0.044, respectively, and are both signi�cantly di¤erent

from zero. This implies on average the demand/productivity grows at 1.7% per year,

meanwhile there is large heterogeneity in the growth rate across �rms in this sample.

The estimated mean and standard deviation for the log of � can be transformed

into mean and standard deviation for � itself, the measure of overall uncertainty

in our model, which are 0.219 and 0.233, respectively. Since a value of � of 0.2 has

been considered as "typical" for simulation purposes in many theoretical research, for

example, Pindyck (1988), our estimates con�rm this typical choice but also highlight

the existence of large heterogeneity in the level of uncertainty across �rms.

Evaluation for the estimates of ��0 and ��0 depends on how well the �rst two mo-

ments of capital stock are matched. In particular, b��0 re�ects heterogeneity across
�rms in their average capital stock during our sample period, and accounts for some

of the persistence in �rm-size di¤erences. Three out of four types of measurement

errors under our consideration are signi�cant. In particular, measurement errors in

both investment rate and sales have a large permanent component. Besides the pure

recording errors in the �rm-level data, this also implies the existence of other "un-

observed heterogeneity" across the �rms that we have not modelled "structurally".

The left panel of Table 3 lists both empirical moments and the simulated mo-

ments generated from the investment model when the above structural estimates are

utilized.

The �rst two simulated moments imply both the expected capital stock and ex-

pected capital intensity are negatively correlated with the measure of uncertainty in
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our simulated data, as they are in the empirical data. Hence our investment model

generates the right prediction about the overall sign of the e¤ects of uncertainty on

capital accumulation. Compared with the value of empirical moments, the predicted

magnitude is slightly low for the capital stock and relatively too high for the capital

intensity. This could be the result that we have oversimpli�ed the technology on the

side of variable input, or we have not fully accounted for those heterogeneities that

may a¤ect the capital-to-sales ratio.

Among the rest set of the moments, the simulated mean of sales growth rate is

relatively low compared with the empirical mean, while all the other moments are

very well matched. Overall, the overidentifying restriction test statistics is 165 with

one degree of freedom under this speci�cation.

5.5 Comparison with the Literature

Since this is the �rst paper that o¤ers structural estimates of the discount rate e¤ect,

the HAC e¤ect and heterogeneities in the stochastic process, there is no existing

literature that we can use to compare our �ndings. However, the pioneering work of

Cooper and Haltiwanger (2006) and Bloom (2007) provide the possibility to compare

our estimates on capital adjustment costs.

Table 4 lists the estimates on capital adjustment costs from each paper, together

with assumed number of plants aggregated within each �rm, and common moments

reported in our paper and in either of their papers. Across these research, Cooper and

Haltiwanger (2006) estimates a large �xed adjustment costs while Bloom (2007) gets

a large value for the partial irreversibility parameter. In contrast, our estimates for

these two non-convex adjustment costs are somewhere in between. For quadratic ad-

justment costs, the estimates in Bloom (2007) depend on whether labour adjustment

costs have been included, whether aggregation has been taken over time and the num-

ber of plants for cross-sectional aggregation. Compared with empirical research in-

ferring quadratic adjustment costs from the "Q-model", for example, Hayashi (1982),

the structural estimates from these three papers are indeed very close to each other

and signi�cantly lower than those traditional �ndings.
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5.6 Speci�cation Tests

Table 5 reports speci�cation tests for several restricted models, where our preferred

full model is listed in the �rst column as benchmark.

Column (2) lists the result by imposing � = 0, i.e. imposing no discount rate

e¤ect. Compared with our preferred full model, the overall �t deteriorates a lot,

mainly due to the restricted model cannot �t the negative correlation between capital

stock, capital intensity and measure of uncertainty. This restriction also leads to a

higher estimate for the HAC e¤ect (1 � b� decreases) and a higher estimate for the
quadratic and �xed adjustment costs:

Column (3) lists the result by imposing � = 1, i.e. imposing no HAC e¤ect. Com-

pared with the benchmark model, this restricted model generates a lower estimate

for the non-convex adjustment costs and makes the simulated correlation between

capital intensity and measure of uncertainty further away from its empirical value.

Column (4) lists the result by imposing b = 0, i.e. imposing no capital adjustment

costs. Using the �rst column results as benchmark, this restricted model estimates a

higher discount rate e¤ect and a lower HAC e¤ect. Furthermore, given the investment

dynamics would be very volatile in the absence of adjustment costs, the estimated

stochastic process has to be much more stable to match the dampened investment

behaviour in the data.

Column (5) lists the result by imposing �� = 0, i.e. imposing no heterogeneity in

the growth rate. As we may expect, under this restriction, the model �rst, cannot �t

the large dispersion of the growth rate in the empirical data and second, estimates

a higher quadratic and �xed adjustment costs. This highlights the importance of al-

lowing for heterogeneity in growth rate in getting consistent estimates for adjustment

costs.

Column (6) lists the result by imposing �IT = �IP = �Y T = �Y P = 0, i.e. im-

posing no measurement errors in investment rate and sales. Given the full model

has estimated a large permanent component and a small transitory component of

measurement errors in both variables, this restricted model mainly tests the e¤ect of

not allowing for permanent measurement errors. Not surprising, this restricted speci-

�cation is massively rejected, mainly because the simulated correlation between both

capital stock and capital intensity and measure of uncertainty are too large compared

with their empirical counterparts, besides the model cannot �t the large dispersion
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in the empirical capital-to-sales ratio. Since allowing for permanent measurement

errors is one way to generate persistent di¤erences in the data, these results highlight

the importance of taking into account "unobserved heterogeneity" in �rm-level data:

even modelling it in a crude way is much better than ignoring it at all.

Table 6 lists the results for estimating the same full model but imposing the

number of plants within each �rm to be 1; 5; 10 and 15, respectively. As we may

expect, since aggregation is one of the important sources of smoothing, assuming

fewer number of plants for aggregation results in a higher estimate for bq, lower

estimates for bi and bf , and lower estimates for all parameters measuring dispersion

��, �l� and ��0. The estimate for the mean of the intercept ��0 increases, since with

fewer number of plants for aggregation, each plant has to be "larger" to match the

empirical mean of the capital stock. According to the overidentifying restriction test

statistics, a model imposing m = 5 or m = 10 would be preferred to those imposing

m = 1 or m = 15. The fact that we allow for m = 10 plants to take into account the

e¤ect of aggregation while Bloom (2007) allows for m = 250, is partly due to larger

�rm size in the sample used by Bloom (2007), but mainly because the shocks in our

model are idiosyncratic, while the shocks in Bloom(2007) have both idiosyncratic and

aggregate components. Finally, comparing the two columns for m = 5 and m = 10,

we �nd the estimates for � and � are very stable, which implies the robustness of the

discount rate e¤ect and the HAC e¤ect within our preferred speci�cations that take

into account the e¤ect of aggregation.

5.7 Robustness Tests

Table 7 presents results for two robustness tests.

Column (1) is our preferred full model, imposing risk-free interest rate r = 0:065

and using a set of 19 moments discussed in Section 5.3. Column (2) lists the results

for the same full model, using the same set of 19 moments, but imposing r = 0:04. As

we see, the estimated b� increases. This implies given the linear speci�cation for the
discount rate scheme, imposing a lower level of the intercept has to be compensated by

a higher level of the slope, so as to match the simulated moments with the empirical

moments. In spite of the di¤erences in the estimates by imposing di¤erent values for

r, the results in Column (2) also indicate the empirical importance of all three e¤ects:

the discount rate e¤ect, the HAC e¤ect and the adjustment costs e¤ect. Hence using
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di¤erent values for the risk-free interest rate may lead to quantitative di¤erences in

the results, but not qualitative.

Column (3) lists the results for the same full model, imposing r = 0:065, but using

a larger set of 36 moments. These 36 moments are chosen from a statistic point of

view. We have 2 basic variables for which we simulate �rm-year values (K and Y ),

from which we can also derive 2 growth rates (i and dy) and 1 ratio (K=Y ). This

gives us 5 variables for which we can compute means, standard deviations, serial

correlation coe¢ cients, and cross-correlation coe¢ cients, giving 25 moments. We

also compute the within-group standard deviation of sales growth, which is time-

invariant but varies across �rms. We can use the between-group mean and standard

deviation, and the correlation coe¢ cients with the within-group average levels of the 5

variables above, giving a further 7 moments. We also use the mean of pro�t-to-sales

ratio. Finally we use the three proportions of disinvestment, investment inaction

and investment spikes. Together this suggests a set of 25+7+1+3=36 moments.

Comparing Column (3) with Column (1), the estimates for some of the structural

parameters do vary, as a result to match the additional 17 moments. However, the

estimates for �, � , and b still highlight the empirical importance for each of the

channels: the discount rate e¤ect, the HAC e¤ect and the adjustment costs e¤ect.

6 Counterfactual Simulations

De�nition 4 Aggregate Capital Intensity sum[ bKt (�)]=sum[Yt (�)] is the ratio

of the aggregated optimal productive capital stock to the aggregated sales for a given

sample in period t.

Although the expected capital intensity is a key variable for identi�cation in �rm-

level data, it is the aggregate capital intensity that is widely calculated and reported

in the studies of economic growth and economic development.

Figures 5a and Figure 5b illustrate how the level of uncertainty a¤ects expected

capital stock and aggregate capital intensity in our simulated data, using the esti-

mated parameter values reported in Table 3 and the same random numbers employed

during estimation. We take the estimated mean of � as our reference level of uncer-

tainty, i.e. � = 0:22, keeping �l� constant and decreasing �l� gradually so that the

average level of uncertainty decreases from 0.22 to 0.11. The average capital stock
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and aggregate capital intensity levels are both scaled by the levels in the simulation

using the reference level of uncertainty, so that the values on the vertical axis can be

read as percentage changes in the average capital stock and aggregate capital inten-

sity as we reduce the level of uncertainty below this reference value. As we read from

these two �gures, all else being equal, a permanent reduction in the average level of

uncertainty by 50% is estimated to increase average capital stock levels by about 25%

and to increase aggregate capital intensity by about 13%. This implies the overall

e¤ects of uncertainty on capital stock and capital intensity are both negative, and

the magnitude tends to be substantial.

The second step is to estimate the relative importance of the discount rate e¤ect,

the HAC e¤ect, and the capital adjustment costs e¤ect in generating the overall

e¤ects of uncertainty. This is done by two nested control experiments.

In Figure 6a and 6b, we impose the discount rate at the estimated sample average,

i.e. r = r + b� �mean (b�) = 0:065 + 0:675 � 0:219 = 0:213 when we vary the level of
uncertainty, so that the e¤ects illustrated here are only due to the HAC e¤ect and

capital adjustment costs e¤ect. According to these two �gures, if the discount rate

did not change with the level of uncertainty, and if the level of uncertainty was halved

permanently, the average capital stock would decrease about 5% and the aggregate

capital intensity would decrease about 3%. Together with the estimates in Figure 5a

and 5b, this implies the elasticity of capital stock and capital intensity with respect

to the level of uncertainty are -0.6 and -0.32, respectively, through the channel of

discount rate e¤ect.

In Figure 7a and 7b, besides imposing the discount rate at r = 0:213, we also

impose � = 1, when we vary the level of uncertainty, so that the e¤ects illustrated

here are only due to capital adjustment costs. According to these two �gures, if

the discount rate and the HAC e¤ect did not change with the level of uncertainty,

and if the level of uncertainty was halved permanently, the average capital stock

would increase about 5%. Together with the estimates in Figure 6a, this implies the

elasticity of capital stock with respect to the level of uncertainty are +0.2, through

the channel of HAC e¤ect. In contrast, there is very little change in the aggregate

capital intensity, comparing Figure 7b with Figure 6b. This is because the HAC

e¤ect only a¤ects capital stock but not capital intensity, as we proved in Proposition

2.
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Since Figure 7a and 7b illustrate the net e¤ect of uncertainty through the channel

of capital adjustment costs, this implies through this channel, the elasticity of capital

stock and capital intensity with respect to the level of uncertainty are -0.1 and +0.06,

respectively.

Therefore comparison between these nested experiments highlights the impor-

tance of the discount rate e¤ect in determining the e¤ects of uncertainty on capital

accumulation.

Finally, to check whether the �ndings in Figure 5a and 5b are robust to the

choice of the number of plants, the risk-free interest rate, and the set of moments

to match, in Figure 8a and 8b, 9a and 9b, and 10a and 10b, we implement the

counterfactual simulations based on the estimates in Column (2) of Table 6, Column

(2) and (3) of Table 7, respectively. As we see, all these �gures also present a negative

e¤ect of uncertainty on both expected capital stock and aggregate capital intensity.

Therefore, in spite of some quantitative di¤erences, the e¤ects of uncertainty on

capital accumulation we �nd in Figure 5a and Figure 5b are qualitatively robust.

7 Conclusions

This paper provides a structural framework to estimate the e¤ects of uncertainty on

capital accumulation at the �rm level. Our investment model allows for uncertainty

to a¤ect capital accumulation through three possible channels that have been high-

lighted by the uncertainty-investment literature. The sign and magnitude of each

of these mechanisms are illustrated by counterfactual simulations, based on a set of

optimal estimates for the structural parameters of the model, using the simulated

method of moments.

The �ndings of this paper include that, �rst, there is signi�cant empirical evidence

of both a risk-adjusted discount rate e¤ect and a HAC e¤ect from our structural es-

timation. Second, both convex and non-convex adjustment costs are necessary in

modelling �rm-level investment. Third, the estimated model suggests that a moder-

ate, positive HAC e¤ect dominates a small, negative adjustment costs e¤ect, leaving

a big, negative e¤ect of uncertainty on both average capital stock levels and aggregate

capital intensity through a risk-adjusted discount rate e¤ect.

The robustness of the last �nding is subject to the following considerations.

First of all, among all the 19 moments, the match for the correlation between cap-
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ital intensity and our measure of uncertainty is relatively poor. This might be due to

the assumption of costless adjustment of variable input, or perhaps more importantly,

because our investment model has not fully accounted for other unobserved hetero-

geneities that a¤ect capital intensity. The robustness of our �nding about the e¤ects

of uncertainty on capital intensity requires the assumption that these unobserved

heterogeneities are uncorrelated with the level of uncertainty.

Second, like most of the uncertainty-investment literature, the investment model

we set up in this paper is explicitly partial equilibrium in nature. This allows us to

model a very rich structure in the stochastic process for the purpose of identifying the

HAC e¤ect and capital adjustment costs, while the cost is that we have simpli�ed the

structure of the risk-adjusted discount rate e¤ect. Our empirical �nding implies that

this e¤ect could be substantial. Given that �rms in Datastream are large publicly-

traded �rms in the UK stock market, this raises the interesting question of why the

risk-adjusted discount rate e¤ect that we have modelled appears to be so strong,

and whether this �nding is robust if the e¤ects of uncertainty on risk premium are

modelled and estimated in a consumption-CAPM framework.

Finally, in a general equilibrium framework, the analysis of uncertainty on capital

accumulation should focus not only on the e¤ects of stochastic process, but also

on technology and relative factor prices. This is particularly important, since in the

presence of capital adjustment costs, the optimal response of the �rms is to substitute

away from capital towards variable input, which implies technology adoption and

relative prices are both potentially endogenous.

All these analyses are beyond the scope of this paper, while we hope this paper

is the �rst step towards interesting and more challenging future research.
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Appendices

1 Proof for Lemmas and Propositions

1.1 Proof for Lemma 1

The short-run pro�t maximization problem is

�(Xt; At; bKt) = max
Lt
PtQt � wLt

= max
Lt
X

1
"
t Q

"�1
"
t � wLt

= max
Lt
X

1
"
t A

"�1
"
t L

("�1)(1��)
"

t
bK ("�1)�

"
t � wLt

First-order condition leads to

Lt =

�
"� 1
w"

�"
X
t (A


t )
"�1 bK1�

t

�t =
wLt
"� 1 = const0 �X


t (A


t )
"�1 bK1�

t

Yt = PtQt =
"wLt
"� 1 = "�t

where  and const0 are given by equation (7) and (8).

1.2 Proof for Lemma 2

Taking the log on both sides of equation (4) leads to

log �t = log const0 +  logXt +  ("� 1) logAt + (1� ) log bKt (A1)

= log const0 +  [logXt + ("� 1) logAt] + (1� ) log bKt

Substituting (9) and (10) into (A1), its stochastic part can be written as

 f[cx + �xt+ �xt ] + ("� 1) [ca + �at+ �at ]g

= 

8<:
[�x0 + ("� 1) �a0] + [cx + ("� 1) ca] + [�x + ("� 1)�a] t

+

�
t�1P
s=0

�ixe
x
t�s + ("� 1)

t�1P
s=0

�iae
a
t�s

� 9=;
By imposing �x = �a = �, since ext and e

a
t are independently normally dis-

tributed, a linear combination of these two random variables is still normally
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distributed with proper mean and variance, i.e.

t�1X
s=0

�ixe
x
t�s + ("� 1)

t�1X
s=0

�iae
a
t�s =

t�1X
s=0

�i
�
ext�s + ("� 1) eat�s

�
=

t�1X
s=0

�iet�s

where et
i:i:d� N

�
0, �2x + ("� 1)

2 �2a
�
.

This implies that the log of operating pro�t (A1) can be rewritten as

log �t = log const0 +  logZt + (1� ) log bKt

or equivalently the operating pro�t as

�(Zt; bKt) = const0 � Zt bK1�
t

The law of motion for the combined random variable Zt is given by (12),
with parameters in this stochastic process de�ned in (13).

1.3 Proof for Lemma 3

In the frictionless case G(Zt; Kt; It) = 0, so that the Bellman equation is

V (Zt; Kt) = max
It
fconst0 � Zt (Kt + It)

1� � It +
1

1 + r
Et [V (Zt+1; Kt+1)]g

with the law of motion for capital stock

Kt+1 = (1� �) (Kt + It)

Taking derivative with respect to Kt on both sides of the Bellman equa-
tion, we get the quantity known as marginal q

@Vt
@Kt

= 1 (A2)

which is a constant due to our timing assumption.
The �rst order condition with respect to Kt+1 is

@Vt
@Kt+1

= const0 � 1� 
1� �

�
Zt

Kt + It

�
� 1

1� � +
1

1 + r
Et

�
@Vt+1
@Kt+1

�
= 0 (A3)

Replacing @Vt+1
@Kt+1

in (A3) with (A2) leads to the Euler equation�
Zt=Kt

1 + It=Kt

�
=

1� 1��
1+r

const0 � (1� )

Rearranging this equation gives the optimal investment rate in equation (21)
and optimal capital stock in equation (22).
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1.4 Proof for Lemma 4

For capital stock, taking expectation on both sides of equation (22) directly
gives

E
h bK�

t (�)
i
= const1 � E [Zt]

For capital intensity, bK�
t

Yt
=

bK�
t

" � const0 � Zt bK�1�
t

=
1

" � const0

 bK�
t

Zt

!
=

1

" � const0 (const1)


=
(1� ) (1 + r)
" (r + �)

=
� ("� 1) (1 + r)

" (r + �)

which is const2 given in equation (24).

1.5 Proof for Lemma 6

According to equation (9)

E[xt] = E[cx + �xt+ �
x
t ]

= E[cx + �xt+ �
x
0 +

t�1X
s=0

�ixe
x
t�s]

= �x0 + cx + �xt

V (xt) = V [cx + �xt+ �
x
t ]

= V [
t�1X
s=0

�ixe
x
t�s]

= �2x=
�
1� �2

�
when 0 < � < 1 and t!1

Then

E [Xt] = exp [E (xt) + 0:5V (xt)]

= exp
�
�x0 + cx + �xt+ 0:5�

2
x=
�
1� �2

��
= exp(�x0 + �xt) if cx = �0:5�2x=

�
1� �2

�
Similarly, we have E [At] = exp(�

a
0 + �at), if ca = �0:5�2a= (1� �2).
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1.6 Proof for Lemma 7

Given c = cx + ("� 1) ca, cx = �0:5�2x= (1� �2), ca = �0:5�2a= (1� �2) and
�2 = �2x + ("� 1)

2 �2a, we can derive that

E [Zt] = exp [E (zt) + 0:5V (zt)]

= exp
�
�0 + c+ �t+ 0:5�

2=
�
1� �2

��
= exp

�
�0 + �t+

�
cx +

�2x
2 (1� �2)

�
+ ("� 1)

�
ca +

("� 1)�2a
2 (1� �2)

��
= exp

�
�0 + �t+

("� 1) ("� 2)
2 (1� �2) �2a

�
= exp

�
�0 + �t+

("� 2) (1� �)
2 ("� 1) (1� �2)�

2

�
1.7 Proof for Lemma 8 and 9

It is well-known that for any random variable xi
i:i:d� N (�, �2), if Xi =

exp (xi), the �rst moment for Xi is

E [Xi] = exp (E [xi] + 0:5V [xi]) (A4)

= exp
�
�+ 0:5�2

�
And the second moment is

V [Xi] = E
�
X2
i

�
� (E [Xi])

2

= E [exp (2xi)]�
�
exp

�
�+ 0:5�2

��2
= exp

�
2�+ 0:5 � (2�)2

�
� exp

�
2�+ �2

�
= exp

�
2�+ 2�2

�
� exp

�
2�+ �2

�
=

�
exp

�
2�+ �2

�� �
exp

�
�2
�
� 1
�

or equivalently, the standard deviation is given be

sd [Xi] = exp
�
�+ 0:5�2

�p
[exp (�2)� 1] (A5)

Assume � = 0 (no discount rate e¤ect) and � = 1 (no HAC e¤ect) for
now. Denote operation taking over �rm and time with subscript j and t,
respectively. Suppose the m plants within the same �rms have similar size.
Then the within-group capital stock for �rm j is

E bKj = Et

h bKj;t

i
= Et

hXm

i=1

bKi;j;t

i
' Et

h
m � bKi;j;t

i
= mEt

h bKi;j;t

i
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In the absence of adjustment costs,

Ej

h
E bKj

i
= Ej

h
mEt

h bKi;j;t

ii
= m � const1 � Ej [Et [Zi;j;t]]

sdj

h
E bKj

i
= sdj

h
mEt

h bKi;j;t

ii
= m � const1 � sdj [Et [Zi;j;t]]

The law of motion for Zi;j;t is given by equation (26), by which we get

Et[zi;j;t] = cj + �0j + �t

V art[zi;j;t] =
�2j

1� �2

Using the result in (A4)

Et [Zi;j;t] = exp (Et[zi;j;t] + 0:5V art[zi;j;t])

= exp
�
cj + �0j + �t+ 0:5�

2
j=
�
1� �2

��
= exp

�
�0j + �t

�
= exp (�t) exp

�
�0j
�

Calculating the between-group mean and standard deviation leads to

Ej [Et [Zi;j;t]] = exp (�t)Ej
�
exp

�
�0j
��

sdj [Et [Zi;j;t]] = exp (�t) sdj
�
exp

�
�0j
��

Since �0j
i:i:d� N

�
��0, ��0

�
, applying the the result in (A4) and (A5), we have

Ej
�
exp

�
�0j
��

= exp
�
��0 + 0:5�

2
�0

�
sdj
�
exp

�
�0j
��

= exp
�
��0 + 0:5�

2
�0

�rh
exp

�
�2�0

�
� 1
i

Suppose the capital stock is recorded in £ and we normalise it with £M.
Empirically, we calculate the �rst two moments ofE bKj being 0.067 and 0.290.
This implies conditional on �, � , and b being identi�ed by other moments,
the identi�cation for ��0 and �

2
�0
can be achieved by solving the simultaneous

equations

� � exp
�
��0 + 0:5�

2
�0

�
= 0:067 (A6)

� � exp
�
��0 + 0:5�

2
�0

�rh
exp

�
�2�0

�
� 1
i
= 0:290 (A7)

where � = m � const1 � exp (�t) =M , and const1 is a function of (�; "; �; w; r).
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Divide equation (A7) by (A6), we get the solution to ��0, which is inde-
pendent of � and only depends on the coe¢ cient of variation of the capital
stock. Substitute this solution into (A6), ��0 can be solved out for any �.
Hence given (�; �; "; �; r) are pinned down by other moments, the e¤ect of
any arbitrary choice of w, t, the unit of measurement M , and the number
of plants m, on the level of expected capital stock can be accounted for by
adjusting ��0.

2 Numerical Methods

2.1 Solving Dynamic Programming (19) Numerically

The problem we need to solve is

V (Zt; Kt) = max
It
f�(Zt; Kt; It) +

1

1 + r
Et [V (Zt+1; Kt+1)]g

s:t: Kt+1 = (1� �) (Kt + It)

Zt = exp (zt)

zt = c+ �t+ �t

�t = ��t�1 + et = �0 +

t�1X
s=0

�set�s where et
i:i:d� N

�
0, �2

�
According to Lemma 3, in the absence of adjustment costs,

K�
t+1 = (1� �) � bK�

t = (1� �) � const1 � Zt

Furthermore, in the absence of uncertainty,

Zt = exp (c+ �0 + �t)

K��
t+1 = K��

t exp (�)

Together, in the absence of both adjustment costs and uncertainty, the non-
stochastic frictionless capital stock would be

K��
t = K��

t+1= exp (�) = const3 � Zt (B1)

where
const3 = (1� �) � const1= exp (�)

This means the exogenous state variable Zt is a trend stationary process;
the state variable Kt endogenously follows Zt hence is also a trend stationary
process. For any � > 0, (19) a dynamic programming with unbounded return
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function and there is in general no theory about the existence and uniqueness
of the solution.
However, notice due to our choice of the functional forms, the net revenue

�(Zt; Kt; It) is linear homogeneous in (Zt; Kt; It). If there was a solution
It = h(Zt; Kt), the linear homogeneity of � implies the linear homogeneity of
V in (Zt; Kt; It), while the linear homogeneity of V in (Zt; Kt; It) guarantees
the linear homogeneity of It in (Zt; Kt), by the property of constant return
to scale problems (Theorem 4.13, Stokey and Lucas, 1989).
De�ne 	t � exp (�0 + �t). Denote eZt = Zt

	t
, eKt =

Kt

	t
, eIt = It

	t
, eZt+1 =

Zt+1
	t+1

, and eKt+1 =
Kt+1

	t+1
.

Then due to the linear homogeneity of V , we have

V ( eZt; eKt) = V (
Zt
	t
;
Kt

	t
)

=
1

	t
V (Zt; Kt)

= max
It=	t

f 1
	t
�(Zt; Kt; It) +

exp (�)

1 + r

1

	t+1
Et [V (Zt+1; Kt+1)]g

= max
It=	t

f�
�
Zt
	t
;
Kt

	t
;h

�
Zt
	t
;
Kt

	t

��
+
exp (�)

1 + r
Et

�
V (
Zt+1
	t+1

;
Kt+1

	t+1
)

�
g

= max
It=	t

f�( eZt; eKt; eIt) + exp (�)
1 + r

Et

h
V ( eZt+1; eKt+1)

i
g

where we have used the fact that 	t+1=	t = exp(�). Hence, we have nor-
malised the dynamic programming (19) into the following problem

V ( eZt; eKt) = max
It=	t

f�( eZt; eKt; eIt) + exp (�)
1 + r

Et

h
V ( eZt+1; eKt+1)

i
g (B2)

s:t: eKt+1 = exp(��) (1� �)
�eIt +fKt

�
(B3)

eZt = exp
�
c+ e�t� (B4)

e�t = �e�t�1 + et = t�1X
s=0

�set�s where et
i:i:d� N

�
0, �2

�
where eZt and eKt are the two state variables, and eIt is the control variable,
which are all stationary. The investment rate It=Kt = eIt=fKt, which is con-
venient. The e¤ective discount factor is now exp(�)

1+r
.

Since conditional expectations need to be formed based on eZt, we use the
approximation method in Tauchen (1986) to discretise the continuous AR(1)
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process for e�t into a 9-state Markov process for given parameters � and �.
Then we get eZt(i) by multiplying exp(e�t(i)) with the constant exp(c), where
i = 1; 2; � � � 9.
Since in the absence of both adjustment costs and uncertainty, the non-

stochastic frictionless capital stock is given by (B1), we de�ne the support offKt as

exp
h
log
�
const3 � eZt(1)�� 0:5; log �const3 � eZt(9)�+ 0:5i

We then discretise this state space with 200 grid points, so that the grids forfKt are eKt(j), where j = 1; 2; � � � 200.
Now �( eZt; eKt; eIt) is real valued, continuous, concave and bounded; the

set 
 � f( eZt(i); eKt(j))g(i=1;2;���9;j=1;2;���200) is compact and convex. As long
as 0 < exp(�)

1+r
< 1, by the Contraction Mapping Theorem (Theorem 9.8

in Stokey and Lucas, 1989), we can always get a unique investment policyeIt = h( eZt; eKt) using value function iteration.
In practice, within each value function iteration, we adopt a policy im-

provement algorithm (Chapter 20, Ljungqvist and Sargent, 2000). This costs
more time for each value function iteration but substantially saves overall
numbers of iterations, hence in total it saves about two-third of the time
compared with simple value function iteration in solving (B2). Since at the
early stage of estimation, condition 0 < exp(�)

1+r
< 1 might be violated in case

of a high value of �, we set the termination condition as either the di¤erence
in the value function between two consecutive iterations is smaller than the
tolerance 1e� 5 or the number of value function iterations exceeds 100.
After getting the optimal solution eIt = h( eZt; eKt), we interpolate so that

the �nal state space for eZt has 100 grid points, that for eKt has 2000 grid
points, and the �nal policy space for eIt has the dimension of (100� 2000).
2.2 Finite Mixture of Types

Both the level of uncertainty � and the growth rate � would a¤ect the in-
vestment policy. Hence the dynamic programming must be solved for each
type of � and �. In other words, � and � are two additional state variables
besides eZt and eKt. Given log �j

i:i:d� N (�l�, �
2
l�), and �j

i:i:d� N
�
��; �

2
�

�
,

we discretise these two continuous distribution by Tauchen (1989) method.
Due to "the curse of dimensionality", we have to be conservative about the
number of grids and set them to be 3 for both of these two state variables.
We experiment with higher number of grids for these two state variables and
�nd the simulated moments are not very sensitive. The procedure of how to
solve the dynamic programming can be describe as:
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for � = exp (log �1; log �2; log �3)
for � = (�1; �2; �3)

for value function iteration converges
policy improvement algorithm

end
interpolate for eIt = h( eZt; eKt)

end
end

In other words, the dynamic programming (B2) is solved for each type of
�rms from the type set z = f(�u; �v) : u = 1; � � � ; 3; v = 1; � � � ; 3g:

2.3 Simulate the Data

Under our assumption, each plant makes its own investment decision while
unobserved heterogeneities and measurement errors are at the �rm level. The
procedure to simulate the data includes four steps.
Step 1: Simulate data for each plant i of �rm j in period t. When

t = 1, we endow all simulated plants of �rm j with the initial conditione� i;j;1 = �
q
�2j=(1� �2) and the corresponding initial capital stock eKi;j;1 =

const3 � eZi;j;1 = const3 � exp(c + e� i;j;1). For all subsequent periods, we ran-
domly draw demand/productivity shocks ei;j;t (�j) for each plant i of �rm j

in period t. Given the realization of eZi;j;t and the inherited eKi;j;t, we �nd
the optimal investment eIi;j;t using the policy rule derived above. Then eZi;j;t
or equivalently e� i;j;t evolves exogenously according to (B4), eKi;j;t evolves en-
dogenously according to (B3), operating pro�t e�i;j;t is calculated according
to equation(14). Finally, the control variable in this period becomes the state
variable in next period.
Step 2: Plant-level data are aggregated into �rm-level data. For �rm j

in period t, the normalised investment data is eIj;t =Pm
i=1
eIi;j;t; capital stock

is eKj;t =
Pm

i=1
eKi;j;t; operating pro�t is e�j;t =Pm

i=1 e�i;j;t.
Step 3: Recover the intercept exp

�
�0j
�
and time trend exp

�
�jt
�
in the

variables of the original model. For �rm j in period t, the actual invest-
ment is therefore Ij;t = eIj;t exp(�0j + �jt); the actual capital stock is Kj;t =eKj;t exp(�0j + �jt); the actual operating pro�t is �j;t = e�j;t exp(�0j + �jt);
the sales is Yj;t = " � �j;t according to equation (6). The investment rate is
ij;t = Ij;t=Kj;t.
Step 4: Add measurement errors, so that the observed investment rate is

ij;t = i
�
j;t
exp(eI

j;t
), and the observed level of sales is Yj;t = Y �j;t exp(e

Y
j;t).
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With these data, the simulated moments listed in Table 2 are calculated
to match the empirical moments.

2.4 Simulated Method of Moments

The empirical sample we use is an unbalanced panel with N = 672 �rms
and on average T = 11 years of observation for each �rm. As suggested
by Michaelides and Ng (2000), for SMM, simulating H path of (N � T ) is
equivalent to simulate (HN � T ). In addition, each �rm has m plants, and
we allow for 10 years to start from the ergodic distribution and discard them
in calculating the moments. Therefore the simulated data panel is of size
[HNm� (10 + T )] where we use H = 10 in our application.
We use the optimal weighting matrix given by a bootstrap estimate for

the inverse of the variance-covariance matrix of the empirical moments, i.e.


� =
h
Nvar

�b�D�i�1
Due to the discretisation of the state spaces and the discontinuities of the

investment policy in the presence of non-convex adjustment costs, we adopt a
simulated annealing algorithm described in Go¤e, Ferrier and Rogers (1994)
to avoid local minima in solving the minimisation problem (27).
There are 19 moments and 18 structural parameters in our application so

that the Jacobian matrix for the binding functions is

J =
@b�S0 �b��
@�

=

2666664
@b�S0(b�)

1

@�1

@b�S0(b�)
2

@�1
� � � @b�S0(b�)

19

@�1
@b�S0(b�)

1

@�2

@b�S0(b�)
2

@�2
� � � @b�S0(b�)

19

@�2
...

... � � � ...
@b�S0(b�)

1

@�18

@b�S0(b�)
2

@�18
� � � @b�S0(b�)

19

@�18

3777775
When calculating the numerical derivatives, in order to smooth the possible
wiggles in the binding function, we use a simple regression techniques as fol-
lows. Given parameter set�i (i = 1; 2; � � � 18), moment set�j (j = 1; 2; � � � ; 19),
for each parameter �i, de�ne a range of values

h
0:8b�i; 1:2b�ii1 around the

optimal estimate b�i and discretise this range into 20 grids hb�1i ; b�2i ; � � � ; b�20i i,
meanwhile �x all other parameters at their optimal estimates b��i, for each
moment �j, we calculate its value at each b�pi (p = 1; 2; � � � 20), which will

1For the serial correlation parameter, we only consider the range [0:8b�;b�], given the
estimated b� is above 0.9 and due to the restriction of 0 < � < 1 in using Tauchen method.
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produce 20 values b�pj (p = 1; 2; � � � 20). Plotting a �gure of b�pj against b�pi
illustrates the shape of the binding function. A �at line implies the momentb�j does not vary with the parameter b�i; while a steep line implies b�j is in-
formative about the variation in b�i, at least at the local area of our optimal
estimates. In most cases, these binding function has a linear shape, hence
we run the regression using OLS, e.g.

b�pj = �0j;i + �j;ib�pi + &j;i
Then the slope coe¢ cient from the regression b�j;i �lls the element @b�S0(b�)j@�i

in
the Jacobian matrix J , which turns out to be indeed of full row rank. This
implies that �rst, no column has all zeros� no redundant moment; second,
no row has all zeros� all parameters have the possibility to be identi�ed; and
third, no rows are linear dependant� none of any two parameters lead to
same variation in all moments.
With this Jacobian matrix, the asymptotic variance-covariance matrix of

the optimal estimates is calculated according to (29), which produces the
standard errors we report in Table 3.
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Table 1 Set of Parameters 

Category Symbol Definition 
Discount Rate Effect ݎ ߠ ൌ ҧݎ  ߪߠ
HAC Effect ߬ ߪ௫

ଶ ൌ ଶߪ߬

Adjustment Costs ܾ quadratic adjustment costs 
 ܾ partial irreversibility 
 ܾ fixed adjustment costs 
Technology and Demand ߚ capital share in production function 
 demand elasticity with respect to price ߝ 
Stochastic Process ߩ serial correlation of shocks 
ఓ mean ofߤ   is the growth rate ߤ where ,ߤ
 ߤ ఓ standard deviation ofߪ 
 measures the level of uncertainty ߪ where ,(ߪ)ఙ mean of logߤ 
 (ߪ)ఙ standard deviation of logߪ 
  is the interceptߞ , whereߞ బ mean ofߤ 
 ߞ బ standard deviation ofߪ 
Measurement Errors ߪூ் sd of transitory measurement errors in investment rates 
 ூ sd of permanent measurement errors in investment ratesߪ 
 ் sd of transitory measurement errors in salesߪ 
  sd of permanent measurement errors in salesߪ 
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Table 2 Set of Moments 

Symbol Definition Informativeness 
,ܭܧ൫ݎݎܿ ,߬ ൯ corr. btw. BG capital stock and measure of uncertaintyݕ݀ܦܵ ,ߠ ܾ 
ܭܧ൫ݎݎܿ ܻ, ,ߠ ൯ corr. btw. BG capital intensity and uncertaintyݕ݀ܦܵ ܾ 
൫ݎ ݅,௧ ൏ െ0.01൯ proportion of negative investment rates ܾ 
|൫ݎ ݅,௧| ൏ 0.01൯ proportion of zero investment rates ܾ, ܾ 
൫ݎ ݅,௧  0.20൯ proportion of investment spikes ܾ, ܾ 
൫ݎݎܿ ݅,௧, ,,௧൯ corr. btw. investment rates and log sales-to-capital ratio ܾ݇ݕ ܾ, ,ூ்ߪ ,ூߪ ,்ߪ ߪ  
൫ݎݎܿ ݅,௧, ݅,௧ିଵ൯ serial correlation of investment rates ܾ, ,ߩ ,ఓߪ ,ூ்ߪ    ூߪ
,,௧݇ݕ൫ݎݎܿ ,ߩ ,௧ିଵ൯ serial correlation of log sales-to-capital ratio݇ݕ ,்ߪ  ߪ
݉݁ܽ݊൫ߨ,௧/ ܻ,௧൯ mean of profit-to-sales ratio ߚ,  ߝ
݉݁ܽ݊൫ܭܧ ܻ൯ BG mean of WG mean of capital-to-sales ratio ߚ, ,ߝ  ߠ
݉݁ܽ݊൫ ݅,௧൯ mean of investment rates ܾ, ,ఓߤ  ߜ
൫݀ݏ ݅,௧൯ standard deviation of investment rates ܾ, ,ఓߪ ,ఙߤ ,ఙߪ ,ூ்ߪ  ூߪ
݉݁ܽ݊൫ݕ݀ܧ൯ BG mean of WG mean of sales growth rates  ߤఓ 
,ఓߪ  ൯ BG sd of WG mean of sales growth ratesݕ݀ܧ൫݀ݏ  ்ߪ
݉݁ܽ݊൫ܵݕ݀ܦ൯ BG mean of WG sd of sales growth rates ߤఙ,  ்ߪ
,ఙߪ ൯ BG sd of WG sd in sales growth ratesݕ݀ܦ൫ܵ݀ݏ  ்ߪ
݉݁ܽ݊൫ܭܧ൯ BG mean of WG mean of capital stock ߤబ, ߬,  ߠ
 బߪ ൯ BG sd of WG mean of capital stockܭܧ൫݀ݏ
ܭܧ൫݀ݏ ܻ൯ BG sd of WG mean of capital-to-sales ratio ߪఙ, ,்ߪ  ߪ
   

Note: 

BG means "between-group"; WG means "within-group"; 

corr means "correlation coefficient"; sd means "standard deviation"; 

ܭܧ  ൌ ݉݁ܽ݊௧൫ܭ,௧൯ : within-group mean of capital stock for firm j; 

ܭܧ  ܻ ൌ ݉݁ܽ݊௧൫ܭ,௧/ ܻ,௧൯: within-group mean of capital-to-sales ratio for firm j; 

ݕ݀ܧ ൌ ݉݁ܽ݊௧൫݀ݕ,௧൯ : within-group mean of sales growth rate for firm j; 

ݕ݀ܦܵ  ൌ  .,௧൯ : within-group standard deviation of capital stock for firm jݕ௧൫݀݀ݏ
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Table 3 Empirical Results 

Moments Empirical Simulated  Parameters Estimates s.e. Derived Para. 
,ܭܧ൫ݎݎܿ     0.021 0.675 ߠ  ൯ -0.080  -0.060ݕ݀ܦܵ
ܭܧ൫ݎݎܿ ܻ, ൯ -0.113  -0.278  ߬ 0.495 0.118  1ݕ݀ܦܵ െ ߬ 0.505
൫ݎ ݅,௧ ൏ െ0.01൯ 0.024  0.024  ܾ 0.319 0.028    
|൫ݎ ݅,௧| ൏ 0.01൯ 0.027  0.025  ܾ 0.284 0.011    
൫ݎ ݅,௧  0.20൯ 0.153  0.145  ܾ 0.070 0.003    
൫ݎݎܿ ݅,௧,     0.001 0.127 ߚ  ,௧൯ 0.139  0.153݇ݕ
൫ݎݎܿ ݅,௧, ݅,௧ିଵ൯ 0.392  0.362  1  0.042 6.387 ߝ െ 0.407 ߛ
,,௧݇ݕ൫ݎݎܿ     0.009 0.931 ߩ  ,௧ିଵ൯ 0.968  0.973݇ݕ
݉݁ܽ݊൫ߨ,௧/ ܻ,௧൯ 0.266  0.264  ߤఓ 0.017 0.000    
݉݁ܽ݊൫ܭܧ ܻ൯ 0.497  0.513  ߪఓ 0.044 0.000    
݉݁ܽ݊൫ ݅,௧൯ 0.125  0.111  ߤఙ -1.992 0.007  ߤఙ 0.219
൫݀ݏ ݅,௧൯ 0.126  0.093  ߪఙ 1.157 0.013  ߪఙ 0.233
݉݁ܽ݊൫ݕ݀ܧ൯ 0.030  0.016  ߤబ -7.654 0.008    
    బ 1.837 0.007ߪ  ൯ 0.062  0.046ݕ݀ܧ൫݀ݏ
݉݁ܽ݊൫ܵݕ݀ܦ൯ 0.119  0.116  ߪூ் 0.009 0.046    
    ூ 0.286 0.002ߪ  ൯ 0.047  0.044ݕ݀ܦ൫ܵ݀ݏ
݉݁ܽ݊൫ܭܧ൯ 0.067  0.069  ߪ் 0.061 0.000    
     0.504 0.002ߪ  ൯ 0.290  0.319ܭܧ൫݀ݏ
ܭܧ൫݀ݏ ܻ൯ 0.312  0.318  OI 165    
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Table 4 Comparison with the Literature 

 This 
Paper 

Cooper and 
Haltiwanger

(2006) 

Bloom 
(2007) 

(a) 

Bloom 
(2007) 

(b) 

Bloom 
(2007) 

(c) 

Bloom 
(2007) 

(d) 
Estimates       

ܾ 0.319 0.153 0.000 0.996 0.025 0.616 
ܾ 0.284 0.019 0.339 0.427 0.453 0.303 

ܾ 0.070 0.204 0.015 0.011 0.021 0.009 
No. of Plants       
 10 1 250 250 250 25 
Data       
൫ݎ ݅,௧ ൏ െ0.01൯ 0.024 0.104 .. 
|൫ݎ ݅,௧| ൏ 0.01൯ 0.027 0.081 .. 
൫ݎ ݅,௧  0.20൯ 0.153 0.186 .. 
൫ݎݎܿ ݅,௧,  ,௧൯ 0.139 0.143 0.260݇ݕ
൫ݎݎܿ ݅,௧, ݅,௧ିଵ൯ 0.392 0.058 0.328 
൫݀ݏ ݅,௧൯ 0.126 0.337 0.139 
݉݁ܽ݊൫ܵݕ݀ܦ൯ 0.119 .. 0.165 

 

Note:  

Bloom(2007) (a): with labour adjustment costs, with time aggregation, No. of plants=250 

Bloom(2007) (b): without labour adjustment costs, with time aggregation, No. of plants=250 

Bloom(2007) (c): with labour adjustment costs, without time aggregation, No. of plants=250 

Bloom(2007) (d): with labour adjustment costs, with time aggregation, No. of plants=25 
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Table 5 Specification Tests 

Column (1) (2) (3) (4) (5) (6) 
Restriction none ߠ ൌ 0 ߬ ൌ 1 ܾ ൌ ఓߪ 0 ൌ 0 m.e.= 0 

Estimates  
1.312  0.552 1.500 0.515 0.000 0.675 ߠ
߬ 0.495 0.801 1.000 1.000 0.428  0.156

ܾ 0.319 1.766 0.465 0.000 0.575  0.244
ܾ 0.284 0.193 0.028 0.000 0.110  0.276

ܾ 0.070 0.144 0.054 0.000 0.132  0.036
0.163  0.145 0.113 0.121 0.110 0.127 ߚ
7.996  7.207 5.850 6.182 5.568 6.387 ߝ
0.746  0.908 0.891 0.750 0.659 0.931 ߩ

ఓ 0.017 0.032 0.013 0.019 0.012  0.019ߤ
ఓ 0.044 0.041 0.046 0.048 0.000  0.046ߪ
ఙ -1.992 -1.881 -1.940 -2.500 -1.586  -1.668ߤ
ఙ 1.157 1.202 1.227 0.586 0.943  1.081ߪ
బߤ  -7.654 -7.822 -7.570 -7.743 -7.401  -6.964
బ 1.837 1.978 1.815 1.965 1.814  1.407ߪ
ூ் 0.009 0.002 0.261 0.435 0.003  0.000ߪ
ூ 0.286 0.380 0.259 0.162 0.356  0.000ߪ
் 0.061 0.062 0.061 0.078 0.055  0.000ߪ
 0.504 0.505 0.500 0.376 0.553  0.000ߪ

Moments 
,ܭܧ൫ݎݎܿ ൯ -0.060 -0.039 -0.074 -0.024 -0.070  -0.150ݕ݀ܦܵ
ܭܧ൫ݎݎܿ ܻ, ൯ -0.278 -0.094 -0.309 -0.037 -0.267  -0.822ݕ݀ܦܵ
൫ݎ ݅,௧ ൏ െ0.01൯ 0.024 0.003 0.024 0.023 0.022  0.021
|൫ݎ ݅,௧| ൏ 0.01൯ 0.025 0.019 0.027 0.000 0.020  0.025
൫ݎ ݅,௧  0.20൯ 0.145 0.182 0.140 0.161 0.114  0.124
൫ݎݎܿ ݅,௧, ,௧൯ 0.153 0.196 0.124 0.100 0.107  0.252݇ݕ
൫ݎݎܿ ݅,௧, ݅,௧ିଵ൯ 0.362 0.438 0.360 0.337 0.235  0.343
,,௧݇ݕ൫ݎݎܿ ,௧ିଵ൯ 0.973 0.975 0.974 0.960 0.975  0.961݇ݕ
݉݁ܽ݊൫ߨ,௧/ ܻ,௧൯ 0.264 0.270 0.263 0.264 0.264  0.268
݉݁ܽ݊൫ܭܧ ܻ൯ 0.513 0.491 0.497 0.442 0.511  0.462
݉݁ܽ݊൫ ݅,௧൯ 0.111 0.129 0.110 0.122 0.105  0.110
൫݀ݏ ݅,௧൯ 0.093 0.093 0.092 0.096 0.086  0.077
݉݁ܽ݊൫ݕ݀ܧ൯ 0.016 0.031 0.013 0.019 0.011  0.019
൯ 0.046 0.040 0.045 0.045 0.025  0.044ݕ݀ܧ൫݀ݏ
݉݁ܽ݊൫ܵݕ݀ܦ൯ 0.116 0.118 0.117 0.117 0.116  0.070
൯ 0.044 0.045 0.045 0.031 0.046  0.050ݕ݀ܦ൫ܵ݀ݏ
݉݁ܽ݊൫ܭܧ൯ 0.069 0.066 0.064 0.068 0.068  0.091
൯ 0.319 0.314 0.289 0.338 0.302  0.301ܭܧ൫݀ݏ
ܭܧ൫݀ݏ ܻ൯ 0.318 0.286 0.310 0.191 0.339  0.166
OI 165 356 182 338 284 1398
degree of freedom 1 2 2 4 2 5
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Table 6 Choice for the Number of Plants 

Column (1) (2) (3) (4) 
No. of Plants m=1 m=5 m=10 m=15 

Estimates  
0.837 ߠ 0.503 0.675 0.965  
߬ 0.503 0.497 0.495 0.488  

ܾ 1.985 0.563 0.319 0.069  
ܾ 0.169 0.077 0.284 0.556  

ܾ 0.003 0.033 0.070 0.051  
  0.128 0.127 0.112 0.126 ߚ
  6.536 6.387 5.870 6.210 ߝ
  0.895 0.931 0.945 0.565 ߩ

  ఓ 0.022 0.015 0.017 0.012ߤ
  ఓ 0.049 0.040 0.044 0.048ߪ
  ఙ -2.132 -2.000 -1.992 -1.890ߤ
  ఙ 0.527 0.875 1.157 1.262ߪ
బߤ  -5.175 -6.603 -7.654 -8.329  
బߪ  1.784 1.664 1.837 2.019  
  ூ் 0.530 0.302 0.009 0.034ߪ
  ூ 0.181 0.152 0.286 0.233ߪ
  ் 0.048 0.060 0.061 0.062ߪ
 0.476ߪ 0.511 0.504 0.496  

Moments 
,ܭܧ൫ݎݎܿ   ൯ -0.048 -0.047 -0.060 -0.056ݕ݀ܦܵ
ܭܧ൫ݎݎܿ ܻ,   ൯ -0.193 -0.210 -0.278 -0.289ݕ݀ܦܵ
൫ݎ ݅,௧ ൏ െ0.01൯ 0.000 0.025 0.024 0.026  
|൫ݎ ݅,௧| ൏ 0.01൯ 0.021 0.028 0.025 0.029  
൫ݎ ݅,௧  0.20൯ 0.177 0.145 0.145 0.135 
൫ݎݎܿ ݅,௧,   ,௧൯ 0.123 0.159 0.153 0.159݇ݕ
൫ݎݎܿ ݅,௧, ݅,௧ିଵ൯ 0.355 0.340 0.362 0.337  
,,௧݇ݕ൫ݎݎܿ   ,௧ିଵ൯ 0.972 0.972 0.973 0.975݇ݕ
݉݁ܽ݊൫ߨ,௧/ ܻ,௧൯ 0.267 0.263 0.264 0.262  
݉݁ܽ݊൫ܭܧ ܻ൯ 0.486 0.497 0.513 0.505  
݉݁ܽ݊൫ ݅,௧൯ 0.128 0.112 0.111 0.105  
൫݀ݏ ݅,௧൯ 0.105 0.092 0.093 0.091  
݉݁ܽ݊൫ݕ݀ܧ൯ 0.021 0.015 0.016 0.012  
  ൯ 0.046 0.044 0.046 0.048ݕ݀ܧ൫݀ݏ
݉݁ܽ݊൫ܵݕ݀ܦ൯ 0.116 0.117 0.116 0.117  
  ൯ 0.044 0.045 0.044 0.046ݕ݀ܦ൫ܵ݀ݏ
݉݁ܽ݊൫ܭܧ൯ 0.074 0.066 0.069 0.061  
  ൯ 0.356 0.319 0.319 0.293ܭܧ൫݀ݏ
ܭܧ൫݀ݏ ܻ൯ 0.264 0.299 0.318 0.328  
OI 286 169 165 197 
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Table 7 Robustness Tests 

Column (1) (2) (3)   
risk-free  ࢘ത 0.065 0.040 0.065   
No. of Moments 19 19 36   

Estimates  
0.373 0.951 0.675 ߠ  
߬ 0.495 0.042 0.184  

ܾ 0.319 0.438 1.070  
ܾ 0.284 0.226 0.290  

ܾ 0.070 0.053 0.166  
0.130 0.131 0.127 ߚ  
6.351 6.416 6.387 ߝ  
0.949 0.839 0.931 ߩ  

ఓ 0.017 0.018 0.024ߤ  
ఓ 0.044 0.048 0.020ߪ  
ఙ -1.992 -1.964 -1.583ߤ  
ఙ 1.157 1.252 0.956ߪ  
బ -7.654 -7.674 -8.000ߤ  
బߪ  1.837 1.754 1.723  
ூ் 0.009 0.271 0.203ߪ  
ூ 0.286 0.262 0.444ߪ  
் 0.061 0.061 0.051ߪ  
 0.504 0.506 0.697ߪ  

19 Moments                 additional 17 Moments
,ܭܧ൫ݎݎܿ ܧ൫ݎݎܿ ൯ -0.060 -0.082 -0.029ݕ݀ܦܵ ܻ, ൯ 0.005ݕ݀ܦܵ
ܭܧ൫ݎݎܿ ܻ, ,݅ܧ൫ݎݎܿ ൯ -0.278 -0.358 -0.160ݕ݀ܦܵ ൯ -0.060ݕ݀ܦܵ
൫ݎ ݅,௧ ൏ െ0.01൯ 0.024 0.022 0.017 ܿݎݎ൫ݕ݀ܧ, ൯ -0.021ݕ݀ܦܵ
|൫ݎ ݅,௧| ൏ 0.01൯ 0.025 0.022 0.010 ݉݁ܽ݊൫ ܻ,௧൯ 0.100
൫ݎ ݅,௧  0.20൯ 0.145 0.157 0.163 ݀ݏ൫ ܻ,௧൯ 0.372
൫ݎݎܿ ݅,௧, ,,௧ܭ൫ݎݎܿ ,௧൯ 0.153 0.126 0.105݇ݕ ,௧ିଵ൯ 0.998ܭ
൫ݎݎܿ ݅,௧, ݅,௧ିଵ൯ 0.362 0.388 0.374 ܿݎݎ൫ ܻ,௧, ܻ,௧ିଵ൯ 0.991
,,௧݇ݕ൫ݎݎܿ ,,௧ݕ൫݀ݎݎܿ ,௧ିଵ൯ 0.973 0.980 0.987݇ݕ ,௧ିଵ൯ -0.150ݕ݀
݉݁ܽ݊൫ߨ,௧/ ܻ,௧൯ 0.264 0.266 0.267 ܿݎݎ൫ܭ,௧, ܻ,௧൯ 0.828
݉݁ܽ݊൫ܭܧ ܻ൯ 0.513 0.518 0.506 ܿݎݎ൫ܭ,௧, /,௧ܭ ܻ,௧൯ 0.025
݉݁ܽ݊൫ ݅,௧൯ 0.111 0.116 0.120 ܿݎݎ൫ܭ,௧, ݅,௧൯ 0.009
൫݀ݏ ݅,௧൯ 0.093 0.098 0.112 ܿݎݎ൫ܭ,௧, ,௧൯ 0.005ݕ݀
݉݁ܽ݊൫ݕ݀ܧ൯ 0.016 0.018 0.021 ܿݎݎ൫ ܻ,௧, /,௧ܭ ܻ,௧൯ -0.110
൫ݎݎܿ ൯ 0.046 0.047 0.060ݕ݀ܧ൫݀ݏ ܻ,௧, ݅,௧൯ 0.018
݉݁ܽ݊൫ܵݕ݀ܦ൯ 0.116 0.116 0.120 ܿݎݎ൫ ܻ,௧, ,௧൯ 0.021ݕ݀
/,௧ܭ൫ݎݎܿ ൯ 0.044 0.045 0.060ݕ݀ܦ൫ܵ݀ݏ ܻ,௧, ,௧൯ -0.068ݕ݀
݉݁ܽ݊൫ܭܧ൯ 0.069 0.066 0.033 ܿݎݎ൫ ݅,௧, ,௧൯ 0.384ݕ݀
  ൯ 0.319 0.302 0.136ܭܧ൫݀ݏ
ܭܧ൫݀ݏ ܻ൯ 0.318 0.364 0.424  
OI 165 194 1131  
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Figure 1: Investment Policy for Quadratic Adjustment Costs Only  

 
 

Figure 2: Investment Policy for Partial Irreversibility Only 

 
 
 

Figure 3: Investment Policy for Fixed Adjustment Costs Only 
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Figure 4a: Empirical Distribution of WG mean of Sales Growth Rates 

 
 
 

Figure 4b: Empirical Distribution of WG sd of Sales Growth Rates 
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Figure 5a: Overall Effects of Uncertainty on Expected Capital Stock 

 
 

Figure 5b: Overall Effects of Uncertainty on Aggregated Capital Intensity 
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Figure 6a: Effects of HAC and  Adjustment Costs on Expected Capital Stock 

 
 

Figure 6b: Effects of HAC and  Adjustment Costs  on Aggregated Capital Intensity 
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Figure 7a: Effects of Adjustment Costs on Expected Capital Stock 

 
 

Figure 7b: Effects of Adjustment Costs  on Aggregated Capital Intensity 
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Figure 8a: Assuming m=5 , Column (2) of Table 6 

 
 

Figure 8b: Assuming m=5 , Column (2) of Table 6 
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Figure 9a: Imposing =0.040 , Column (2) of Table 7 

 
 

Figure 9b: Imposing =0.040 , Column (2) of Table 7 
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Figure 10a: Matching a Larger Set of Moments , Column (3) of Table 7 

 
 

Figure 10b: Matching  a Larger Set of Moments , Column (3) of Table 7 
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