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Abstract

This paper develops a structural framework to estimate the effects of uncer-
tainty on investment behaviour and capital accumulation at the firm level.
Our model allows uncertainty to affect capital accumulation through three
possible channels that have been highlighted in the literature: the Hartman-
Abel-Caballero effect; different forms of capital adjustment costs; and a risk
premium component in the discount rate. We discuss identification of these
three distinct effects, and allow for unobserved heterogeneity in both firm size
and growth. Parameters are estimated using simulated method of moments,
matching empirical data for UK manufacturing firms. The estimated model
indicates that higher uncertainty reduces both firm size and capital intensity

in the long run, primarily through the discount rate effect.
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1 Introduction

The central question that this paper aims to answer is what are the effects of un-
certainty on a firm’s investment behaviour and the resulting capital accumulation.
The relationship between uncertainty and investment has interested economists for a
long time. The literature has suggested different channels through which uncertainty
could affect investment behaviour and capital accumulation.

One channel is through the curvature of the marginal revenue product of capital
in the stochastic variable that characterises uncertainty. In the special case of perfect
competition and constant returns to scale production technology, as first established
in Hartman (1972) and Abel (1983, 1984, 1985), the marginal revenue product of
capital is convex in the stochastic price, so that a mean-preserving spread in the price
increases the expected desired capital stock due to the Jensen’s inequality effect. This
relationship is generalised in Caballero (1991) for the case of imperfect competition.
In the literature, the effect of uncertainty through this channel is known as the
Hartman-Abel-Caballero effect (HAC effect, hereafter).

A second channel emphasizes the option value of investment in the presence of
irreversibility. If investment is irreversible and can be postponed, waiting for new
information to arrive before committing resources becomes a valuable call option.
Since investing extinguishes this option, and since the option value increases with
uncertainty, irreversibility implies a negative effect of uncertainty on the incentives
to invest. This insight is first formalized in Bertola (1988) and Pindyck (1988), and
systematically investigated in Dixit and Pindyck (1994).

A third channel considers the possibility of a risk premium component in the
firm’s required rate of return, discount rate or cost of capital. Suppose the firm is
owned by a representative consumer. In a consumption-CAPM framework, if the
consumer is fully-diversified, as Craine (1989) emphasizes, only the component of
firm-level uncertainty that is positively correlated with aggregate risk would lower
investment. If the consumer is not fully-diversified, either because of incomplete
markets, as analysed in Angeletos and Calvet (2006), or as the result of an optimal
incentive scheme due to agency conflict, as modelled in Himmelberg, Hubbard and
Love (2002), idiosyncratic risks would also affect the required rate of return, reducing
investment at a higher level of uncertainty.

Given the importance of this research topic and the rich implications from dif-



ferent theoretical approaches, it is not surprising that much empirical work has been
done aimed at signing the effects of uncertainty and sorting the relative importance
of these various channels. For example, Leahy and Whited (1996) study the relation-
ship between investment rates and uncertainty by performing various sample splits
in order to test comparative static implications of the theories outlined above. The
main findings of the paper, as they conclude, appear to be at variance with the HAC
effect and the discount rate effect, leaving irreversibility as the most likely explana-
tion of the uncertainty-investment relationship. The significant role of irreversibility
has also been found in Bond, Bloom and Van Reenen (2007), both numerically for
a model with a rich mix of adjustment costs, and also empirically for a panel of UK
manufacturing firms. More recently, in a structural framework, Bloom (2007) finds
the effect of irreversibility on investment dominates the response of investment to any
moderate change in the discount rate after a large uncertainty shock. In short, com-
pared with the importance of irreversibility, there has been little empirical evidence
for the HAC effect and the discount rate effect.

Instead of the uncertainty-investment relationship, the focus of this paper is the
effects of uncertainty on capital accumulation. This is motivated for three reasons.
First, although the impact of uncertainty on investment dynamics has extremely im-
portant business cycle implications, in the long run it is the level of capital stock
and capital intensity that determines economic growth and development. Second,
the findings from existing empirical work reflect the difficulty of identifying the HAC
effect if we only consider the relationship between investment dynamics and uncer-
tainty, while in this paper we illustrate the possibility to identify the HAC effect by
studying uncertainty-capital stock relationship. Third, the discount rate essentially
determines the Jorgensonian user cost of capital, and the relative price of capital to
other inputs. In the short run, investment rates vary with this user cost of capital,
but are mainly constrained by the capital adjustment costs. Given that the observed
capital stock data is aggregated over periods of both positive and zero investment,
and given that the observed capital intensity depends on the relative price, the study
of uncertainty-capital stock and uncertainty-capital intensity relationship provides
the possibility to identify the discount rate effect.

In this paper, we specify an investment model under uncertainty, which features

all three possible channels highlighted in the theoretical literature. Under the speci-



fication of this model, with an increase in the level of uncertainty, the discount rate
effect could increase, decrease or leave unchanged both the expected capital stock
and the expected capital intensity, depending on how uncertainty affects the risk
premium; the HAC effect could increase, decrease or leave unchanged the expected
capital stock, depending on the source of the uncertainty and the demand elasticity;
all three forms of capital adjustment costs could affect both the expected capital
stock and the expected capital intensity, depending on the form of the adjustment
costs.

This implies that the necessary condition for identification of all three channels is
to allow for some variation in the level of uncertainty. Our model allows for variation
across firms in the level of uncertainty. In addition, we also allow for heterogeneity
in the trend growth rate of the stochastic process in order to get robust estimates for
adjustment costs, and allow for heterogeneity in the level of the stochastic process in
order to control for other unobserved factors that may lead to permanent differences
in firm size. Our specification also allows for the possibility of both permanent and
transitory measurement errors in investment rates and sales in the firm-level data.

With this empirical strategy, estimating the effects through each channel sepa-
rately is transformed into estimating a set of structural parameters of the model.
Using a simulated minimum distance estimator, these parameters are then estimated
by matching simulated model moments with empirical data moments from a panel
of UK manufacturing firms in Datastream. Finally, counterfactual simulations are
implemented to estimate the sign and sort the magnitude for each channel based on
the estimated model parameters.

Our estimated investment model finds significant empirical evidence for both the
HAC effect and the discount rate effect, together with a combination of both convex
and non-convex capital adjustment costs. Counterfactual simulations suggest that a
permanent lower level of uncertainty would increase both average capital stock levels
and aggregate capital intensity. These outcomes are the net effect of a small, negative
capital adjustment costs effect, a moderate, positive HAC effect and a large, negative
risk-adjusted discount rate effect.

To the best of our knowledge, this is the first paper that studies and finds the
empirical importance of the HAC effect and the discount rate effect in a structural

framework; and also the first paper that explicitly allows for unobserved heterogeneity



across firms in the investment literature using structural estimation.

The rest of the paper is organised as follows. Section 2 outlines the investment
model under uncertainty that we estimate. Section 3 investigates how uncertainty
would affect the expected capital stock and expected capital intensity through three
possible channels, which provides the theoretical basis for our identification strategy
discussed in Section 4. Section 5 reports the empirical results. Section 6 illustrates

the counterfactual simulations. And Section 7 concludes.

2 An Investment Model under Uncertainty

This section sets up a standard model of investment for a firm operating under
uncertainty. The functional forms are chosen following three principles: first, they
are widely adopted in the literature; second, they are tractable enough to derive

closed-form solution in special cases; and finally, the feasibility for identification.

2.1 Production and Demand

Assumption 1 Timang: Time is discrete and horizon is infinite. By paying capital
adjustment costs, new investment I; contributes to productive capital I/(\'t immediately
in period t, which depreciates at the end of each period.' The capital accumulation

formula is therefore
K= (1—0) (K, + I,) = (1 - 6K, (1)
where d is the constant depreciation rate.

Assumption 2 Production: The firm uses capital K, and a variable mput Ly to

produce output ()¢, according to a constant returns to scale Cobb-Douglas technology
Qu=AL; K] (2)

where A; represents the randomness in productivity and [ corresponds to the coeffi-

ctent on productive capital in the production function.

! Compared with alternative lagged timing assumption, such as K;1 = (1—6)K;+1;, Assumption
1 does not affect the qualitative implication of our model, but allows for a closed-form solution to
the investment problem in the frictionless case, which provides a convenient benchmark for studying
the effets of captial adjustment costs.



Assumption 3 Demand: The firm faces isoelastic, downward-sloping, stochastic

demand schedules of the form

Qr=Xi P " (3)

where P; is price and —e < —1 1s the demand elasticity with respect to price. X; rep-
resents the randomness in demand and can be interpreted as changes in the quantity

demanded for any given price.?

Definition 1 Operating Profit w(X,, A;, [A(t) is the maximized short-run profit for

gwen capital stock and factor price by choosing optimal variable inputs.

Denote sales as Y, = P,Q;. Suppose the price for variable input is a constant w.?
Lemma 1 summarises the relationship between the operating profit, variable inputs

and sales.

Lemma 1 Properties from short-run profit maximization

T = const0 - X)) (A} K} (4)
e—1
Lt = ’7 w c Tt (5)
Yi=ve-m (6)
where
0< ! <y = ! <1 (7)
e~ T 1y Ble —1)
and e
— 1\ e
const0 = (75 ) (ve) ™ (8)
w

Proof: See Appendix 1.1.

2This is called "horizontal demand shocks" in Abel and Eberly (1999). Alternatively, if we model
"vertical demand shocks", such as P, = XtQt_l/s in Caballero (1991), the operating profit can be
derived as (X, Ay, K;) = const0- (X)) (A7)° "' K} 77, As it will become clear in Section 3.2, this
specification does not allow us to estimate the relative importance of the HAC effect. On the other
hand, both horizontal and vertical demand shocks could be justified to model demand uncertainty
faced by a monopoly (Klemperer and Meyer, 1986).

3 As it will become clear in section 2.2 and 3.2, if w is also stochastic, 7(X, 4y, I?t) = const0 -
X7 (A} (w;’)(l_m(l_a) K}™. Assuming w; has the same structure as X; and A, in its law

of motion, it can also be incorporated into P; with 02 = 02 + (e — 1)2 ((1 — B)Q o2+ O’Z). This
implies uncertainty in factor prices will also lead to a positive Hartman-Abel-Caballero effect and
its magnitude depends on the share of variable inputs in the production function, consistent with
the insight in Lee and Shin (2000). However, given we cannot identify 02 and o2 separately within
this model and given they both lead to a positive Hartman-Abel-Caballero effect, we simplify this

issue by assuming non-stochastic factor prices.



2.2 Stochastic Processes

The demand shift parameter X; and the level of productivity A; are the two possible

sources of uncertainty in this model.
Assumption 4 Demand Stochastic: The law of motion for X, is

Ty = log Xt

Ty = Cp gt + (G 9)
t—1
G o= pliate =+ per,
s=0
where 0 < p, <1 and e} XN (0, 02).
Assumption 5 Productivity Stochastic: The law of motion for A, is

ar = 10gAt
ay = Cq+ pt+ ¢} (10)

t—1
G o= plia el =Co+ > el
s=0

where 0 < p, <1 and ¢ "% N (0, 02).

(9) and (10) imply that demand shocks ef and productivity shocks ef have effects
that are persistent but not permanent, decaying at the rate 0 < p, < 1 and 0 <
p, < 1, and on average demand and productivity grow at the trend rates p, and p,,
respectively.

Firms making decisions in period ¢ know X; and A;, but are uncertain about
future levels of demand and productivity, which depend on future realizations of the
demand and productivity shocks. Hence the variance of these shocks, i.e. 02 and o2,
measure the level of uncertainty from demand and productivity faced by the firm in
our model.

Furthermore, as (4) indicates, it is X (A7)° " that jointly determines the mar-

ginal revenue product of capital hence the investment decision.

Lemma 2 By imposing p, = p, = p, and assuming that ef and e} are independent,

X and A; can be combined into one single random variable, i.e.

Zy = X, (A) (11)



The law of motion for Z; is given by

z = logZ;

2 = c+pt+ G, (12)

t—1
G = PGy te=Cot Zpset—s
s=0

where 0 < p < 1 and ¢; ‘&' N (0, 02). In particular,

Co = Cot+(—1)¢
e+ (e—1)c,

c = e—1)
Hoo= gt (E,‘ - 1) Hq
o> = o2+ (e—1)02 (13)

Proof: See Appendix 1.2.

With this reparameterization, the operating profit can be written as
m(Zy, K;) = const0 - ZJ K} (14)

where Z; incorporates stochastic from both demand and productivity, which is called
"profitability" in Cooper and Haltiwanger (2006), or "business condition" in Bloom
(2007). If o2 = 0, it is equivalent to a model where all the uncertainty is from
demand; if 02 = 0, it is equivalent to a model where all the uncertainty is from
productivity. When uncertainty comes from both demand and productivity, o? is a

measure of the overall uncertainty faced by the firm.

Assumption 6 Constant Proportion of Demand Uncertainty: Among the
overall uncertainty, there is a constant proportion T of uncertainty coming from de-
mand, i.e.

02 = T10° (15)
Since 0? = 02 + (¢ — 1)2 o2, this assumption also implies a constant proportion

of uncertainty from productivity, i.e. o2 = ((‘51:17))2 0%, Now 7 = 1 is equivalent to a

model where all the uncertainty is from demand; and 7 = 0 is equivalent to a model

where all the uncertainty is from productivity.

Remark 1 The operating profit m; and therefore the optimal variable inputs L; and

the sales Y; are all linear homogenous in (Z;, I?t)



2.3 Adjustment Cost Function

Besides the demand conditions and the level of productivity, the firm’s investment
behaviour also depends on capital adjustment costs. The investment literature of the

last four decades has focused on three forms of cost in capital adjustment.

2.3.1 Quadratic Adjustment Costs

Quadratic adjustment costs reflect those costs that increase convexly in the level of
investment or disinvestment. We consider a specification that includes three features.
First, the costs are quadratic in investment rate, to reflect higher costs due to more
rapid changes and to allow for analytical tractability. Second, the costs attain their
minimum value of zero at zero investment, so that the firm can avoid these costs by
setting investment equal to zero. Third, the level of these costs is proportional to
capital stock, so that a given investment rate imposes costs that increase with the

size of the firm, and do not become irrelevant as the firm grows larger.

Assumption 7 Quadratic Adjustment Costs: The functional form of quadratic

adjustment costs 18
G(K I ) = 1 ! 2 K,
s 41 9 F’t t

where b, measures the magnitude of quadratic adjustment costs.

2.3.2 Partial Irreversibility

Partial irreversibility allows a gap between the purchase price of capital p! and the
sale price of capital p°, as a result of capital specificity, or more generally, the adverse
selection in the market for used capital goods. We normalise the purchase price p’
to one and denote b, = 1 —p® > 0, so that the parameter b; can be interpreted as the
difference between the purchase price and the sale price expressed as a percentage
of the purchase price. For example, p° = 0.8 gives b; = 0.2, indicating that the sale
price is 20% lower than the purchase price. Letting p° approach zero or letting b;
approach one ensures that the firm never chooses to sell any capital, and mimics

investment behaviour under a complete irreversibility constraint.

Assumption 8 Partial Irreversibility: The functional form of partial irreversibil-
ity 18
G<]t) - _bi-[tl[ft<0}

8



where 1(7,<o) is an indicator equal to one if investment is strictly negative.

2.3.3 Fixed Adjustment Costs

Fixed adjustment costs reflect those costs that are independent of the level of in-
vestment or disinvestment and are paid at each point of time if any investment or
disinvestment is undertaken. We model the level of these costs to be proportional to
the operating profit, so that first, these costs can be rationalized as output loss due to
the interruption in production during periods of large investment or disinvestment;
second, these costs again do not become irrelevant as the firm grows larger; third,

they can be avoided by choosing zero investment.

Assumption 9 Fixed Adjustment Costs: The functional form of fixed adjust-
ment costs 1S

G(Zt, Ky; [t) = bfl[lﬁéo]ﬂt

where 11,20 s an indicator equal to one if investment is non-zero. The parameter by

1s interpreted as the fraction of operating profit loss due to any non-zero investment.

Our model allows for these three forms of adjustment costs, specifying the ad-

justment cost function to be

b, (I, \°
G(Zy, K3 1) = Eq (?t) Kt — bili1if, <o) + bl 207 (16)
t

Remark 2 The adjustment cost function G(Z;, Ky; 1) is linear homogenous in (Zy, Ki; I;).

2.4 Investment Decisions
Denote I1(Z;, Ky; I;) as the net revenue of the firm in each period ¢. That is

H(Zm Ky; It) = W(Zt, Ky; [t) - G<Zt> Ky; [t> — 1 (17)

Assumption 10 The firm is owned by a representative consumer who values future

net revenue with a discount rate adjusted with the level of uncertainty in the form of
r=7r+06c (18)

where T is a risk-free interest rate; 0 is a parameter which could be positive, negative

or zero.



In each period investment is chosen to maximize the present value of current
and expected future net revenues, where expectations are taken over the distribution
of future demand/productivity shocks. According to the Principle of Optimality
(Theorem 9.2, Stokey and Lucas, 1989), this investment decision can be represented
as the solution to a dynamic optimization problem defined by the stochastic Bellman

equation

By [V(Ziy1, K1)} (19)

together with the law of motion (1) and (12) for K; and Z;. Here V(Z;, K}) is the

1
V(Zt, Kt) = HII?X{H(Zt, Kta ]t> + 1 T

value of the firm in period t; E; [V (Z41, Kiy1)] is the expected value of the firm in

period ¢ + 1 conditional on information available in period .

2.4.1 Frictionless Case

Lemma 3 Investment Policy in the Frictionless Case: in the absence of any

capital adjustment cost, the Fuler equation for this optimization problem is

Z 17 1—90
t-1—-—v)-|=| =1- 20
const0 - (1=) - | 2] =117 (20
Hence the optimal investment rate can be derived as
I Z,
K_tt = const1 - é -1 (21)
Or equivalently expressed in levels, the optimal productive capital stock is
K = I + K, = constl - Z, (22)
where
1-6\1>
t1 = t0- (1 — 1— 23
cons const0 - (1 —7~)/ ( T r)] (23)

Proof: See Appendix 1.3.

The right hand side of equation (20) is simply the marginal revenue product of
capital, while the left side is known as the Jorgensonian user cost of capital. Hence
in spite of the uncertainty about future demand/productivity, this intertemporal
optimality condition is equivalent to the first order condition in a static decision
problem of the neoclassical producer theory. This is solely the result of the firm

being able to adjust its capital stock instantaneously and costlessly in this case.

10



Equation (21) and (22) imply that without any friction, the optimal investment
rate is a linear function of demand/productivity relative to inherited capital stock
to meet the imbalance between the productive capital stock and the level of de-
mand /productivity in each period, where the slope term constl reflects production
technology (), demand elasticity (), factor price (w), and the Jorgensonian user

cost of capital.

2.4.2 Friction Cases

In the presence of capital adjustment costs, uncertainty about future de-
mand /productivity affects current investment since future adjustment of capital stock
incurs costs. Optimal investment then needs to take into account the intertemporal
linkage between current investment and future returns to capital and becomes in-
deed an interesting dynamic problem. However, with capital adjustment costs that
we consider in equation (16), there is in general no closed-form solution. Appendix
2.1 explains how we solve the dynamic programming (19) numerically.

Figures 1-3 present the investment decision rules derived from the numerical so-
lutions. We plot the optimal investment rate (I;/K;) against (constl - Z;/K; — 1),
that is the scaled demand/productivity, where the 45° line for the frictionless case
(21) is plotted as a benchmark. With this scaling, both in the absence and presence
of adjustment costs, a value of zero on the horizontal axis would always be associated
with zero investment on the vertical axis. In the absence of any adjustment costs,
investment occurs at all levels of scaled demand /productivity beyond zero while dis-
investment occurs below zero. In the presence of adjustment costs, we show these
decision rules separately for three special cases of the model.*

Figure 1 illustrates the optimal investment policy with quadratic adjustment costs
only. Investment and disinvestment still occur at all levels of scaled demand /productivity
beyond and below zero. However, with quadratic adjustment costs, the increasing
marginal adjustment costs penalize high rates of investment or disinvestment, capi-
tal stock adjusts to new information about demand/productivity through a series of
small and continuous adjustments. Hence, compared with the 45° line, the investment
policy in this case is also smooth but much dampened.

Figure 2 illustrates a region of inaction in the investment policy determined by

4These figures impose common parameters: 3 = 0.10, € = 6.00, w = 0.50, r» = 0.065, § = 0.02,
p=0.90, 4 =0.02, and ¢ = 0.10.

11



two critical values with partial irreversibility. With partial irreversibility, there is
no positive investment unless scaled demand/productivity reaches a right critical
level that is larger than zero; and for further higher levels of demand/productivity
the investment rate continues to be lower than what would be chosen in the fric-
tionless case. Similarly, no disinvestment occurs unless scaled demand/productivity
falls to a left critical level that is smaller than zero; and for further lower levels
of demand/productivity the rate of disinvestment that occurs is much lower than
what would be chosen in the frictionless case. In the extreme case of complete ir-
reversibility, no disinvestment would ever happen, no matter how low is the level of
demand /productivity relative to the inherited capital stock.

Figure 3 illustrates both a region of inaction and investment bursts as a re-
sult of corner-solution in the investment policy with fixed adjustment costs. Sim-
ilar to partial irreversibility, investment or disinvestment occurs only when scaled
demand /productivity exceeds the right and left critical values that are larger and
smaller respectively than zero. Outside this region of inaction, the optimal invest-
ment decisions are quite different from those under partial irreversibility. Small
adjustments to the capital stock do not generate benefits that are sufficiently high
to warrant paying a fixed cost to implement them. Therefore capital stock adjusts
to new information about demand/productivity through infrequent but large adjust-
ments. When the scaled demand/productivity exceeds the right or left critical value,
optimal investment jumps discontinuously to an investment policy, in which positive
investment rate is higher than those in the frictionless case and negative investment

rate is lower than those in the frictionless case.

3 The Effects of Uncertainty

This section analyses the effects of uncertainty on two interesting quantities. Given
o is the measure of overall uncertainty in this model, we define these quantities as

explicit functions of o.

Definition 2 Expected Capital Stock E [IAQ (a)} 15 the mathematical expectation

for the optimal productive capital stock in period t.

12



Definition 3 Expected Capital Intensity F [I?t (0) /Y, (0)| is the mathematical

expectation for the ratio of optimal productive capital stock to sales in period t. ®

Lemma 4 In the absence of any capital adjustment cost,

E [IA(,T (O’)} = constl - E[Z]

E [[?t* (0) /Y (0)} = const2

const2 = 3 (1 - é) / (1 — 1 Ii) (24)

Proof: See Appendix 1.4.

where

Lemma 4 implies that in the frictionless case, uncertainty would affect the ex-
pected capital stock only if constl or E[Z;] depends on o; and would affect the
expected capital intensity only if const2 depends on ¢. In the friction cases, the
effects of uncertainty on these quantities also depend on different forms of capital
adjustment costs. Therefore, our model provides a structural framework, which al-
lows for uncertainty to affect capital accumulation through three possible channels:
the risk-adjusted discount rate effect (through constl and const2); the HAC effect
(through F [Z,]); and the capital adjustment costs. We examine these three channels

separately one by one.

3.1 Uncertainty and the Discount Rate Effect

In order to abstract from any effects of uncertainty through the HAC effect and
capital adjustment costs, we impose F [Z;] to be invariant to ¢ and G(Z;, K;; ;) =0
in this subsection.

According to (23) and (24), both constl and const2 reflect production technology
(B), demand elasticity (¢), depreciation rate (§) and the discount rate ().

Lemma 5 All else being equal, dconstl/0f > 0, dconst2/0f > 0, dconstl/0s >
0, Oconst2/0e > 0, Oconstl /0§ < 0, Oconst2/05 < 0, Oconstl/Or < 0, and
Oconst2/0r < 0.

PAn alternative measure for capital intensity is the capital-labour ratio. By Lemma 1,

E [IAQ (o) /Lt (0)} = J;i”l -E {IAQ (0)/Y; (a)] Therefore as long as (7, £, w) is uncorrelated with o,

the sign of the effect of uncertainty on capital intensity does not depend on which measure we use.

13



Proof: Comparative static analysis. Intuitively, an increase in § and £ would both
decrease 7y so that the operating profit function becomes less concave in capital stock,
hence leads to more capital stock and capital intensity. In contrast, an increase in ¢§
and r would both increase the Jorgensonian user cost of capital, hence leads to less
capital stock and capital intensity.

Therefore uncertainty would affect the expected capital stock and capital intensity
if any of these four parameters varies with the level of uncertainty. Under Assump-
tion 10, for the discount rate r = 7 + o, if the demand/productivity shocks are
systematic, 8 would be greater than, less than or equal to 0, depending on whether
the marginal utility of the owner is negatively correlated, positively correlated or un-
correlated with the marginal revenue product of capital. If the demand/productivity
shocks are idiosyncratic and the owner is fully-diversified, 6 would be 0. If the de-
mand /productivity shocks are idiosyncratic, but the owner is not fully-diversified and
a large proportion of his consumption comes from the revenue of the firm, 6 would
be greater than 0, as rationalized in Angeletos and Calvet (2006), or Himmelberg,
Hubbard and Love (2002).

Proposition 1 When E [Z;] is invariant to o and G(Z;, Ky; 1) = 0,

=, <0 if0>0 =, <0 if0>0
OE [Kt (a)} J055 S0 aeq and OB |K; <a>/Yt(a)} /979 S0 <o
i.e. the effects of uncertainty on the expected capital stock and expected capital inten-

sity depend on the sign of 0.

Proof: By Assumption 10, Lemma 5 and applying the chain rule in partial differ-

entiation.

3.2 Uncertainty and the HAC Effect

In order to abstract from any effects of uncertainty through discount rate effect and
capital adjustment costs, we impose 6§ = 0 and G(Z;, Ky; I;) = 0 in this subsection.
To study the effects of uncertainty through the HAC effect, it is standard to
apply a mean-preserving spread for the underlying stochastic process. Equation
(9) and (10) imply that keeping u,and p, constant while increasing o2 and o2, is a
mean-preserving spread for x; and a; respectively. Since the demand shift parameter

X, and the level of productivity A; are the two stochastic variables that expectation

14



is taken over, we would like to focus on increases in uncertainty that preserve the

mean of X; and A;. This is easily achieved by Lemma 6.

Lemma 6 By setting ¢, = —0.502/ (1 — p?) and ¢, = —0.502/ (1 — p?), E[X] =
exp (Cg + p,t) and E[A:] = exp (Ch + pt), i.e. keeping p,and p, constant while

increasing o2 and o2, is a mean-preserving spread for X; and Ay, respectively.

Proof: See Appendix 1.5.

Recall the operating profit is 7(Z;, IAQ) = constO-Z;’[A(tl_V, where 7, = X, (At)gfl.
Since = p1, + (¢ — 1) p, and 0 = 02 + (¢ — 1)* 02, keeping y,and 1, constant while
increasing 02 and o2 also implies keeping p constant while increasing 0. However,

this is in general not a mean-preserving spread for Z;.

Lemma 7 Keeping pu constant while increasing o2 is in general not a mean-preserving

spread for Z,. In particular,

E|Z] = exp (o + pt + 2((i:21)) ((11 :;)2)02 (25)

Proof: See Appendix 1.6.

Lemma 7 implies that the effect of keeping i constant while increasing o2 on
E[Z,;] includes three cases. First, either when all uncertainty is from demand so
that 02 = o2 or equivalently 7 = 1, or when the demand elasticity ¢ = 2, then
OE [Z;] /0o = 0. Second, if there is any uncertainty from productivity so that o2 > 0
or equivalently 7 < 1, and the demand elasticity ¢ > 2, then OF [Z;] /0o > 0. Finally,
if there is any uncertainty from productivity so that o2 > 0 or equivalently 7 < 1,

and the demand elasticity 1 < ¢ < 2, then 0F [Z;] /0o < 0.

Proposition 2 When 0 =0 and G(Z;, Ky; 1) = 0,
R =0 iftr=1o0re=2 R
OE [K; (a)} /0o >0 ifr<lande>2 andOE [K; (0) Vs (a)] /90 =0,
<0 ifr<landl <e<?2
i.e. the effects of uncertainty on the expected capital stock depend on the value of

7 and €, but uncertainty has no effect on the expected capital intensity through the

HAC effect.

Proof: It is straightforward to derive the results for OF [IA(;“ (U)i| /0o by Lemma
7 and OF [I/(\';‘ (0) /)Y, (O')] /0o =0 by Lemma 4.

15



The first part of Proposition 2 implies that our model allows for the uncertainty
to affect the expected capital stock through the marginal revenue product of capi-
tal, and this effect could be positive, negative or zero under our setting, depending
on the source of uncertainty and the demand elasticity. The cases studied in the
literature that lead to the HAC effect, for example, uncertainty in output price
(Hartman, 1972; Abel, 1983), in the price of variable input (Abel, 1985; Lee and
Shin, 2000), or in horizontal demand shocks (Caballero, 1991; Pindyck, 1993) can be
represented by the case of 7 < 1 and ¢ > 2. Furthermore, within this case, we have
0 <0E [IAQ‘ (U)] / 80) /0e > 0, which verifies the insight in Caballero (1991) about
the role of degree of competition in determining the importance of the HAC effect.
In the extreme case of perfection competition, i.e. € = 0o, the magnitude of the HAC
effect is infinitely large and dominates the effects of uncertainty through any other
channel, one special case studied in Abel and Eberly (1994).

The second part of Proposition 2 implies that due to the linear homogeneity
property of our investment model, the HAC effect would affect all the variables in
levels, such as capital stock, investment, variable input, sales and operating profit,
in the same proportion; hence it would not affect any variable in ratio, such as
investment rate, capital-to-sales ratio, profit-to-sales ratio and sales growth rate. This
might explain why in empirical research, such as Leahy and Whited (1996), that only
consider the effects of uncertainty on investment rate rather than on capital stock,

the HAC effect has not been detected.

3.3 Uncertainty and the Adjustment Cost Effect

In order to abstract from any effects of uncertainty through discount rate effect and
the HAC effect, we impose # = 0 and 7 = 1 so that £ [}A(t* (0’):| = constl-exp((,+ put)
is invariant to ¢ in this subsection. Given there is no closed-form solution to the
investment model in the presence of capital adjustment costs, we provide intuition

and illustrate simulation results as proof to the following results.

Proposition 3 When 6§ =0 and 7 =1,
= <0 if bg >0
oE [Kt(”)] /60{ S0 ifb;>0o0rb;>0 and

OFE [l/\(t (0)/3@(0)] /0o § 0, if by, >0, b; >0 or by > 0.
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Proof: The first part of Proposition 3 implies that an increase in the level of
uncertainty must lower the expected capital stock in the presence of quadratic ad-
justment costs; but has an ambiguous effect on the expected capital stock in the
presence of partial irreversibility or fixed adjustment costs.

For quadratic adjustment costs only, analogy to Abel (1984), for any given inher-
itated capital stock Ky, if 7 = 0, equation (19) represents a linear-quadratic problem
in which certainty-equivalence applies, hence E [I; (¢)] would be invariant to o. Take
this case as a benchmark. The case under our consideration is v > 0, so certainty-
equivalence fails since (19) is no longer a linear-quadratic problem. Given v > 0
implies II (K}, Zy; I;) being concave in Iy, F [I; (0)] is decreasing in o due to Jensen’s
inequality effect. Since IAQ = K; + I, this implies £ [[A(t (0)] is decreasing in o, or
OF [f(t (a)] /9o < 0if b, > 0.

For partial irreversibility only, Abel and Eberly (1999) demonstrate that complete
irreversibility and uncertainty increase the user cost of capital which tends to reduce
the capital stock. Working in the opposite direction is a hangover effect, which
arises because irreversibility prevents the firm from selling capital even when the
marginal revenue product of capital is low. Neither the user cost effect nor the
hangover effect dominates globally, so that irreversibility may increase or decrease
the expected capital stock E [[A(t (O’)] relative to that under reversibility F [[A(f}
Furthermore, both the user cost effect and the hangover effect are stronger with
higher level of uncertainty, again neither of them dominates globally. Hence the sign
of 0 <E [[A(t (0)] /E [IA(;‘]) /0o is ambiguous. Given E [[A(;‘] is invariant to o, this
implies the ambiguity in the sign of OF [l?t (0)] /0o if b; > 0.

For fixed adjustment costs only, Cooper, Haltiwanger and Power (1999) provide
intuition for the trade-off between the threshold effect and the target effect in the
presence of fixed adjustment costs. Under a higher level of uncertainty, the thresholds
for investment and disinvestment enlarge, but meanwhile the firm has more incentive
to overshoot its investment target to adjust capital stock due to physical depreciation
and demand /productivity shocks. This implies an increase in uncertainty will lead to
both more frequent investment inaction and larger investment /disinvestment bursts,
hence the ambiguity in the sign of OF [IAQ (0)] /0o if by > 0.

In Bond, S6derbom and Wu (2007), we replicate the analytical results in Abel and

Eberly (1999) for complete irreversibility by numerical simulation, and generalize the
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analyses for quadratic adjustment costs, partial irreversibility and fixed adjustment
costs, which confirms the claim in Proposition 3.

The second part of Proposition 3 implies that an increase in the level of uncer-
tainty has an ambiguous effect on the expected capital intensity in the presence of
adjustment costs.

As Lemma 1 indicates, the sales Y; is linear homogeneous in Z; and [A(t. Together
with Lemma 3, in the frictionless case, Y; is always proportional to K ; hence K LY =
const2 is invariant to o. In the friction case, when Z; decreases due to negative shocks,
all three forms of capital adjustment costs make l?t decrease less than Z;, linear
homogeneity implies Y; would decrease more than K ¢+ but less than Z;. Hence IAQ 1Y,
must be higher than IA(Z‘ /Y, conditional on e; < 0. When Z; increases due to positive
shocks, quadratic adjustment costs and partial irreversibility make [A(t increase less
than Z;, linear homogeneity implies Y; would increase more than IA(,: but less than Z;.
Fixed adjustment costs have ambiguous effect, depending on the relative importance
of the threshold effect and the target effect. Hence IAQ /Y; tends to be lower than
[A(;‘ /Y: conditional on e; > 0. When o increases, Z; would decrease or increase both
with a larger magnitude, which means K, /Y: would be higher or lower than IA(t* /Y,
both with a larger magnitude. Since the expectation is taken over both positive and

negative shocks, this implies the ambiguity in the sign of OE | K, (0) /Y, (J)] /0o

4 Empirical Strategy

The analyses in Section 3 illustrate the rich implications about the effects of uncer-
tainty in our investment model: with an increase in the level of uncertainty, a risk-
adjusted discount rate effect would increase/decrease/unchange both the expected
capital stock and the expected capital intensity, depending on the sign of 6 (Proposi-
tion 1); the HAC effect would increase/decrease/unchange the expected capital stock,
depending on the value of 7 and e (Proposition 2); capital adjustment costs would
affect both the expected capital stock and the expected capital intensity, depending
on the exact form of the adjustment costs (Proposition 3). This implies the effects

of uncertainty on capital accumulation is fundamentally an empirical question.
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4.1 Dataset

We use an empirical sample from Bloom, Bond and Van Reenen (2007), which studies
the investment dynamics under uncertainty and partial irreversibility. This sample
contains firm-level data for an unbalanced panel of 672 publicly traded U.K. man-
ufacturing firms between 1972 and 1991. These company data are taken from the
consolidated accounts of manufacturing firms listed on the U.K. stock market and
are obtained from the Datastream on-line service. Our identification strategy only
requires four key variables: Investment (I;;); Capital stock (K;); Sales (Y},); and
Operating Profit (7;;) where j denotes firm and ¢ denotes year. The data appendix
of Bloom, Bond and Van Reenen (2007) explains how these variables are constructed,

cleaned and deflated.

4.2 Uncertainty Heterogeneity

In order to identify the discount rate effect and the HAC effect, the necessary con-
dition is to have some variation in the level of uncertainty. In theory, this variation
could be modelled either across time or across firms. Since the empirical sample we
use in this paper is a short panel, and a main feature in firm-level investment data
is the importance of "fixed-effects" (Bond and Van Reenen, 2003), we model this

variation as cross-sectional.

Assumption 11 Uncertainty Heterogeneity: The measure of overall uncertainty

for firm j is o;, where logo; "~ N (1, 02).

That is each firm j faces a firm-specific measure of uncertainty o;, where log o}
is drawn independently from an identical normal distribution with mean p;, and
standard deviation o, .

Under this assumption, Proposition 1 predicts that the sign of cov[Kj, sz_] and
cov[K;¢ /Y, a?] depends on 6, through the discount rate effect; Proposition 2 predicts
the sign of cov[ K, 0?] > (0 depends on 7 and ¢, through the HAC effect, which means
we have transformed the problem of identifying the discount rate effect and the HAC

effect into estimating p,,, 02, 6, 7 and €.
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4.3 Growth Rate Heterogeneity

In order to identify the capital adjustment costs effect, the investment policies illus-
trated in Section 2 indicate the possibility of identifying different forms of capital
adjustment costs from different features in the investment rate. However, as recog-
nized in both Cooper and Haltiwanger (2006) and Bloom (2007), a key challenge in
estimating adjustment costs is to distinguish the persistent differences in the stochas-
tic process from the adjustment costs. For example, both differences across firms in
the demand/productivity growth rate and high quadratic adjustment costs can lead
to persistent differences across firms in the investment rate. Given the important
role of quadratic adjustment costs in determining the effects of uncertainty on the
expected capital stock, it is important to distinguish between unobserved heterogene-
ity and state dependence. Therefore, we explicitly model heterogeneity in the growth

rate in order to get robust estimates for the adjustment costs

Assumption 12 Growth Rate Heterogeneity: The combined growth rate for firm

2

J 5 iy, where iy N (1,002 and con (1,0,) = 0.

That is each firm j has a firm-specific combined growth rate y;, where y; is drawn
independently from an identical normal distribution with mean f, and standard
deviation o,. With heterogeneities in both o and 1, we further assume that they are
uncorrelated with each other so that the effects of uncertainty can be separated from
the effects of growth rate.

Both the level of uncertainty and the growth rate would affect the investment
policy. Hence the dynamic programming described in (19) must be solved for each
firm j with value o; and ji;, which is unaffordable even for a small sample. Therefore
we adopt a standard approach used in the literature, for example, Eckstein and

Wolpin (1999), to allow for a finite mixture of types.

Assumption 13 A Finite Mixture of Types: There are a finite mixture of types,
say U x V types of firms, each comprising a fixed proportion 1/(U x V') of the popu-
lation, where the type set is defined as F = {(oy, p,) :u=1,---  U;v=1,--- V}.

Appendix 2.2 explains how we solve the dynamic programming and Appendix 2.3

explains how we simulate the data under this assumption.
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4.4 Relating Z;; to Observable Variables

We have shown how optimal investment would response to the scaled demand /productivity
(constl-Z;,/ K ;+— 1) with different forms of capital adjustment costs. We have also
allowed for two dimension heterogeneities in the demand/productivity (Z;;). Given
the stochastic process is known to the firm but is in general not observable to econo-
metrician, we construct following two proxies.

Denote yk;+ = log (Y;:/K;.), i.e. the log of sales-to-capital ratio for firm j in

period t. In the absence of capital adjustment costs,
log (Y;./K;) = log (const() . Zjv,t[A(;;V/IA(j,t) = log const0 + ~ylog (Zj,t/[A(ﬁ)

which is a monotonic increasing transformation of (constl - Z;,/ K ;¢ — 1). Since in
the presence of capital adjustment costs, Z;, is also a non-decreasing function of 7,
we use yk;, as the proxy for the scaled demand/productivity (constl - Z;,/ K ie—1).

Denote dy,; = log (Y;;) —log (Yj:_1), i.e. the sales growth rate for firm j in period

t. In the absence of capital adjustment costs,

log (Yj) —log (Y1) = log(Zs) —log(Zju—1) = pj + (jy = Cjuma

Ciw = PCju—1t €
where 0 < p < 1 and e;, ‘' N (0, 0%). Then

Edy; = mean; (dy;:) = p;
SDdy;, = sdi(dy;+) ~0;

That is the within-group mean of the sales growth rate for firm j is equal to
p;; and the within-group standard deviation of the sales growth rate for firm j is
approximately (exactly iff p = 1) equal to o;. Since in the presence of capital
adjustment costs, Y;; is also a non-decreasing function of Z;;, we use Edy; and

SDdy; as the proxies for the growth rate and level of uncertainty for firm j.

4.5 Intercept Heterogeneity

In addition to the discount rate effect, the HAC effect and the capital adjustment
costs effects that we have explicitly modelled, Lemma 4 indicates that the expected
capital stock also depend on production technology (), demand elasticity (¢), de-

preciation rate (§), relative price of variable input (w), the time period a firm has
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operated (t), the unit in measuring capital stock (£ or £1000), and finally the inter-
cept in the stochastic process (¢,). Any differences in these factors across firms will
lead to permanent differences in the expected capital stock across firms. Our empiri-
cal strategy is to impose common value for 3, € and § at their sample average, choose
arbitrary value for w, ¢, and the unit of measurement, while model and estimate the

distribution of (.

Assumption 14 Intercept Heterogeneity: The intercept in the stochastic process

Jor firm j is Cy; , where Cy; Ny (Mcojaco) and cov (Coj,aj) =0, cov (Coj,,uj) =0.

That is each firm j has a firm-specific intercept (p; in the stochastic process,
where (; is drawn independently from an identical normal distribution with mean
t¢, and standard deviation o¢ . With heterogeneities in o, p and (,, we further
assume that they are uncorrelated with each other so that the factors that lead to
permanent differences in the expected capital stock are uncorrelated with the level
of uncertainty and the growth rate of the firms.

This technical devise is based on the important property summarized by the

following lemma.

Lemma 8 Denotel'; = I'(B;,¢;,0;,wj,t;). If cov(I';,05) = 0, the effect of imposing
common value for (5,e,9,w,t) on the dispersion of the expected capital stock can be
accounted for by adjusting oc,; the effect of choosing arbitrary value for (w,t) and
the unit of measurement on the level of the expected capital stock can be accounted

for by adjusting p, -

Proof: See Appendix 1.7.

Different from the level of uncertainty and the growth rate, the value of (, doesn’t
affect the investment policy due to the linear homogeneity property of the investment
model. Hence there could be "infinite" type for the intercept in the stochastic process.
Appendix 2.3 explains how we normalize the dynamic programming and simulate the

data under this assumption.

4.6 Measurement Errors

Given the important role of investment rate and sales in our identification strategy, we

allow for a rich structure of measurement errors in our empirical specification. This is
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motivated by two reasons. First, measurement error is a common feature in firm-level
recorded data. Second and more fundamentally, allowing for permanent components
of measurement errors in the investment rate and sales is a computationally tractable
way, to control for persistent differences between firms in investment rate and sales,
which might not have been fully controlled for through modelling heterogeneities in

the stochastic process.

Assumption 15 Measurement Errors in Investment Rate: Denote invest-
= T . R I I _ _IT P
ment rate i;; = L/ K;:. Suppose ij; = i, exp(ej’t), where €, = ej; + €, and

J’t
1.4.d 7,7,d
el ' N(0,07p), ef] '~ N(0,077).

That is there is a standard multiplicative structure for measurement error in the
investment rate, where i;, denotes the observed investment rate, i}, denotes the true
underlying investment rate which is not measured accurately in the data, and the
measurement error ej{t has both transitory and permanent components with mean
zero and standard deviation o;r and o;p, respectively. This specification has the
property that the sign of recorded investment rate is not affected by measurement

error, and treats observations with zero investment in the data as true zeros.

Assumption 16 Measurement E’r"rors in Sales: Suppose Y;, = Y, exp(e}ft),

where e}, = e [ +eX", and eYP LN(0,02,), € H N0, 02,).

That is there is a standard multiplicative structure for measurement error in sales,
where Y}, denotes the observed level of sales, Y}, denotes the true underlying level
of sales which is not measured accurately in the data, and the measurement error
eY, has both transitory and permanent components with mean zero and standard
deviation oy and oy p, respectively.

Appendix 2.3 explains how we simulate the data under these two assumptions.

4.7 Aggregation at the Firm-Level

Another feature for firm-level accounting data is that these data might be consoli-
dated across several plants within the firm. Table 4 compares the investment rate
data from a sample of the Longitudinal Research Database (plant-level) in Cooper
and Haltiwanger (2006) and from a sample of the Compustat Dataset (firm-level)

in Bloom (2007), in which investment rate is featured by spikes and zeros at the
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plant-level but by smooth and continuous serials at the firm-level. Without account-
ing for possible aggregation in the firm-level data could lead to an overestimate for
the quadratic adjustment costs and an underestimate for the non-convex adjustment
costs. Given the Datastream is a firm-level dataset, it is important for us to consider

the possible aggregation at the firm-level.

Assumption 17 Aggregation: Fach firm is made of m plants, where m > 1. For

plant @ of firm j in period t, the law of motion for Z; ;; is given by

Zigr = 108Zij4

Zige = ¢t 4Gy (26)
-1

— .. —_— s ..
Ciji = PCiju—1+€ijr=Coj+ Z P €ijt—s
s=0

i.d. -7 a2
where 0 < p <1, ;5 ~ N (0, 02), ¢ = — [T+ %] PRl

That is there are heterogeneities across firms in the level of uncertainty, growth
rate and intercept; however, plants within the same firm are all identical except
the idiosyncratic demand/productivity shocks e; ;;. Appendix 2.3 explains how we

simulate the data under this aggregation assumption.

Lemma 9 The effect of any arbitrary choice of m on the level of expected capital

stock can be accounted for by adjusting pu .

Proof: See Appendix 1.7.

5 A Structural Estimation

Since the effects of uncertainty on capital accumulation are working through differ-
ent channels simultaneously, it is difficult to estimate these channels separately and
reliably using standard regression techniques for reduced-form investment models.
Instead, our strategy is fully parametric, i.e. to recover the structural parameters
in the model explicitly by simulated method of moments and to apply counterfac-
tual simulations to gauge the qualitative and quantitative importance of these effects

through each channel.
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5.1 Simulated Method of Moments

The simulated method of moments (SMM hereafter) aims at estimating a vector of
unknown parameters by solving a minimum quadratic distance problem. Formally,

following Gouriéroux and Monfort (1996), the SMM estimator ©* solves

o) : &D 1 = xS , &D 1 = xS
@—argmem<q> —EZ%(@)) Q(@ —ﬁZ%(@)) (27)

where O is the vector of parameters of our interest; ®Pis a set of empirical moments
estimated from an empirical dataset; PS (©) is the same set of simulated moments
estimated from a simulated dataset of the structural model; H is the number of
simulation path; € is a positive definite weighting matrix.

Suppose the empirical dataset is a panel with N firms and T years. Given we
model unobserved heterogeneities across firms, the asymptotics is for fixed T and
N — 00. At the efficient choice for the weighting matrix Q*, the SMM procedure
provides a global specification test of the overidentifying restrictions of the model, i.e.
if the model is well-specified, the test statistics OI follows a chi-square distribution
with degree of freedom equal to the difference between the number of moments and

the number of parameters:

Ol = % <<T>D— %;@2(@)) Q* <<T>D— %;@2(@))
~ X [dim ({IS) — dim(@)] : (28)

At the efficient choice for the weighting matrix 2*, the SMM estimator is asymp-

totically normal for fixed H and T, and N — oo, i.e.
VN (@ - @*) DN (0, W (H, Q) (29)
where
W) = (144 ) (& [0 (6) /o] vk [03° (8) joe'])

Define binding function as ® = & (0), that is how the simulated moments

change with the structural parameters. Define the Jacobian matrix for the binding

functions as J = [6@5’ (@) / 8@] The crucial point of SMM is that the simulated

-~

moments & (@ depend on the structural parameters © used in that particular
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round of simulation. Therefore identification requires the variation in the simulated
moments being informative about the changes in the underlying structural parame-
ters. The sufficient condition for local identification is that the Jacobian matrix J
has full row rank.

Appendix 2.4 reports how we estimate the efficient weighting matrix, solve the
minimum quadratic distance problem, calculate the numerical derivatives and check

the local identification.

5.2 Structural Parameters

Table 1 lists the set of parameters © that we aim to estimate, which can be divided
into 6 categories. [1] parameter determining the importance of the discount rate effect
6. [2] parameter measuring the importance of the HAC effect 1 —7, given the demand
elasticity ¢ # 2. [3] parameters measuring the magnitude of capital adjustment costs,
i.e. quadratic adjustment costs b,, partial irreversibility b; and fixed adjustment costs
bs. Denote b = (b, b;,by). [4] parameters characterising technology and demand, i.e.
the capital share in production function 5 and the demand elasticity with respect to
price €. [5] parameters characterising the stochastic process, i.e. the serial correlation
of shocks p; the mean and standard deviation of the growth rate y1,, and o,; the mean
and standard deviation of the log of level of uncertainty ,, and o;,; and the mean
and standard deviation for the intercept p,, and o,. [6] parameters measuring the
magnitude of measurement errors in the data, i.e. the standard deviation of transitory
and permanent measurement errors in investment rate o7 and o7p, and in sales oy
and oy p.

Besides these 18 structural parameters, there are another 2 parameters in our
investment model that are exogenous but would also affect the investment policy
and capital accumulation. First, the depreciation rate . We impose § = 0.08, the
number used in constructing the capital stock series with perpetual inventory method
in the empirical sample. Second, the risk-free interest rate 7. We impose 7 = 0.065,

which is in line with the value used in the literature such as Bloom (2007).

5.3 Moments and Identification

Table 2 lists the set of moments ®° that we aim to match. The selection of moments

follows the "informativeness" principle and is guided by the properties of the model
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we discussed in previous sections. In column 1, left panel, Table 3, we report the
value of these moments estimated from the empirical sample.

Denote EFK; = mean; <IA(]~¢> and EKY; = mean, <l?j7t/ig7t>, i.e. the within-
group mean of the capital stock and capital-to-sales ratio. Recall SDdy; is the within-
group standard deviation of sales growth rate and the proxies for the level of uncer-
tainty. Hence the first two key moments corr (EK;, SDdy;) and corr (EKY}, SDdy;)
calculate the between-group correlation coefficients for capital stock and uncertainty,
and for capital intensity and uncertainty. According to our investment model, all
else being equal, corr (EK;, SDdy;) is informative about the discount rate effect 6,
the HAC effect 7 and capital adjustment costs b; corr (EKY;, SDdy;) is informative
about the discount rate effect #, and capital adjustment costs b. Conditional on b
being identified by other moments, corr (EKY;, SDdy;) identifies . Conditional on
b and 6 being identified by other moments, corr (EK;, SDdy;) identifies 7. In our
empirical sample, both these two correlation coefficients are negative and small. This
implies either all these three effects are weak, or these effects are strong individually
but basically balance each other, leaving an overall small, negative effect across firms.

The third moment prop (i;, < —0.01), fourth moment prop (|i;¢| < 0.01) and fifth
moments prop (i;; > 0.20) report the proportion of disinvestment, investment inac-
tion and investment spikes. Recall our investment model predicts that both partial
irreversibility b; and fixed adjustment costs by would generate zero investment, how-
ever, partial irreversibility would lead to less disinvestment, while fixed adjustment
costs more investment spikes. Furthermore, quadratic adjustment costs b, dampen
investment hence predicts less investment spikes. Very few disinvestment and zero in-
vestment are recorded in our empirical sample. This either implies the insignificance
of the non-convex adjustment costs or reflects the importance of aggregation.

The correlation coefficient corr (i;,,yk;,) reflects the responsiveness of invest-
ment rate to the log sales-to-capital ratio. Recall yk;, is the proxy for the scaled
demand/productivity. The investment policies illustrated in Section 2 imply that
high values of b, and b; decrease this coefficient; while any measurement errors in in-
vestment rate (o7, 0rp) or sales (oyr, 0y p) can cause attenuation in this coefficient.
The serial correlation of investment rate corr (i;¢,1;,—1) reflects both the importance
of b, and the persistence of the stochastic process p. Transitory measurement errors

(o7) attenuate this coefficient while permanent measurement errors (o;p) blow it
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up. The serial correlation of the log sales-to-capital ratio corr (yk;, yk;+—1) is also
informative about p; meanwhile, transitory (oyr) and permanent (cyp) measure-
ment errors affect this coefficient in the opposite direction. Empirically, we observe a
low correlation between investment rate and the log sales-to-capital ratio, high serial
correlation in investment rate and very high serial correlation in log sales-to-capital
ratio, which may reflect the importance of adjustment costs, the persistence of the
stochastic process, or the existence of measurement errors.

The next two moments are derived more directly through the first-order conditions
of the model. The mean of profit-to-sales ratio mean (7,/Y;;) and capital-to-sales
ratio mean (EKY)) are informative for the capital share in production function 3
and the demand elasticity with respect to price . First, Lemma 1 claims, no matter
whether there is adjustment cost or not, the first-order condition of the short-run
profit maximization problem indicates that sales is always proportional to the op-
erating profit. ie. m;;/Y;; = 1/ve, where v = 1/(1+ (¢ —1)). Furthermore,
Lemma 4 claims, in the absence of adjustment costs, the first-order condition of
the dynamic programming indicates that capital-to-sales ratio is always a constant,
ie. K;.;/Y;; = const2, where const2 = [ (¢ — 1) (14 )] /[e (r + 0)]. Therefore, for
given 6, b, and ¢, identifying 5 and ¢ is equivalent to solving two equations (6) and
(24) for two unknowns simultaneously. Table 3 reports a sample average of 26.6%
profit-to-sales ratio and 49.7% capital-to-sales ratio.

For given adjustment costs parameters b and depreciation rate 9, the first moment
of investment rate mean (i;,) is informative about the mean of the growth rate s ,;
while the second moment sd (i;,) is informative about the heterogeneities in the
stochastic process Oy and 0;,, and measurement errors in investment rate (a T, 01 p).
The mean and standard deviation of the investment rate for these U.K. manufacturing
firms are both about 12%.

Denote Edy; and SDdy; as the within-group mean and standard deviation of
the sales growth rate for plant ¢, hence are the proxies for the growth rate p, and
level of uncertainty o; for plant ¢. Our aggregation assumption implies plants in
the same firm have the same level of growth rate and uncertainty, hence subject
to the smoothness during aggregation, Fdy; and SDdy; are also informative about
p; and o;. Therefore mean (Edy;) and sd (Edy;) are informative about y, and o,;

mean (SDdy;) and sd (SDdy;) are informative about 4, and 0;,. Figure 4a and 4b
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plot the empirical distribution of Edy; and SDdy;, respectively. There is a clear
pattern of "normal" for Fdy; and "log-normal" for SDdy,, which is consistent with
our assumption about the distribution of x; and ¢; in Section 4.

The last three moments mean (EKj;), sd (EK;), and sd (EKY;) capture the em-
pirical distribution of capital stock and capital intensity. Given the critical role of
these two variables in identifying the effects of uncertainty, it is important that we
could match their empirical distribution. In particular, conditional on # and 7 being
identified by the first two moments, adjustment costs b being identified by invest-
ment dynamics, as Lemma 8 claims, p. —accounts for any effect of arbitrary choice
of w, t, unit of measurement and number of plants m on the level of capital stock
mean (EKj); o, accounts for any effect of imposing common value for (3,¢,4,w,t)
on the dispersion of capital stock sd (EK;). Measurement errors in sales (oyr, oyp)
is a crude way to account for the effect of any unobserved heterogeneity in (3, €, ) on
the dispersion of capital-to-sales ratio sd (EKY;). The moments we report in Table
3 is measured in the unit of £100,000 for capital stock. There is large dispersion in

the empirical distribution for both capital stock and capital intensity.

5.4 Estimates

Table 3 presents our estimation results for the full model, imposing the number of
plants within each firm to be 10. The first column in the right panel reports the
estimates of the structural parameters and the second column lists the numerical
standard errors of these estimates.

The estimate for 6 is 0.675, positive and significantly different from zero, which
is a strong indication for the empirical relevance of the risk-adjusted discount rate
effect. The estimated 7 is about 0.5 and significantly below 1. Together with the
estimated demand elasticity € being significantly greater than 2, this implies strong
empirical relevance for a positive HAC effect.

The estimates for all three forms of capital adjustment costs are found to be
significantly different from zero. In particular, l;; = 0.319 implies a quadratic ad-
justment cost, which is about 0.12% of the total sales, evaluated with an investment
rate and capital-to-sales ratio at the sample average. bA, = (0.284 implies that resale
of a capital goods would incur a sell-loss, which is about 28% of its original pur-

chase price. 5} = 0.070 implies any investment or disinvestment would result in a
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7% loss of operating profit, which is about 1.86% of the total sales, evaluated with a
profit-to-sales ratio at the sample average.

The estimated B = (0.127, a capital share in the production function that is in line
with most empirical research for estimating production function for manufacturing
firms. The estimate for the demand elasticity with respect to price is € = 6.387, which
implies a mark-up coefficient E_il = 1.186. These two estimates together determine
the estimate for the capital coefficient in the operating profit 1 — % = 0.407, an
indication of strong concavity.

The estimated serial correlation parameter for the stochastic process is 0.931
but significantly different from 1, which implies the effect of the shocks are very
persistent but not permanent. The estimates for the mean and standard deviation of
the growth rate are 0.017 and 0.044, respectively, and are both significantly different
from zero. This implies on average the demand /productivity grows at 1.7% per year,
meanwhile there is large heterogeneity in the growth rate across firms in this sample.
The estimated mean and standard deviation for the log of o can be transformed
into mean and standard deviation for o itself, the measure of overall uncertainty
in our model, which are 0.219 and 0.233, respectively. Since a value of ¢ of 0.2 has
been considered as "typical" for simulation purposes in many theoretical research, for
example, Pindyck (1988), our estimates confirm this typical choice but also highlight
the existence of large heterogeneity in the level of uncertainty across firms.

Evaluation for the estimates of y. and o¢, depends on how well the first two mo-
ments of capital stock are matched. In particular, o¢, reflects heterogeneity across
firms in their average capital stock during our sample period, and accounts for some
of the persistence in firm-size differences. Three out of four types of measurement
errors under our consideration are significant. In particular, measurement errors in
both investment rate and sales have a large permanent component. Besides the pure
recording errors in the firm-level data, this also implies the existence of other "un-
observed heterogeneity" across the firms that we have not modelled "structurally".

The left panel of Table 3 lists both empirical moments and the simulated mo-
ments generated from the investment model when the above structural estimates are
utilized.

The first two simulated moments imply both the expected capital stock and ex-

pected capital intensity are negatively correlated with the measure of uncertainty in
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our simulated data, as they are in the empirical data. Hence our investment model
generates the right prediction about the overall sign of the effects of uncertainty on
capital accumulation. Compared with the value of empirical moments, the predicted
magnitude is slightly low for the capital stock and relatively too high for the capital
intensity. This could be the result that we have oversimplified the technology on the
side of variable input, or we have not fully accounted for those heterogeneities that
may affect the capital-to-sales ratio.

Among the rest set of the moments, the simulated mean of sales growth rate is
relatively low compared with the empirical mean, while all the other moments are
very well matched. Overall, the overidentifying restriction test statistics is 165 with

one degree of freedom under this specification.

5.5 Comparison with the Literature

Since this is the first paper that offers structural estimates of the discount rate effect,
the HAC effect and heterogeneities in the stochastic process, there is no existing
literature that we can use to compare our findings. However, the pioneering work of
Cooper and Haltiwanger (2006) and Bloom (2007) provide the possibility to compare
our estimates on capital adjustment costs.

Table 4 lists the estimates on capital adjustment costs from each paper, together
with assumed number of plants aggregated within each firm, and common moments
reported in our paper and in either of their papers. Across these research, Cooper and
Haltiwanger (2006) estimates a large fixed adjustment costs while Bloom (2007) gets
a large value for the partial irreversibility parameter. In contrast, our estimates for
these two non-convex adjustment costs are somewhere in between. For quadratic ad-
justment costs, the estimates in Bloom (2007) depend on whether labour adjustment
costs have been included, whether aggregation has been taken over time and the num-
ber of plants for cross-sectional aggregation. Compared with empirical research in-
ferring quadratic adjustment costs from the "Q-model", for example, Hayashi (1982),
the structural estimates from these three papers are indeed very close to each other

and significantly lower than those traditional findings.
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5.6 Specification Tests

Table 5 reports specification tests for several restricted models, where our preferred
full model is listed in the first column as benchmark.

Column (2) lists the result by imposing § = 0, i.e. imposing no discount rate
effect. Compared with our preferred full model, the overall fit deteriorates a lot,
mainly due to the restricted model cannot fit the negative correlation between capital
stock, capital intensity and measure of uncertainty. This restriction also leads to a
higher estimate for the HAC effect (1 — 7 decreases) and a higher estimate for the
quadratic and fixed adjustment costs.

Column (3) lists the result by imposing 7 = 1, i.e. imposing no HAC effect. Com-
pared with the benchmark model, this restricted model generates a lower estimate
for the non-convex adjustment costs and makes the simulated correlation between
capital intensity and measure of uncertainty further away from its empirical value.

Column (4) lists the result by imposing b = 0, i.e. imposing no capital adjustment
costs. Using the first column results as benchmark, this restricted model estimates a
higher discount rate effect and a lower HAC effect. Furthermore, given the investment
dynamics would be very volatile in the absence of adjustment costs, the estimated
stochastic process has to be much more stable to match the dampened investment
behaviour in the data.

Column (5) lists the result by imposing o, = 0, i.e. imposing no heterogeneity in
the growth rate. As we may expect, under this restriction, the model first, cannot fit
the large dispersion of the growth rate in the empirical data and second, estimates
a higher quadratic and fixed adjustment costs. This highlights the importance of al-
lowing for heterogeneity in growth rate in getting consistent estimates for adjustment
costs.

Column (6) lists the result by imposing o;7 = o;p = oyr = oyp = 0, i.e. im-
posing no measurement errors in investment rate and sales. Given the full model
has estimated a large permanent component and a small transitory component of
measurement errors in both variables, this restricted model mainly tests the effect of
not allowing for permanent measurement errors. Not surprising, this restricted speci-
fication is massively rejected, mainly because the simulated correlation between both
capital stock and capital intensity and measure of uncertainty are too large compared

with their empirical counterparts, besides the model cannot fit the large dispersion
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in the empirical capital-to-sales ratio. Since allowing for permanent measurement
errors is one way to generate persistent differences in the data, these results highlight
the importance of taking into account "unobserved heterogeneity" in firm-level data:
even modelling it in a crude way is much better than ignoring it at all.

Table 6 lists the results for estimating the same full model but imposing the
number of plants within each firm to be 1,5,10 and 15, respectively. As we may
expect, since aggregation is one of the important sources of smoothing, assuming
fewer number of plants for aggregation results in a higher estimate for b,, lower
estimates for b; and b, and lower estimates for all parameters measuring dispersion
Oy, 01 and o¢ . The estimate for the mean of the intercept . increases, since with
fewer number of plants for aggregation, each plant has to be "larger" to match the
empirical mean of the capital stock. According to the overidentifying restriction test
statistics, a model imposing m = 5 or m = 10 would be preferred to those imposing
m =1 or m = 15. The fact that we allow for m = 10 plants to take into account the
effect of aggregation while Bloom (2007) allows for m = 250, is partly due to larger
firm size in the sample used by Bloom (2007), but mainly because the shocks in our
model are idiosyncratic, while the shocks in Bloom(2007) have both idiosyncratic and
aggregate components. Finally, comparing the two columns for m = 5 and m = 10,
we find the estimates for 6§ and 7 are very stable, which implies the robustness of the
discount rate effect and the HAC effect within our preferred specifications that take

into account the effect of aggregation.

5.7 Robustness Tests

Table 7 presents results for two robustness tests.

Column (1) is our preferred full model, imposing risk-free interest rate 7 = 0.065
and using a set of 19 moments discussed in Section 5.3. Column (2) lists the results
for the same full model, using the same set of 19 moments, but imposing 7 = 0.04. As
we see, the estimated 0 increases. This implies given the linear specification for the
discount rate scheme, imposing a lower level of the intercept has to be compensated by
a higher level of the slope, so as to match the simulated moments with the empirical
moments. In spite of the differences in the estimates by imposing different values for
7, the results in Column (2) also indicate the empirical importance of all three effects:

the discount rate effect, the HAC effect and the adjustment costs effect. Hence using
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different values for the risk-free interest rate may lead to quantitative differences in
the results, but not qualitative.

Column (3) lists the results for the same full model, imposing 7 = 0.065, but using
a larger set of 36 moments. These 36 moments are chosen from a statistic point of
view. We have 2 basic variables for which we simulate firm-year values (K and Y),
from which we can also derive 2 growth rates (i and dy) and 1 ratio (K/Y’). This
gives us 5 variables for which we can compute means, standard deviations, serial
correlation coefficients, and cross-correlation coefficients, giving 25 moments. We
also compute the within-group standard deviation of sales growth, which is time-
invariant but varies across firms. We can use the between-group mean and standard
deviation, and the correlation coefficients with the within-group average levels of the 5
variables above, giving a further 7 moments. We also use the mean of profit-to-sales
ratio. Finally we use the three proportions of disinvestment, investment inaction
and investment spikes. Together this suggests a set of 25+7+14+3=36 moments.
Comparing Column (3) with Column (1), the estimates for some of the structural
parameters do vary, as a result to match the additional 17 moments. However, the
estimates for 6, 7, and b still highlight the empirical importance for each of the

channels: the discount rate effect, the HAC effect and the adjustment costs effect.

6 Counterfactual Simulations

Definition 4 Aggregate Capital Intensity sum|K, (0)]/sumlY, ()] is the ratio
of the aggregated optimal productive capital stock to the aggregated sales for a given

sample in period t.

Although the expected capital intensity is a key variable for identification in firm-
level data, it is the aggregate capital intensity that is widely calculated and reported
in the studies of economic growth and economic development.

Figures 5a and Figure 5b illustrate how the level of uncertainty affects expected
capital stock and aggregate capital intensity in our simulated data, using the esti-
mated parameter values reported in Table 3 and the same random numbers employed
during estimation. We take the estimated mean of o as our reference level of uncer-
tainty, i.e. o0 = 0.22, keeping o, constant and decreasing p,;, gradually so that the

average level of uncertainty decreases from 0.22 to 0.11. The average capital stock
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and aggregate capital intensity levels are both scaled by the levels in the simulation
using the reference level of uncertainty, so that the values on the vertical axis can be
read as percentage changes in the average capital stock and aggregate capital inten-
sity as we reduce the level of uncertainty below this reference value. As we read from
these two figures, all else being equal, a permanent reduction in the average level of
uncertainty by 50% is estimated to increase average capital stock levels by about 25%
and to increase aggregate capital intensity by about 13%. This implies the overall
effects of uncertainty on capital stock and capital intensity are both negative, and
the magnitude tends to be substantial.

The second step is to estimate the relative importance of the discount rate effect,
the HAC effect, and the capital adjustment costs effect in generating the overall
effects of uncertainty. This is done by two nested control experiments.

In Figure 6a and 6b, we impose the discount rate at the estimated sample average,
ie. r=7+0-mean (o) = 0.065 + 0.675 x 0.219 = 0.213 when we vary the level of
uncertainty, so that the effects illustrated here are only due to the HAC effect and
capital adjustment costs effect. According to these two figures, if the discount rate
did not change with the level of uncertainty, and if the level of uncertainty was halved
permanently, the average capital stock would decrease about 5% and the aggregate
capital intensity would decrease about 3%. Together with the estimates in Figure 5a
and 5b, this implies the elasticity of capital stock and capital intensity with respect
to the level of uncertainty are -0.6 and -0.32, respectively, through the channel of
discount rate effect.

In Figure 7a and 7b, besides imposing the discount rate at » = 0.213, we also
impose 7 = 1, when we vary the level of uncertainty, so that the effects illustrated
here are only due to capital adjustment costs. According to these two figures, if
the discount rate and the HAC effect did not change with the level of uncertainty,
and if the level of uncertainty was halved permanently, the average capital stock
would increase about 5%. Together with the estimates in Figure 6a, this implies the
elasticity of capital stock with respect to the level of uncertainty are +0.2, through
the channel of HAC effect. In contrast, there is very little change in the aggregate
capital intensity, comparing Figure 7b with Figure 6b. This is because the HAC
effect only affects capital stock but not capital intensity, as we proved in Proposition

2.
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Since Figure 7a and 7b illustrate the net effect of uncertainty through the channel
of capital adjustment costs, this implies through this channel, the elasticity of capital
stock and capital intensity with respect to the level of uncertainty are -0.1 and +-0.06,
respectively.

Therefore comparison between these nested experiments highlights the impor-
tance of the discount rate effect in determining the effects of uncertainty on capital
accumulation.

Finally, to check whether the findings in Figure 5a and 5b are robust to the
choice of the number of plants, the risk-free interest rate, and the set of moments
to match, in Figure 8a and 8b, 9a and 9b, and 10a and 10b, we implement the
counterfactual simulations based on the estimates in Column (2) of Table 6, Column
(2) and (3) of Table 7, respectively. As we see, all these figures also present a negative
effect of uncertainty on both expected capital stock and aggregate capital intensity.
Therefore, in spite of some quantitative differences, the effects of uncertainty on

capital accumulation we find in Figure 5a and Figure 5b are qualitatively robust.

7 Conclusions

This paper provides a structural framework to estimate the effects of uncertainty on
capital accumulation at the firm level. Our investment model allows for uncertainty
to affect capital accumulation through three possible channels that have been high-
lighted by the uncertainty-investment literature. The sign and magnitude of each
of these mechanisms are illustrated by counterfactual simulations, based on a set of
optimal estimates for the structural parameters of the model, using the simulated
method of moments.

The findings of this paper include that, first, there is significant empirical evidence
of both a risk-adjusted discount rate effect and a HAC effect from our structural es-
timation. Second, both convex and non-convex adjustment costs are necessary in
modelling firm-level investment. Third, the estimated model suggests that a moder-
ate, positive HAC effect dominates a small, negative adjustment costs effect, leaving
a big, negative effect of uncertainty on both average capital stock levels and aggregate
capital intensity through a risk-adjusted discount rate effect.

The robustness of the last finding is subject to the following considerations.

First of all, among all the 19 moments, the match for the correlation between cap-
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ital intensity and our measure of uncertainty is relatively poor. This might be due to
the assumption of costless adjustment of variable input, or perhaps more importantly,
because our investment model has not fully accounted for other unobserved hetero-
geneities that affect capital intensity. The robustness of our finding about the effects
of uncertainty on capital intensity requires the assumption that these unobserved
heterogeneities are uncorrelated with the level of uncertainty.

Second, like most of the uncertainty-investment literature, the investment model
we set up in this paper is explicitly partial equilibrium in nature. This allows us to
model a very rich structure in the stochastic process for the purpose of identifying the
HAC effect and capital adjustment costs, while the cost is that we have simplified the
structure of the risk-adjusted discount rate effect. Our empirical finding implies that
this effect could be substantial. Given that firms in Datastream are large publicly-
traded firms in the UK stock market, this raises the interesting question of why the
risk-adjusted discount rate effect that we have modelled appears to be so strong,
and whether this finding is robust if the effects of uncertainty on risk premium are
modelled and estimated in a consumption-CAPM framework.

Finally, in a general equilibrium framework, the analysis of uncertainty on capital
accumulation should focus not only on the effects of stochastic process, but also
on technology and relative factor prices. This is particularly important, since in the
presence of capital adjustment costs, the optimal response of the firms is to substitute
away from capital towards variable input, which implies technology adoption and
relative prices are both potentially endogenous.

All these analyses are beyond the scope of this paper, while we hope this paper

is the first step towards interesting and more challenging future research.
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Appendices

1 Proof for Lemmas and Propositions

1.1 Proof for Lemma 1
The short-run profit maximization problem is

(X, Ay, }?t) = mLaXPtQt —wly

1 e—1
= maxX;7Q,° —wl,
Ly

-1 (e=1)(A=B) (=B

1
= maxX7A,° L, < K, ° —wl
Ly

)

First-order condition leads to

— 1\ o~
L - (”5 ) X7 (A R

wye
L 1 51
T o= = const0- X (A)) 'K}
ve — 1
ewlL
Y, = PtQt:7 t:757Tt
ve —1

where v and const0 are given by equation (7) and (8).

1.2 Proof for Lemma 2
Taking the log on both sides of equation (4) leads to
logm, = logconst0+ vylog Xy + (e —1)log Ay + (1 — ) log K, (A1)
= logconst0 + v [log X; + (¢ — 1) log A;] + (1 — 7) log K,
Substituting (9) and (10) into (A1), its stochastic part can be written as

Y{ler + ppt + Gl + (e = 1) [ea + pot + CF]}
[Co + (= 1) (ol + [ex + (e = 1) ca] + [1, + (= 1) ]

t—1

= 7 = i T i 0
+ Xz]pmet—s + (6 - 1) %paet—s
S= S=

By imposing p, = p, = p, since ej and e} are independently normally dis-
tributed, a linear combination of these two random variables is still normally
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distributed with proper mean and variance, i.e.

,_.

t—

prets 6_lzpets: pi[etmfs—i_(g_lets Zpets

S

Il
o

where ¢, ‘%' N (0, 02 + (e — 1) o).

a

This implies that the log of operating profit (A1) can be rewritten as
log 7y = log const0 + vylog Z; + (1 — ) log K,
or equivalently the operating profit as
m(Z,, K,) = const0 - Z) K}

The law of motion for the combined random variable Z, is given by (12),
with parameters in this stochastic process defined in (13).

1.3 Proof for Lemma 3

In the frictionless case G(Z;, Ky; I;) = 0, so that the Bellman equation is

1
147

V(Zt, Kt) = HlIaX{COW/StO . Zt’Y (Kt + It)li'y — [t + Et [V(Zt+1, Kt+1)]}

with the law of motion for capital stock
K= (1-90) (K¢ + 1)
Taking derivative with respect to K; on both sides of the Bellman equa-
tion, we get the quantity known as marginal ¢
oV,
0K,

which is a constant due to our timing assumption.
The first order condition with respect to K, is

8 t 1 —’7 Zt v 1 1 (9 t+1
Ve _ consto - . L op (Ve ] g s
const) {Kt—l—ft} R e o RN G

~1 (A2)

Replacing 2 e 2%t in (A3) with (A2) leads to the Euler equation

Zt/Kt ’Y: 1_1_+1”
1+ L/K, const0 - (1 — )

Rearranging this equation gives the optimal investment rate in equation (21)
and optimal capital stock in equation (22).
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1.4 Proof for Lemma 4

For capital stock, taking expectation on both sides of equation (22) directly
gives
E [[A(f (0)] = constl - E[Z,]

For capital intensity,

K K
Y ~e - const0 - Z) K

B 1 R\
e -const0 \ Z,

1
= e eonsi0 (constl)”

(1= (1+r)
~e (r+9)
Be—1)(1+r)
e(r+9)

which is const2 given in equation (24).

1.5 Proof for Lemma 6
According to equation (9)
Elz] = Elco + pyt + ]

t—1
= Elea +pt+ 5+ Y pler ]
s=0

Vie) = Viea+ pt + Gl

t—1
= V) _pier ]
s=0

= 02/(1—p*) whenO0<p<1landt—
Then
E[X) = explE (z;)+ 0.5V ()]
= exp [(§ + cp + pt +0.507/ (1= p?)]
= exp(Cf + pot) if ¢ = —0.502/ (1 — p?)
Similarly, we have E [A;] = exp((f + pot), if co = —0.502/ (1 — p?).
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1.6 Proof for Lemma 7

Given ¢ = ¢, + (e — 1) ¢, ¢z = —0.502/ (1 — p?), o = —0.502/ (1 — p?) and
0% = 02 + (¢ — 1)* 62, we can derive that

= exp [(y+ c+ put+0.50%/ (1 —p?)]
. 2
O’x

— exp §0+ut+<cx+m)+(5_1>(C“+%)}
' (e—1)(e—2) 2}

= exp |(y+ pt +

2(1—p7)
o (c-2)(1-7) ,
- p_<°+“”2<s—1><1—p2>1

1.7 Proof for Lemma 8 and 9

It is well-known that for any random variable z; ‘%' N (u, o), if X; =
exp (x;), the first moment for X; is

EX;| = exp(E[z;]+ 0.5V [z;]) (A4)
= exp (u + 0.502)
And the second moment is
Vix] = B[X}] - (B[X)’
= Elexp (2z;)] — [exp (p+ 0.502)}2
= exp[2u+0.5- (20)2} —exp (2u + 0?)
= exp (2/1 + 202) — exp (Q;L + 02)
= [exp (Zu + 02)} [exp (02) — 1]

or equivalently, the standard deviation is given be
sd [X;] = exp (pu+ 0.50%) \/[exp (02) — 1] (A5)

Assume 6 = 0 (no discount rate effect) and 7 = 1 (no HAC effect) for
now. Denote operation taking over firm and time with subscript j and ¢,
respectively. Suppose the m plants within the same firms have similar size.
Then the within-group capital stock for firm j is

Ef?j = Et |:[/€j,tj| = Et [Zizl Ki,j,t] ~ Et [m . Ki,j,ti| = TTLEt [I?i,j,ti|

41



In the absence of adjustment costs,
E; [E}A(J] = E; [mEt [l?”tH =m - constl - E; [Ey [Z; j.4]]
sd, [E[A(]] = sd; [mEt [[A(”t” =m - constl - sd; [E¢ [Z; j4]]
The law of motion for Z, ;, is given by equation (26), by which we get

Eylzije] = cj+ o+ put

Varyzi ;| =

Using the result in (A4)

EyZi ¢l = exp(Eilziji] +0.5Varz ;)
= exp (Cj + Coj + pt + 0.50?/ (1- pz))
exp (CO]’ + Mt)
= exp (ut) exp (COj)

Calculating the between-group mean and standard deviation leads to

E;[E[Zij)] = exp(ut) Ej [exp (Coy)]
sd; [Ey [Z;j4)] = exp(ut)sd; [exp (Coj)]

Since (y; ESY Le 5 0¢. ), applying the the result in (A4) and (A5), we have
0j Cor “Co
Ey lexp (Goy)] = exp (g, +0.502)

sd; [exp (Co;)] = exp (“Co + 0.502()) \/[exp (0?0> - 1]

Suppose the capital stock is recorded in £ and we normalise it with £M.
Empirically, we calculate the first two moments of £'K; being 0.067 and 0.290.
This implies conditional on #, 7, and b being identified by other moments,
the identification for fie, and 020 can be achieved by solving the simultaneous
equations

I exp (Mco + 0.5a§0> — 0.067 (A6)

T exp (Nco + 0.5020) \/ [exp (ago> - 1] — 0.200 (A7)

where I' = m - constl - exp (ut) /M, and constl is a function of (g, ¢,0,w,r).
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Divide equation (A7) by (A6), we get the solution to o, which is inde-
pendent of I' and only depends on the coefficient of variation of the capital
stock. Substitute this solution into (A6), u, can be solved out for any I'.
Hence given (p, 3,¢,9,r) are pinned down by other moments, the effect of
any arbitrary choice of w, t, the unit of measurement M, and the number
of plants m, on the level of expected capital stock can be accounted for by
adjusting s .

2 Numerical Methods

2.1 Solving Dynamic Programming (19) Numerically
The problem we need to solve is

1
1+7r

V(Zt,Kt) = ITI]aX{H(Zt,Kt;[t) +
s.t. Kt+1 = (1 — 5) (Kt + [t)

Zy = exp(z)

2z = c+ut+¢,

E, [V(Zt+1> Kt+1)]}

t—1

G = pGgte=Co+ Zpset—s where ¢, "% N (0, %)
s=0

According to Lemma 3, in the absence of adjustment costs,
Ki,=(1 — &) K} =(1-10)-constl - Z,
Furthermore, in the absence of uncertainty,

Zy = exp(c+(o+pt)
Ky = K7 exp(p)

Together, in the absence of both adjustment costs and uncertainty, the non-
stochastic frictionless capital stock would be

K" = KT,/ exp (n) = const3 - Z, (B1)

where
const3 = (1 — ) - constl/exp (1)

This means the exogenous state variable Z; is a trend stationary process;
the state variable K; endogenously follows Z; hence is also a trend stationary
process. For any p > 0, (19) a dynamic programming with unbounded return
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function and there is in general no theory about the existence and uniqueness
of the solution.

However, notice due to our choice of the functional forms, the net revenue
II(Z;, Ky; 1) is linear homogeneous in (Z;, Ky; I;). If there was a solution
Iy = h(Z;, K}), the linear homogeneity of II implies the linear homogeneity of
V' in (Z;, Ky; 1), while the linear homogeneity of V' in (Z;, Ky; I;) guarantees
the linear homogeneity of I; in (Z;, K;), by the property of constant return
to scale problems (Theorem 4.13, Stokey and Lucas 1989)

Define ¥; = exp (¢, + pt). Denote Zt = g5 Kt = 35 ]t = ft, Zt+1 =
z ~ K,
ﬁ, and Ky = _\I/ti

Then due to the linear homogeneity of V', we have

V(Z, ;) = V(%%)
= %V(Zt,Kt)
= el N Kt + TR G BV (s Ki)
- [ (3] - s )

= max{II(Z;, K;; I,) + }ffﬁ)Et [V(ZtJrl?[?tJrl)]}

I /9y

where we have used the fact that W, ; /¥, = exp(p). Hence, we have nor-
malised the dynamic programming (19) into the following problem

VZoR) = a7, BT+ 2 W g V(7,0 B)] ) (82

I/, +7r
s.t. [?t+l = exp(—p) (1 —9) (ft + E) (B3)
Z = exp (c + Zt) (B4)

t—1

¢ = PGy te=Y pes where e, < N (0, 0?)

s=0

where Z and INQ are the two state variables, and .Tt is the control variable,

which are all stationary. The investment rate [,/ K; = I,/ K;, which is con-

exp(p)
1+r °

Since conditional expectations need to be formed based on Z, we use the
approximation method in Tauchen (1986) to discretise the continuous AR(1)

venient. The effective discount factor is now
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process for Zt into a 9-state Markov process for given parameters p and o.
Then we get Z,(i) by multiplying exp(C,(i)) with the constant exp(c), where
i=1,2---9.

Since in the absence of both adjustment costs and uncertainty, the non-
stochastic frictionless capital stock is given by (B1), we define the support of
K, as

exp [log (const?) : Z(l)) — 0.5, log (const3 : Z(9)> + 0.5]

We then discretise this state space with 200 grid points, so that the grids for
Kt are Kt( ) where j = 1,2, ---200.

Now H(Zt, I?t; 1:;) is real Valued, continuous, concave and bounded; the
set 2 = {(Z(i),[?t(j))}(i:Lg,...g;j:Lz..,200) is compact and convex. As long
as 0 < % < 1, by the Contraction Mapping Theorem (Theorem 9.8
in Stokey and Lucas 1989), we can always get a unique investment policy
I, = h(Zt, Kt) using value function iteration.

In practice, within each value function iteration, we adopt a policy im-
provement algorithm (Chapter 20, Ljungqvist and Sargent, 2000). This costs
more time for each value function iteration but substantially saves overall
numbers of iterations, hence in total it saves about two-third of the time
compared with simple value function iteration in solving (B2). Since at the
early stage of estimation, condition 0 < &() < 1 might be violated in case
of a high value of p, we set the termmatlon condition as either the difference
in the value function between two consecutive iterations is smaller than the
tolerance le — 5 or the number of value function iterations exceeds 100.

After getting the optimal solution I, = h(Zt, Kt) we interpolate so that
the final state space for Zt has 100 grid points, that for Kt has 2000 grid

points, and the final policy space for I; has the dimension of (100 x 2000).

2.2 Finite Mixture of Types

Both the level of uncertainty ¢ and the growth rate p would affect the in-
vestment policy. Hence the dynamic programming must be solved for each
type of o0 and p. In other words, o and p are two additional State variables
besides Z; and K;. Given logo; N (1, 07,), and p; N (1, 02),

we discretise these two continuous distribution by Tauchen (1989) method
Due to "the curse of dimensionality", we have to be conservative about the
number of grids and set them to be 3 for both of these two state variables.
We experiment with higher number of grids for these two state variables and
find the simulated moments are not very sensitive. The procedure of how to
solve the dynamic programming can be describe as:
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for 0 = exp (log o1, log 0y, log o3)
for 11 = (11, o, pi3)
for value function iteration converges
policy improvement algorithm
end _ o
interpolate for I, = h(Z;, K;)
end
end

In other words, the dynamic programming (B2) is solved for each type of
firms from the type set f = {(ou,p,) :u=1,---,3;0v=1,---,3}.

2.3 Simulate the Data

Under our assumption, each plant makes its own investment decision while
unobserved heterogeneities and measurement errors are at the firm level. The
procedure to simulate the data includes four steps.

Step 1: Simulate data for each plant ¢ of firm j in period ¢. When
t = 1, we endow all simulated plants of firm j with the initial condition

EMI = —,/05/(1 = p?) and the corresponding initial capital stock Kiq =

const3 - Z-JJ = const3 - exp(c + Zwl) For all subsequent periods, we ran-
domly draw demand/productivity shocks e; ;; (0;) for each plant ¢ of firm j
in period t. Given the realization of ZZ 4+ and the inherited KZ ., we find
the optimal investment ]1 .t using the policy rule derived above. Then ZZ it
or equivalently C ;i1 evolves exogenously according to (B4), KW evolves en-
dogenously according to (B3), operating profit 7, ;, is calculated according
to equation(14). Finally, the control variable in this period becomes the state
variable in next period.

Step 2: Plant-level data are aggregated into firm-level data. For firm j
in perlod t, the normalised investment data is I it Zl 1 ]Z j.t; capital stock
is Kj, = Y7, K, ; operating profit is 7, = Y7 7y

Step 3: Recover the intercept exp ((Oj) and time trend exp (,ujt) in the
variables of the original model. For firm j in period ¢, the actual invest-
ment is therefore I;; = I;; exp((y; + u;t); the actual capital stock is Kj; =
IN(jJ exp(Co; + #;t); the actual operating profit is 7, = 7;, exp(Co; + p;t);
the sales is Y;; = e - m;; according to equation (6). The investment rate is
Qe =11/ K4

Step 4: Add measurement errors, so that the observed investment rate is
ije =%, exp(e! ), and the observed level of sales is Y;; = Y/, exp(e],).

46



With these data, the simulated moments listed in Table 2 are calculated
to match the empirical moments.

2.4 Simulated Method of Moments

The empirical sample we use is an unbalanced panel with N = 672 firms
and on average T = 11 years of observation for each firm. As suggested
by Michaelides and Ng (2000), for SMM, simulating H path of (N x T) is
equivalent to simulate (HN x T'). In addition, each firm has m plants, and
we allow for 10 years to start from the ergodic distribution and discard them
in calculating the moments. Therefore the simulated data panel is of size
[HNm x (10 + T')] where we use H = 10 in our application.

We use the optimal weighting matrix given by a bootstrap estimate for
the inverse of the variance-covariance matrix of the empirical moments, i.e.

@ = [Nvar (@D)]l

Due to the discretisation of the state spaces and the discontinuities of the
investment policy in the presence of non-convex adjustment costs, we adopt a
simulated annealing algorithm described in Goffe, Ferrier and Rogers (1994)
to avoid local minima in solving the minimisation problem (27).

There are 19 moments and 18 structural parameters in our application so
that the Jacobian matrix for the binding functions is

[ 927(6), 09%(6), 05°(0) 7
SN 90, 901 — 90,
039 (8) | (o), #8(e), - o),
J= N7 _ EEH 96, 963
00 . . .
03%(8), 03%(6), 08°(6)
— 8@18 6@18 8918 =

When calculating the numerical derivatives, in order to smooth the possible
wiggles in the binding function, we use a simple regression techniques as fol-
lows. Given parameter set ©; (i = 1,2, ---18), moment set ®; (j = 1,2,--- ,19),

for each parameter O;, define a range of values [O.S@i, 1.2(:31-] L around the
optimal estimate ©; and discretise this range into 20 grids [@11, 02,... @fo] ,

meanwhile fix all other parameters at their optimal estimates ©_;, for each
moment ®;, we calculate its value at each ©F (p=1,2,---20), which will

IFor the serial correlation parameter, we only consider the range [0.8p,7], given the
estimated p is above 0.9 and due to the restriction of 0 < p < 1 in using Tauchen method.
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produce 20 values EI\DP (p=1,2,---20). Plotting a figure of EI\DP against @p
illustrates the shape of the blndmg function. A flat line 1mphes the moment
(IJ does not vary with the parameter @Z, while a steep line implies <I>J is in-
formative about the variation in @Z, at least at the local area of our optimal
estimates. In most cases, these binding function has a linear shape, hence
we run the regression using OLS, e.g.

DL = apji + ;07 + <5
665'((:)),
Then the slope coefficient from the regression @ ; fills the element 2 in
the Jacobian matrix .J, which turns out to be indeed of full row rank. This
implies that first, no column has all zeros—no redundant moment; second,
no row has all zeros—all parameters have the possibility to be identified; and
third, no rows are linear dependant—mnone of any two parameters lead to
same variation in all moments.

With this Jacobian matrix, the asymptotic variance-covariance matrix of
the optimal estimates is calculated according to (29), which produces the
standard errors we report in Table 3.
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Table 1 Set of Parameters

Category Symbol Definition

Discount Rate Effect 0 r=r+0og

HAC Effect T 02 = 10°

Adjustment Costs bq quadratic adjustment costs

b; partial irreversibility
be fixed adjustment costs
Technology and Demand B capital share in production function
€ demand elasticity with respect to price

Stochastic Process p serial correlation of shocks
My mean of u, where u is the growth rate
o,  standard deviation of u
Uis mean of log(c), where o measures the level of uncertainty
O15 standard deviation of log(o)

Ue, mean of {,, where {, is the intercept
oz, standard deviation of {,

Measurement Errors O sd of transitory measurement errors in investment rates
Orp sd of permanent measurement errors in investment rates
oyr  Sd of transitory measurement errors in sales
Oyp sd of permanent measurement errors in sales
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Table 2 Set of Moments

Symbol Definition Informativeness
corr(EK;,SDdy;)  corr. btw. BG capital stock and measure of uncertainty 7,6, b

corr(EKY;, SDdy;)  corr. btw. BG capital intensity and uncertainty 6,b

prop(i;, < —0.01) proportion of negative investment rates b;

prop(|i;,| <0.01) proportion of zero investment rates b;, by

prop(ij,t > 0.20) proportion of investment spikes bs, by

corr(i;, vk ) corr. btw. investment rates and log sales-to-capital ratio by, b;, oy7, 0;p, Oy, Oyp
corr(ij ¢ ije-1) serial correlation of investment rates bg, p, 0y, 011, Opp
corr(yk oYk j,t_l) serial correlation of log sales-to-capital ratio P, Oyr, Oyp
mean(m;./Y;,) mean of profit-to-sales ratio B, e
mean(EKY;) BG mean of WG mean of capital-to-sales ratio B, e 6

mean(i; ) mean of investment rates b,u,, 8

sd(i;;) standard deviation of investment rates b, 0,, Ui 015, Or, Opp
mean(Edy;) BG mean of WG mean of sales growth rates My

sd(Edy;) BG sd of WG mean of sales growth rates Oy, Oy
mean(SDdy;) BG mean of WG sd of sales growth rates Hig) Oyr
sd(SDdy;) BG sd of WG sd in sales growth rates Olg) Oyr
mean(EK;) BG mean of WG mean of capital stock H, T, 6

sd(EK;) BG sd of WG mean of capital stock oz,

sd(EKY;) BG sd of WG mean of capital-to-sales ratio 010> Oy, Oy p
Note:

BG means "between-group”; WG means "within-group”;

corr means "correlation coefficient™; sd means "standard deviation";

EK; = mean,(K;,) : within-group mean of capital stock for firm j;

EKY; = mean, (I?j,t/Yj,t): within-group mean of capital-to-sales ratio for firm j;
Edy; = mean,(dy;,) : within-group mean of sales growth rate for firm j;

SDdy; = sd.(dy;) : within-group standard deviation of capital stock for firm j.
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Table 3 Empirical Results

Moments Empirical Simulated Parameters Estimates s.e. Derived Para.
corr(EK;, SDdy;) -0.080 -0.060 6 0.675  0.021

corr(EKY;, SDdy;) -0.113 -0.278 T 0495 0118 1-7 0.505
prop(i;, < —0.01) 0.024 0.024 bg 0.319  0.028

prop(|i; .| < 0.01) 0.027 0.025 b; 0.284  0.011

prop(i;, > 0.20) 0.153 0.145 by 0.070  0.003

corr(i;, vk ) 0.139 0.153 I 0.127  0.001

corr(ij ¢ ije—1) 0.392 0.362 € 6.387 0.042 1-—y 0.407
corr(vk; e, vkj-1) 0.968 0.973 p 0.931  0.009

mean(m;./Y; ) 0.266 0.264 I 0.017  0.000

mean(EKY;) 0.497 0.513 o, 0.044  0.000

mean(i; ) 0.125 0.111 o -1.992  0.007 u,  0.219
sd(i;;) 0.126 0.093 015 1157 0013 o,  0.233
mean(Edy;) 0.030 0.016 He, -7.654  0.008

sd(Edy;) 0.062 0.046 oz, 1.837  0.007

mean(SDdy;) 0.119 0.116 orr 0.009  0.046

sd(SDdy;) 0.047 0.044 orp 0.286  0.002

mean(EKj) 0.067 0.069 Oyt 0.061 0.000

sd(EK;) 0.290 0.319 Oyp 0.504  0.002

sd(EKY;) 0.312 0.318 o] 165
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Table 4 Comparison with the Literature

This Cooper and Bloom Bloom Bloom Bloom
Paper Haltiwanger  (2007) (2007) (2007) (2007)
(2006) (@) (b) © (d)
Estimates
b, 0.319 0.153 0.000 0.996 0.025 0.616
b; 0.284 0.019 0.339 0.427 0.453 0.303
by 0.070 0.204 0.015 0.011 0.021 0.009
No. of Plants
10 1 250 250 250 25
Data
prop(i;, < —0.01) 0.024 0.104
prop(|i;.| < 0.01) 0.027 0.081
prop(i;, > 0.20) 0.153 0.186 .
corr(i; ¢, vk ) 0.139 0.143 0.260
corr(ij ¢ ije-1) 0.392 0.058 0.328
sd(ij.) 0.126 0.337 0.139
mean(SDdy;) 0.119 0.165
Note:

Bloom(2007) (a): with labour adjustment costs, with time aggregation, No. of plants=250

Bloom(2007) (b): without labour adjustment costs, with time aggregation, No. of plants=250

Bloom(2007) (c): with labour adjustment costs, without time aggregation, No. of plants=250

Bloom(2007) (d): with labour adjustment costs, with time aggregation, No. of plants=25
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Table 5 Specification Tests

Column (1) ) ®) ) (5) (6)

Restriction none =0 =1 b=0 0,=0 me=0
Estimates
6 0675  0.00 0515 1500 0552 1312
T 0495 0801  1.000  1.000 0428  0.156
bq 0319 1766 0465 0000 0575  0.244
b; 0284 0193 0028 0000 0110  0.276
by 0070 0144 0054 0000 0132  0.036
B 0127 0110 0121 0113 0145  0.163
£ 6387 5568 6182 5850 7207  7.99
p 0931 0659 0750 0891 0908  0.746
My 0017 0032 0013 0019 0012  0.019
oy 0044 0041 0046 0048 0000  0.046
Wio -1992  -1.881  -1940 -2500 -1586  -1.668
Tis 1157 1202 1227 0586 0943  1.081
He, -7654  -7822 -7570  -7.743  -7.401  -6.964
oz, 1837 1978 1815 1965 1814 1407
orr 0009 0002 0261 0435 0003  0.000
arp 0286 0380 0259 0162 0356  0.000
Oyr 0061 0062 0061 0078 0055  0.000
Typ 0504 0505 0500 0376 0553  0.000
Moments

corr(EK;, SDdy;) -0.060  -0.039  -0.074  -0.024  -0.070  -0.150
corr(EKY;, SDdy;) -0.278  -0.094  -0309 -0.037 -0.267 -0.822
prop(ij, < —0.01) 0024 0003 0024 0023 0022 0021
prop(|i;¢| < 0.01) 0025 0019 0027 0000 0020  0.025
prop(i;, > 0.20) 0145 0182 0140 0161 0114  0.124
corr(ij e, ykj ) 0153 019 0124 0100 0107  0.252
corr(ij e, ije—1) 0362 0438 0360 0337 0235  0.343
corr(yk; ¢, ykj 1) 0973 0975 0974 0960 0975  0.961
mean(m;./Y; ;) 0264 0270 0263 0264 0264  0.268
mean(EKY;) 0513 0491 0497 0442 0511  0.462
mean(i; ;) 0411 0129 0110 0122 0105  0.110
sd (i) 0093 0093 0092 0096 008  0.077
mean(Edy;) 0016 0031 0013 0019 0011  0.019
sd(Edyj) 0046 0040 0045 0045 0025  0.044
mean(SDdyj;) 0116 0118 0117 0117 0116  0.070
sd(SDdy;) 0044 0045 0045 0031 0046  0.050
mean(EK;) 0069 0066 0064 0068 0068  0.091
sd(EK;) 0319 0314 0289 0338 0302 0301
sd(EKY;) 0318 0286 0310 0191 0339  0.166
ol 165 356 182 338 284 1398
degree of freedom 1 2 2 4 2 5
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Table 6 Choice for the Number of Plants

Column (1) (2) (3) (4)
No. of Plants m=1 m=5 m=10 m=15
Estimates
0 0837 0503 0675  0.965
T 0503 0497 0495  0.488
bq 1985 0563 0319  0.069
b; 0169  0.077 0284  0.556
by 0003 0033 0070  0.051
i 0126 0112 0127  0.128
€ 6210 5870 6387  6.536
p 0565 0945 0931  0.895
Hy 0022 0015 0017 0012
o, 0049 0040 0044  0.048
Hig -2132 2000  -1.992  -1.890
015 0527 0875 1157 1262
K, -5175  -6.603  -7.654  -8.329
oz, 1784  1.664  1.837  2.019
or 0530 0302  0.009  0.034
op 0181 0152 0286  0.233
Oyr 0048 0060 0061  0.062
Oyp 0476 0511 0504  0.496
Moments
corr(EK;, SDdyj) -0.048  -0.047  -0.060  -0.056
corr(EKY;, SDdy;) -0.193 0210  -0.278  -0.289
prop(ij, < —0.01) 0.000 0025 0024  0.026
prop(Jij¢| < 0.01) 0.021 0028  0.025  0.029
prop(ij, > 0.20) 0177 0145  0.145  0.135
corr(i;r, vk ) 0123 0159 0153  0.159
corr(ije, ije-1) 0355 0340 0362  0.337
corr(ykj e, ykje—1) 0.972 0.972 0.973 0.975
mean(m; /Y ) 0267 0263  0.264  0.262
mean(EKY;) 0486 0497 0513  0.505
mean(i; ) 0128 0412 0111  0.105
sd(ije) 0105  0.092 0093  0.091
mean(Edy;) 0021 0015 0016 0012
sd(Edy;) 0.046  0.044  0.046  0.048
mean(SDdy;) 0116 0117 0116  0.117
sd(SDdy;) 0.044 0045  0.044  0.046
mean(EK;) 0.074 0066  0.069  0.061
sd(EK;) 0356 0319 0319 0293
sd(EKY;) 0264 0299 0318 0328
ol 286 169 165 197
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Table 7 Robustness Tests

Column (1) (2 3
risk-free r 0.065  0.040 0.065
No. of Moments 19 19 36
Estimates

0 0.675  0.951 0.373

T 0.495  0.042 0.184

b, 0.319 0.438 1.070

b; 0.284  0.226 0.290

bs 0.070  0.053 0.166

B 0.127  0.131 0.130

€ 6.387  6.416 6.351

p 0.931  0.839 0.949

Hy 0.017  0.018 0.024

oy 0.044  0.048 0.020

Uie -1.992  -1.964  -1.583

Oy 1.157  1.252 0.956

He, -7.654 -7.674  -8.000

oz, 1.837  1.754 1.723

orr 0.009 0.271 0.203

orp 0.286  0.262 0.444

Oyt 0.061  0.061 0.051

Oyp 0.504  0.506 0.697
19 Moments additional 17 Moments
corr(EK;, SDdy;) -0.060 -0.082 -0.029  corr(EY;, SDdy;) 0.005
corr(EKY;, SDdy;) -0.278  -0.358  -0.160 corr(Ei,SDdy;) -0.060
prop(i;; < —0.01) 0.024  0.022 0.017 corr(Edy;, SDdy;)  -0.021
prop(|ij.| < 0.01) 0.025  0.022 0.010 mean(Y,) 0.100
prop(ij, > 0.20) 0.145  0.157 0.163 sd(Y;,) 0.372
corr (i, ykj) 0.153  0.126 0.105 corr(K;,, K1) 0.998
corr(ij e ije-1) 0362 0388 0374 corr(Y;,, Y1) 0.991
corr(ykje, ykje-1) 0.973  0.980 0.987 corr(dy;, dyje_;)  -0-150
mean(m; /Y ;) 0.264  0.266 0.267  corr(K;., Y.) 0.828
mean(EKYj) 0.513  0.518 0.506 Corr(Kj,t:Kj,t/Y},t) 0.025
mean(i; ;) 0111 0116 0120 corr(Ks ij;) 0.009
sd (i) 0.093  0.098 0112 corr(K;, dy;,) 0.005
mean(Edy;) 0.016  0.018 0.021  corr(Y;y, K;¢/Yir) -0.110
sd(Edy;) 0.046 0047  0.060 corr(Y.,i;;) 0.018
mean(SDdy;) 0.116  0.116 0.120 corr(Y;., dy; ) 0.021
sd(SDdy;) 0.044  0.045 0.060 corr(K;./Y;. dy;.) -0.068
mean(EK;) 0.069 0066  0.033 corr(ij, dy;.) 0.384
sd(EK;) 0.319  0.302 0.136
sd(EKY;) 0318 0364  0.424
Ol 165 194 1131
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Figure 1: Investment Policy for Quadratic Adjustment Costs Only

Quadratic Adjustment Costs Only

1

0.8

0.6

L L
-0.2 0 0.2
constl*Zt/ K t—1

0.4 0.6 0.8 1

1/K
t

t

Figure 2: Investment Policy for Partial Irreversibility Only
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Figure 3: Investment Policy for Fixed Adjustment Costs Only
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Figure 4a: Empirical Distribution of WG mean of Sales Growth Rates
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Figure 4b: Empirical Distribution of WG sd of Sales Growth Rates
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Figure 5a: Overall Effects of Uncertainty on Expected Capital Stock
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Figure 5b: Overall Effects of Uncertainty on Aggregated Capital Intensity
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Figure 6a: Effects of HAC and Adjustment Costs on Expected Capital Stock
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Figure 6b: Effects of HAC and Adjustment Costs on Aggregated Capital Intensity
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Figure 7a: Effects of Adjustment Costs on Expected Capital Stock
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Figure 7b: Effects of Adjustment Costs on Aggregated Capital Intensity
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average capital stock---E[K]

Figure 8a: Assuming m=5, Column (2) of Table 6
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Figure 8b: Assuming m=5, Column (2) of Table 6
Discount Rate + HAC + Adjustment Costs

1.25

1.2

1.15¢ 8

11

1.05

1 | | | | | | | |
009 01 011 012 0.13 014 015 0.16 0.17 0.18 0.19

average level of uncertainty--sigma

64



average capital stock---E[K]

Figure 9a: Imposing r=0.040 , Column (2) of Table 7
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Figure 9b: Imposing 7=0.040 , Column (2) of Table 7
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Figure 10a: Matching a Larger Set of Moments , Column (3) of Table 7
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Figure 10b: Matching a Larger Set of Moments , Column (3) of Table 7
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