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Abstract

In parametric stochastic frontier models, the composed error is specified as the sum of a

two-sided noise component and a one-sided inefficiency component, which is usually assumed

to be half-normal, implying that the error distribution is skewed in one direction. In practice,

however, estimation residuals may display skewness in the wrong direction. Model respecification

or pulling a new sample is often prescribed. Since wrong skewness may manifest as a finite sample

problem, this paper proposes a finite sample adjustment to existing estimators to obtain the

desired direction of residual skewness. This provides an alternative empirical approach to deal

with the wrong skewness problem that does not require respecification of the model.
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1 Introduction

In parametric stochastic frontier models for cross-sectional data, the error term is composed as

the sum of a two-sided noise component and a one-sided inefficiency component. The canonical

model of Aigner Lovell and Schmidt (1977) assumes that the noise distribution is zero-mean normal

and the inefficiency distribution is half-normal. Other common distributional assumptions on the

inefficiency term include the exponential (Meeusen and van den Broeck, 1977; Aigner, Lovell and

Schmidt, 1977), the truncated normal (Stevenson, 1980), and the gamma (Stevenson, 1980; Greene,

1980). For surveys, see Greene (2007) and Kumbhakar and Lovell (2000). The beauty of the

canonical model is it allows for continuous inefficiency, does not require estimation of a support

bound (in what amounts to a deconvolution problem), and only has two unknown distributional

parameters, making maximum likelihood estimation simple relative to other specifications, except

for (perhaps) the normal-exponential model. Consequently, the normal-half normal specification of

the model has found widespread use.

In the normal-half normal production function specification, the skewness of the composed

error is negative, and parameters can be estimated by maximum likelihood estimation (MLE)

or corrected ordinary least squares (COLS).1 Waldman (1982) shows that when the skewness of

the ordinary least squares (OLS) residuals is positive, OLS is a local maximum of the likelihood

function, and estimated inefficiency is zero in the sample.2 Horrace and Wright (2020) generalize the

Waldman result to the case where the inefficiency distribution is from a scalable parametric class,

like the exponential distribution. This ”wrong skewness” phenomenon is widely documented in the

literature and is often regarded as an estimation failure.3 When it occurs, researchers are advised to

either obtain a new sample (which is rarely feasible) or respecify the model. While there are many

ways one can respecify a model, a reasonable approach would be to chose an inefficiency distribution

that accommodates residuals of either positive or negative skew. For example, Li (1996), Carree

(2002), Almanidis and Sickles (2011), Almanidis, Qian and Sickles (2014), and Hafner, Manner and

Simar (2019) develop models with new distributional assumptions on the inefficiency component

that allow for skew in either direction.

1The skewness of the composed error is positive in the stochastic frontier cost function model. We use the
terminology COLS following Olson, Schmidt and Waldman (1982). COLS is also called MOLS. See Greene (2007).

2Greene (2007, p.131) claims ”In this instance, the OLS results are the MLEs, and consequently, one must estimate
the one-sided terms as 0.”

3For example, estimating the variance parameters in COLS is invalid in this case.
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An alternative ”solution” to the problem that does not require respecification is that of Simar

and Wilson (2010), who argue that ”wrong skewness” is not an estimation or misspecification fail-

ure but a finite sample problem that most likely occurs when the ratio of the inefficiency variance

to the noise variance (the inefficiency variance ratio) is small. That is, wrong skewness may not

indicate that the normal-half normal model is wrong or that inefficiency does not exist in the pop-

ulation. They propose a bootstrap method (called ”bagging”) to construct confidence intervals for

model parameters and expected inefficiency which have higher coverage than traditional intervals,

regardless of residual skewness direction. Then, the sample under study can still be used to infer

the model parameters. While bagging can be applied to any parametric form of the model, their

technique is specifically intended to salvage the canonical model when the residual skew has the

wrong sign. Such is the spirit of this research.

We take Simar and Wilson’s (2010) view that wrong skewness may be a consequence of a small

inefficiency variance ratio in finite samples, even when the canonical model is properly specified.4

However, instead of the bagging approach of Simar and Wilson (2010), this paper provides a finite

sample adjustment to existing estimators in the presence of wrong skewness. That is, we impose

a negative residual skewness constraint in the MLE (or COLS) algorithm. A natural candidate

for this constraint is the upper bound of the population skew, which is a monotonic function of

the positive lower bound of the inefficiency variance ratio in the half-normal model. However, the

constraint is non-linear in the parameters of interest, complicating computation of the optimum.

Therefore, a linearization approximation of the constraint is proposed. Additionally, a model

selection approach is proposed to determine the lower bound of the inefficiency variance ratio used

in the constraint. Monte Carlo experiments suggest that our correction becomes more reliable as the

true inefficiency variance ratio increases. A shortcoming of the approach is that in finite samples the

linear approximation may not be accurate enough to guarantee a negative residual skew, but it will

always give us non-zero estimates for firm-level inefficiencies. The possible failure of correct residual

skewness using the linearized constraint illustrates a trade-off between computational complexity

and accuracy. Using the original non-linear constraint avoids this issue, but the computational

simplicity of our approach, as shown in our Monte Carlo experiments and empirical example,

would be lost.

The proposed finite sample adjustment provides a non-zero point estimate for technical (or cost)

4It may also be a consequence of a misspecified model, but that is not our focus here.
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inefficiency that may be used in applied research and that serves as a compliment to the bagging

intervals of Simar and Wilson (2010). That is, if the wrong skew exists in the canonical model, then

one may use Simar and Wilson’s bagging technique to construct confidence intervals on efficiency

while the proposed methodology provides non-zero point estimates without having to respecify the

model. Since wrong skewness can occur fairly regularly (even when efficiency may exist in the

population under study), the finite sample adjustment is particularly attractive in cases where the

half-normal inefficiency assumption is maintained. It is noteworthy that the proposed adjustment

is only needed in finite samples, for as the sample size increases wrong skewness is less likely to be

an issue when the ratio of inefficiency variance to the noise variance is sizable.

This rest of this paper is organized as follows. The next section discusses the wrong skewness

issue in the literature. In Section 3, we propose a finite sample correction approach. To simplify

computation of the proposed constrained estimation, a linearized version of the constraint is used,

so that constrained MLE (or COLS) can be easily implemented in most software packages (like

STATA). The constrained estimators are discussed in Section 4. In Section 5, Monte Carlo experi-

ments are conducted to study the properties of constrained COLS. An empirical example is used to

illustrate the proposed approach in Section 6, and all the point estimates of inefficiency lie within

the confidence intervals of Simar and Wilson (2010). The last section concludes.

2 Wrong Skewness Issue

A stochastic production frontier (SPF) model for a cross-sectional sample of size N is:

yi = x′iβ + εi, i = 1, · · · , N, (1)

with composed error εi = vi − ui. The disturbance vi is assumed iidN(0, σ2
v). Inefficiency of firm i

is characterized by ui ≥ 0. In the SPF literature, ui is usually assumed half-normal |iidN(0, σ2
u)|

(Aigner, Lovell and Schmidt, 1977; Wang and Schmidt, 2009), and independent of vi, with variance

V ar(ui) = π−2
π σ2

u. The first component of the p×1 vector xi is 1, so the intercept term is contained

into the p × 1 slope parameter vector β. As in Aigner, Lovell and Schmidt (1977) and Simar and

Wilson (2010), let σ2 = σ2
u+σ2

v and λ = σu/σv. The parameters to be estimated are θ = (β, λ, σ2).

There are two primary estimators suggested in the literature: the maximum likelihood estimator

and corrected least squares (Aigner, Lovell and Schmidt, 1977; Olson, Schmidt and Waldman, 1980).

Under the normal-half normal specification, the MLE of (β, λ, σ2) is the set of parameters values
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maximizing the likelihood function:

lnL(β, λ, σ2|(yi, xi), i = 1, ..., N) (2)

=
N

2
ln(

2

π
)− N

2
lnσ2 +

N∑
i=1

ln

[
1− Φ

(
λ√
σ2

(yi − x′iβ)

)]

− 1

2σ2

N∑
i=1

(yi − x′iβ)2,

where Φ (·) is the standard normal cumulative distribution function. The COLS estimate of β

is simply the least squares slope estimate in the regression of yi on xi. However, the mean of

εi = vi−ui is negative due to the term −ui, so the COLS estimate needs to be adjusted by adding

the bias,
√

2σ2
u/π, back into the intercept estimator. The bias can be consistently estimated using

the variance estimates:

σ̂2
u =

[√
π

2

(
π

π − 4

)
µ̂′3

]2/3

, σ̂2
v = µ̂′2 −

π − 2

π
σ̂2
u, (3)

where µ̂′2 and µ̂′3 are the estimates of second and third sample moments of the least squares residuals.

Both MLE and COLS are consistent. The Monte Carlo experiments in Olson, Schmidt and

Waldman (1980) show that there is little difference between MLE and COLS for the slope coef-

ficients in finite samples. For the intercept and variance parameters, however, MLE and COLS

differ. In addition to MLE and COLS, Olson, Schmidt and Waldman (1980) also consider a third

consistent estimator, the two-step Newton-Raphson estimator, which has different finite sample

properties than MLE and COLS.

Waldman (1982) discovers an important property of MLE: for the likelihood function (2) above,

the point (b, 0, s2) is a stationary point, where b and s2 are the OLS estimates of β and σ2.

Intuitively, when λ = 0, the term ui disappears, so the likelihood function of the SPF model (2)

boils down to one of a linear model with ui = 0. A salient result in Waldman (1982) is that when

the skewness of the OLS residuals is positive, i.e., µ̂′3 > 0, then (b, 0, s2) is a local maximum in the

parameter space of the likelihood function.5 This is the so-called ”wrong skewness issue” in the

literature, because µ′3 < 0 in the normal-half normal model. Olson, Schmidt and Waldman (1980)

refer to this phenomenon as ”Type I failure” since the COLS estimator defined in (3) does not exist

when µ̂′3 > 0.

5Waldman (1982, p. 278) also suggests that (b, 0, s2) may be a global maximum. There are two roots in this
normal-half normal model: OLS (b, 0, s2) and one at the MLE with positive λ. When the residual skewness is
positive, the first is superior to the second (Greene, 2007, note 28).
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The Monte Carlo studies in Simar and Wilson (2010) show that the wrong skewness issue is not

rare, even when the inefficiency variance ratio is considerably large. For example, the frequency of

wrong skewness could be 30% for a sample of size of 100 when λ = σu/σv = 1. Wrong skewness

casts doubt on the specification of the SPF model (Greene, 2007). Moreover, it invalidates the

calculation of standard errors of parameter estimates (Simar and Wilson, 2010).

Greene (2007) considers OLS residual skewness a useful diagnostic tool for the normal-half

normal model. Wrong skewness suggests there is little evidence of inefficiency in the sample,

implying that firms in the sample are ”super efficient”. Thus, λ and σ2
u are assumed to be zero,

and the stochastic frontier model reduces to a production function without the inefficiency term.6

Another interpretation of the wrong skewness issue is that the normal-half normal model is not the

correct specification. Other specifications may well reveal the presence of inefficiency and reconcile

the distribution of one-sided inefficiency with the data. The binomial distribution considered by

Carree (2002) and doubly truncated normal distribution proposed by Almanidis and Sickles (2011)

and Almanidis, Qian and Sickles (2014) could have either negative or positive skewness. They

argue that models with ambiguous skewness may be more appropriate in applied research.

Simar and Wilson (2010) argue that wrong skewness is a finite sample problem, even when

the model is correctly specified.7 They show that a bootstrap aggregating method provides useful

information about inefficiency and the model parameters, regardless of whether residuals are skewed

in the desired direction. We also consider wrong skewness to be a consequence of estimation in finite

samples when the inefficiency variance ratio V ar(ui)/V ar(εi) is small.8 Since the OLS residuals of

a production function regression with ui = 0 display skewness in either direction with probability

50%, a sample drawn from an SPF model with small inefficiency variance ratio could generate

positively skewed residuals with high probability.9

6Kumbhakar, Parmeter and Tsionas (2013) propose a stochastic frontier model to accommodate the presence of
both efficient and inefficient firms in the sample.

7Waldman (1982, p.278) notes that for σu > 0 ”as the sample size increases the probability that
∑
e3t > 0 and

hence that (b, 0, s2) locates a local maximum goes to zero.”
8Badunenko, Henderson and Kumbhakar (2012) find that the estimation of efficiency scores depends on the

estimated ratio of the variation in efficiency to the variation in noise. As discussed by Kim, Kim and Schmidt (2007)
and Feng and Horrace (2012) in fixed effects stochastic frontier models, small signal-to-noise ratio leads to inaccurate
inference.

9As pointed out by Simar and Wilson (2010, p.72), this problem could happen in other one-sided specifications.
In a previous version of this paper, our Monte Carlo experiments suggest that wrong skewness could also occur with
high probability in exponential and binomial SPF models, when the signal-to-noise ratio is small.
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3 Finite Sample Correction

As illustrated by Simar and Wilson (2010), wrong skewness may occur when the inefficiency variance

ratio is sizable, so simply setting σ2
u = 0 when the skewness is positive could be a mistake. Instead

of improved interval estimates proposed by Simar and Wilson (2010), this paper proposes a finite

sample adjustment to existing estimators in the presence of wrong skewness.

For MLE, a constraint with non-positive residuals skewness is imposed:

max lnL(β, λ, σ2|(yi, xi), i = 1, ..., N)

s.t.
1

N

N∑
i=1

 yi − ȳ − x′iβ + x̄′β√
1
N

∑N
i=1(yi − x′iβ − ȳ + x̄′β)2

3

≤ 0, (4)

where ȳ = 1
N

∑N
i=1 yi and x̄ = 1

N

∑N
i=1 xi. Unfortunately, when implementing maximum likelihood

estimation with the inequality constraint defined by (4), there is a practical issue. As pointed out

by Waldman (1982), in the case of positive skewness of residuals, OLS (b, 0, s2) is a local maximum

and the unconstrained MLE is equal to (b, 0, s2). Since, OLS is a local maximum in the parameter

space of unconstrained MLE, the constraint (4) is always binding at the maximum, leading to zero

skewness of the constrained MLE residuals.10

If we regard the sign of residual skewness as an important indicator of model specification, the

constrained MLE above seems unsatisfactory. We, therefore, propose a (negative) upper bound

of skewness instead of zero in (4). This is relevant for empirical modeling. As in the empirical

example below, when there is evidence of technical inefficiency in the data (Greene 2007, p.202),

its variance cannot be too small, relative to that of the composed error εi. Denote the inefficiency

variance ratio by

k = V ar(ui)/V ar(εi).

That is, a lower bound on the inefficiency variance ratio is implicitly imposed, k ≥ k0. From this

perspective, to impose a positive value of k0 is to obtain a non-zero estimated inefficiency.

To develop the relationship between the upper bound of skewness and the lower bound of the

inefficiency variance ratio, consider the second and third moment of εi. Under the normal-half

10This stems from the fact that Waldman (1982) shows that OLS is local maximum in the parameter space of MLE
when the OLS residuals are positively skewed. In fact, the non-positivity contraint will bind globally (when the OLS
residuals are positively skewed), if OLS is a global maximum, as the Monte Carlo studies of Olsen, Waldman and
Schmidt (1980) suggest.
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normal specification, Olson, Schmidt and Waldman (1980) show that

V ar(εi) = σ2
v +

π − 2

π
σ2
u (5)

and

E[εi − E(εi)]
3 = σ3

u

√
2/π[(π − 4)/π]. (6)

Using γ1(εi) to denote the skewness of εi, we have

γ1(εi) = E

[
εi − E(εi)√
V ar(εi)

]3

= −
[
V ar(ui)

V ar(εi)

]3/2

γ1(ui) = −k3/2γ1(ui),

where γ1(ui) = 4−π
π−2

√
2

π−2 ' 0.9953, a constant for a half-normal distribution of ui. Denote

g(k) = γ1(εi) = −k3/2γ1(ui). Since γ1(ui) > 0, g(k) < 0 (e.g., g(0.1) ≈ −0.0315, g(0.2) ≈ −0.0890

and g(0.3) ≈ −0.1635) and g′(k) = −3
2k

1/2γ1(ui) < 0. An important property of g(k) is that it

is a monotonically decreasing function of k. This implies that any upper bound, say g0, of the

population skewness, g(k) = γ1(εi) ≤ g0, is equivalent to a lower bound, denoted by k0, of the

inefficiency variance ratio, k ≥ k0, i.e., g0 = g(k0) < 0.

We impose this upper bound on the sample skewness, by replacing 0 in the constraint (4) with

the negative upper bound of the population skewness, g(k0). Consequently, a modified constraint

1

N

N∑
i=1

 yi − ȳ − x′iβ + x̄′β√
1
N

∑N
i=1(yi − x′iβ − ȳ + x̄′β)2

3

≤ g(k0)

is used in the constrained MLE in the event of wrong skewness of the OLS residuals.

Based on Waldman’s (1982) argument, the constraint above will also be binding at a maximum

in the neighborhood of OLS. The constraint becomes

1

N

N∑
i=1

 yi − ȳ − x′iβ + x̄′β√
1
N

∑N
i=1(yi − x′iβ − ȳ + x̄′β)2

3

= g(k0) (7)

This finite sample adjustment gives a constrained estimator of parameter vector (β, λ, σ2).

The constrained COLS slope coefficients can be similarly defined. We use constraint (7), but

replace the likelihood (2) with the sum of squared residuals as the objective function of a mini-

mization problem. Since COLS reduces to OLS in the presence of wrong skewness and OLS is a

local maximum of likelihood, as a finite sample adjustment to OLS, the constrained COLS slope

coefficients are expected be close to their constrained MLE counterparts.
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3.1 Linearizing the constraint

The non-linearity of β in the constraint (7) creates computational difficulties in calculating the

constrained MLE. To simplify computation, a linearized version of the constraint (7) is considered.

Given that OLS is a local maximum of likelihood in the presence of wrong skewness, empiricists

normally start by estimating OLS with ui = 0. This is the first step in LIMDEP (Greene, 1995)

and FRONTIER (Coelli, 1996). If the skewness of the OLS residuals is positive, then OLS is the

optimum and the point of departure for our linearization concept.

Since the primary concern is skewness correction, we impose the additional restriction that the

MLE residual variance 1
N

∑N
i=1(yi − x′iβ − ȳ + x̄′β)2 is equal to that of OLS residuals, µ̂′2, which is

a consistent estimator of the error variance. Thus, the linearized constraint becomes:

1

N

N∑
i=1

[yi − ȳ − (xi + x̄)′β]3 = g(k0) · (µ̂′2)3/2.

Denote f(β) = 1
N

∑N
i=1[yi − ȳ − (xi + x̄)′β]3. The first-order Taylor expansion of f(β) at the OLS

estimate β̂OLS is:

f(β) ≈ f(β̂OLS) +

[
∂f(β)

∂β |β̂OLS

]′
· (β − β̂OLS),

where ∂f(β)
∂β |β̂OLS

is the derivative of f(β) with respect to β evaluated at β̂OLS . f(β̂OLS) is the 3rd

central moment of OLS residuals, i.e., µ̂′3. Now,

∂f(β)

∂β
= − 3

N

N∑
i=1

[yi − ȳ − (xi + x̄)′β]2(xi − x̄),

and

∂f(β)

∂β |β̂OLS
= − 3

N

N∑
i=1

e2
i (xi − x̄),

where ei denotes the OLS residual yi − x′iβ̂OLS . Its sample mean is equal to zero since a constant

term is included in the regression. Hence, an approximation of the constraint (7) is

µ̂′3 −
3

N

N∑
i=1

e2
i (xi − x̄)′(β − β̂OLS) = g(k0) · (µ̂′2)3/2, (8)

or

[
1

N

N∑
i=1

e2
i (xi − x̄)]′(β − β̂OLS) =

µ̂′3
3
− g(k0)

3
(µ̂′2)3/2. (9)
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Letting the N ×1 vector ẽ be the squared OLS residual vector (e2
1, ..., e

2
N )′, the constraint above

can be written in matrix form as

1

N
ẽ′M0X(β − β̂OLS) =

µ̂′3
3
− g(k0)

3
(µ̂′2)3/2,

where M0 = I − 1
N ιι
′ and ι = (1, ..., 1)′. Thus, the linear constraint above can be written as

Rβ = q(k0) (10)

with R = 1
N ẽ
′M0X and q(k0) = Rβ̂OLS +

µ̂′3
3 + Π

3 k
3/2
0 (µ̂′2)3/2, depending on the value of k0.11

Therefore, the proposed finite sample correction for MLE of (β, λ, σ2), i.e., the constrained MLE,

is defined as the solution to maximizing the likelihood (2) subject to the linear constraint (10). The

corresponding estimators of σ2
u and σ2

v can be obtained by using the relationship σ2 = σ2
u + σ2

v and

λ = σu/σv.

Similarly, the constrained COLS of β is defined to minimize the sum of squared residuals subject

to (10). As in the unconstrained estimation, the constrained estimators of σ2
u and σ2

v can be obtained

by formula (3).

If k0 = 0, then g(k0) = 0 and the constraint above becomes R(β − β̂OLS) = µ̂′3/3. This implies

that the constrained and unconstrained estimators would be similar, since µ̂′3 is usually very small

in the presence of wrong skewness. In the extreme case of µ̂′3 = 0, the constrained estimator reduces

to OLS, which is a local maximum of the likelihood.

Using the linearized constraint (10), the estimates, standard errors and confidence intervals of

the constrained MLE and constrained COLS can be easily obtained using Stata or other existing

software.12

However, since (10) does not guarantee a negative residual skewness in finite samples, there is a

possibility that wrong skewness could still occur after our correction. The Monte Carlo experiments

below show that this may only be a concern when the underlying inefficiency variance ratio is very

small. However, as stressed above, by setting k0 > 0, a non-zero estimated inefficiency may be

obtained even in the presence of wrong residual skewness.

11It is worth noting that (10) is not a direct linearization of (7). Alternatively, a full linearization of (7) can be
similarly obtained by replacing R = 1

N
ẽ′M0X with R = 1

N
(ẽ′M0 −

√
µ̂′2µ̂

′
3e
′)X. The additional term − 1

N

√
µ̂′2µ̂

′
3e
′X

is from the effect of the denominator of the constraint in (7). Monte Carlo simulations suggest that the estimation
results are robust to this choice. Details are available upon request.

12In the empirical example below, the command Frontier in Stata, which allows for a linear constraint, is employed.
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3.2 Choosing the value of k0

The idea of the proposed constrained estimators is to adjust the slope coefficients to obtain a

correct sign of residual skewness using the constraint (10), which is a function of k0. It is expected

that when the chosen value of k0 is small, a slight adjustment results in the constrained MLE (or

constrained COLS), and its value will be close to the unconstrained MLE.

Choosing a specific value of k0 is an empirical issue. On the one hand, when there is a priori

evidence of inefficiency, the inefficiency variance ratio cannot be too small. On the other hand, as

illustrated by the Monte Carlo study in Simar and Wilson (2010), wrong skewness is less likely to

occur as the inefficiency variance ratio increases.13 In the spirit of this trade-off we develop a model

selection criteria to choose k0. The idea is to incorporate a penalty function, so that as k0 increases

the penalty decreases. Hence, the fit of the model and effect of the constraint on the optimum can

be balanced.

For constrained MLE we propose a Bayesian information criterion (BIC) via the likelihood to

choose the value of k0:

BIC(k0) = −2lr(k0)− k0 lnN,

where lr(k0) is the log-likelihood evaluated at the constrained MLE of (β, λ, σ2), depending on k0.

Since OLS (b, 0, s2) is a local maximum of the log-likelihood function in the presence of positive

skewness with a restriction on k0, the value of lr(k0) decreases with k0 in the neighborhood of

(b, 0, s2).14 Different from the usual BIC, here we use a negative sign in front of the penalty term

k0 lnN so that −2lr(k0) and −k0 lnN move in opposite directions with k0. An optimal value of k0

is chosen to minimize BIC(k0):

k̃0 = arg min
k0∈[0,1)

BIC(k0).

13Table 1 in Simar and Wilson (2010) provides some guidance. On the one hand, when λ2 ≤ 0.1 (i.e., k =
1/( π

π−2
1
λ2 + 1) < 0.035) for samples with size less than 200, the proportion of wrong skewness is close to 50%,

implying that the inefficiency term is hard to distinguish from noise. On the other hand, when λ2 ≥ 1 (k ≥ 0.267),
the wrong skewness probability decreases dramatically. For example, only 6% of samples display wrong residual
skewness for λ2 = 2 (k = 0.421) and N = 200. We have a similar finding both for Simar and Wilson’s design and the
design in Section 5 of this paper. Results are available upon request.

14The constraint k ≥ k0 is always binding in the neighborhood of OLS. And a restriction on k is equivalent on λ,
which is a monotonic increasing function of k in the half-normal model,

λ =

√
σ2
u

σ2
v

=

√
V ar(ui)
π−2
π
σ2
v

=

√
k

π−2
π

(1− k)
=

√
π

π − 2

1

(1/k − 1)
.
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Similarly, for the constrained COLS, a criterion based on sum of squared residuals is proposed

to select the value of k0:

C(k0) =
1

N
SSRr(k0)− k0σ̂

2
ε

lnN

N
,

where SSRr(k0) is the sum of squared residuals of OLS with the constraint (10). C(k0) is a Mallows’

Cp-type criterion, similar to the expression proposed by Bai and Ng (2002) to choose the number

of factors in the approximate factor models, except that the penalty term takes a negative sign.

By applying the properties of the usual restricted least squares, it can be shown that SSRr(k0)

increases with k0. (See the appendix.) Hence, the effect of increasing k0 on the model fit can be

balanced by the penalty term, thus an appropriate value of k0 is chosen to minimize C(k0):

k̂0 = arg min
k0∈[0,1)

C(k0).

The estimated error variance σ̂2
ε provides an appropriate scaling to the penalty term. Here, we use

σ̂2
ε = 1

N SSR, where SSR is the sum of squared residuals of OLS without constraint.

In practice, to find the value of k̃0 (or k̂0) a grid search can be applied to BIC(k0) (or C(k0))

starting from a small positive value, e.g., 0.05.

Since the measures of the model fit in the constrained MLE and COLS, i.e., the objective

functions in the penalized least squares and penalized maximum likelihood, are different, k̃0 is not

necessarily equal to k̂0. However, in the neighborhood of OLS (b, 0, s2) with a small value of λ,

when the term
N∑
i=1

ln
[
1− Φ

(
λ√
σ2

(yi − x′iβ)
)]

in l(β, λ, σ2) has small values of partial derivatives

in the first-order conditions, k̃0 should be close to k̂0.

It is worthwhile to note that k0 is not a model parameter here, and is selected by the proposed

selection criteria only for finite sample correction. Thus, choosing k0 is inherently different from

model selection in the literature, such as, choosing the number of model parameters, where con-

sistency is a primary requirement for the penalty term. Therefore, we could use different penalty

terms in BIC(k0) or C(k0) above as long as a unique value of k0 can be chosen. The Monte Carlo

experiments and empirical example below suggest that the proposed selection criteria work well.15

15Per a referee’s advice, we experimented with selecting k0 by minimizing the mean integrated squared error of the
difference between the constrained and unconstrained residual densities, but the selection performed poorly in terms
of the RMSE of the estimated coefficients in finite samples.
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4 Constrained Estimators

With the proposed finite sample adjustment, the sample can still be used to construct a point

estimate for inferring population parameters in the presence of wrong skewness. This is similar in

spirit to Simar and Wilson (2010), who still rely on the MLE estimation results, but provide more

accurate interval estimates using improved inference (bagging) methods.

As previously mentioned, any negative constraint on sample skewness is binding in the presence

of wrong skewness. This result implies that estimated λ (or k) is implicitly determined by the

constraint (10). Consequently, it is biased when the selected value of k0, the lower bound of k, is

not equal to the true value of k. Inconsistency of the proposed constrained estimators might be

a concern. However, this concern may be overstated. Under the true specification, as the sample

size increases, wrong skewness is less likely to appear. Thus, the proposed finite sample adjustment

becomes unnecessary, and asymptotics are less of a concern. In addition, with the nature of finite

sample adjustment, the proposed method is regarded as an adjustment to existing estimators,

rather than a new estimator.16

In the next subsection, properties of constrained estimators are studied. Since the constrained

COLS is essentially restricted least squares, which has an analytical solution, we mainly focus on

it.

4.1 Constrained COLS

The proposed constrained COLS, denoted by β̂r, is a 2-step estimator. In the first step, for a given

k0, the constrained COLS β̂r(k0) is defined as the solution of

min
β
SSR(β) = min

β
(Y −Xβ)′(Y −Xβ)

s.t. Rβ = q(k0).

In the second step, k0 is selected such that k̂0 = arg mink0 C(k0), where C(k0) = 1
N (Y−Xβ̂r(k0))′(Y−

Xβ̂r(k0))− k0σ̂
2
ε

lnN
N . The proposed constrained COLS is defined as β̂r = β̂r(k̂0).

This 2-step estimator is equivalent to a 1-step penalized least squares with the linear constraint:

min
β,k0

1

N
(Y −Xβ)′(Y −Xβ)− k0σ̂

2
ε

lnN

N

s.t. Rβ = q(k0).

16In this sense, our approach is different from the literature on models with moment conditions, e.g., Moon and
Schorfheide (2009).
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This equivalence comes from the fact that in the objective function k0 only appears in the penalty

term −k0σ̂
2
ε

lnN
N . Thus, β can be concentrated out for a given k0.

For a given k0, β̂r(k0) is the restricted least square. By Amemiya (1985) or Greene (2012),

β̂r(k0) = β̂OLS − (X ′X)−1R′[R(X ′X)−1R′]−1[Rβ̂OLS − q(k0)],

and

SSRr(k0) = SSR+ [Rβ̂OLS − q(k0)]′[R(X ′X)−1R′]−1[Rβ̂OLS − q(k0)].

Thus, the criterion is

C(k0) =
1

N
SSR+

1

N
[Rβ̂OLS − q(k0)]′[R(X ′X)−1R′]−1[Rβ̂OLS − q(k0)]− k0σ̂

2
ε

lnN

N
.

Minimizing C(k0) defines k̂0. The follow proposition proves the existence and uniqueness of k̂0.

Proposition 1 In the presence of positive skewness of OLS residuals, i.e., µ̂′3 > 0, (i) dSSRr(k0)
dk0

>

0; (ii) for a relatively large sample size N , there exists a solution for k̂0 such that k̂0 minimizes

C(k0); (iii) d2C(k0)
dk20

> 0, implying that k̂0 is the unique solution.

The proof in the Appendix shows that a relatively large N guarantees the existence of k̂0. Since

lnN
N → 0, when N →∞, compared with the first term 1

N SSRr(k0), which converges to a non-zero

constant, the penalty term −k0σ̂
2
ε

lnN
N in C(k0) can be ignored asymptotically. This implies that

k̂0 → 0 as N → ∞. Hence, when N is large the proposed constrained COLS approaches the OLS

with constraint R(β− β̂OLS) = µ̂′3/3, which is very close to OLS in the presence of wrong skewness.

This property also implies that in a sample with a large number of firms, the selected k̂0 could

be 0. In this case, to obtain non-zero inefficiency estimates, a small positive value, say, 0.05, is

suggested.17

For a given sample, the difference between OLS and the constrained COLS

β̂OLS − β̂r = (X ′X)−1R′[R(X ′X)−1R′]−1[Rβ̂OLS − q(k̂0)]

depends on k̂0, and

d[β̂OLS − β̂r]
dk̂0

= −(X ′X)−1R′[R(X ′X)−1R′]−1 Π

2
k̂

1/2
0 (µ̂′2)3/2

implying that the magnitude of this difference is positively correlated with the chosen value k̂0.

17When N is large, the wrong skewness problem is less likely to occur unless the inefficiency variance ratio is very
small. When it does occur in this setting, alternative approaches including respecification may be considered.
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4.2 Constrained MLE

For a given k0, the constrained MLE (β̂CMLE(k0), λ̂CMLE(k0), σ̂2
CMLE(k0)) depends on k0. Min-

imizing BIC(k0) determines the value of k0, i.e., k̃0 = arg mink0∈[0,1)BIC(k0). Similar to the

constrained COLS, (β̂CMLE , λ̂CMLE , σ̂
2
CMLE) is defined as (β̂CMLE(k̃0), λ̂CMLE(k̃0), σ̂2

CMLE(k̃0)).

It can also be written as a penalized maximum likelihood estimator with a constraint,

min
β,λ,σ2,k0

−2l(β, λ, σ2)− k0 lnN

s.t.Rβ = q(k0),

where l(β, λ, σ2) = N
2 ln( 2

π )− N
2 lnσ2 +

N∑
i=1

ln
[
1− Φ

(
λ√
σ2

(yi − x′iβ)
)]
− 1

2σ2

N∑
i=1

(yi − x′iβ)2 defined

in (2).

Since there is no analytical solution to the constrained optimization problem above, it is difficult

to derive the properties of constrained MLE.

However, dividing by N , 1
NBIC(k0) = − 2

N lr(k0) − k0
lnN
N , compared with − 2

N lr(k0), which

does not converge to zero, the penalty term −k0
lnN
N can be asymptotically ignored as N → ∞,

implying that k̃0 tends to 0 as N →∞. Since k̃0 is small when N is large, the proposed constrained

MLE is expected be close to MLE. Since the MLE of slope parameters is very close to OLS, the

constrained MLE and constrained COLS are expected to be close. Similar to the constrained COLS,

the selected k̃0 could be 0 in a sample with a large N . In this case, we also impose a lower bound

of, say, 0.05, to obtain non-zero estimated inefficiency.

We now consider the difference between constrained MLE and OLS by examining the first-order

conditions of (2). Aigner, Lovell and Schmidt (1977) show that:

∂ lnL

∂σ2
= − N

2σ2
+

1

2σ4

N∑
i=1

(yi − x′iβ)2 +
λ

2σ3

N∑
i=1

φ(·)
1− Φ(·)

(yi − x′iβ) = 0; (11)

∂ lnL

∂λ
= − 1

σ2

N∑
i=1

φ(·)
1− Φ(·)

(yi − x′iβ) = 0; (12)

∂ lnL

∂β
=

1

σ2

N∑
i=1

(yi − x′iβ)xi +
λ

σ

N∑
i=1

φ(·)
1− Φ(·)

xi = 0, (13)

where φ(·) is the standard normal density function. φ(·) and Φ(·) are evaluated at λ
σ (yi−x′iβ) = λ

σεi.

Waldman (1982) shows that in the presence of wrong skewness λ = 0 and OLS is a local maximum

of the log-likelihood.
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For our constrained MLE, the constraint (7) or (9) involves the value of k0, not λ directly. Since

λ is a monotonic increasing function of k, k ≥ k0 implies

λ ≥

√
π

π − 2

1

(1/k0 − 1)
. (14)

To show how restricting λ affects the estimation result and how the constrained MLE of β is

different from the OLS, consider equation (13).18 Taking the first-order Taylor expansion at λ = 0

gives
φ(λσεi)

1− Φ(λσεi)
≈
√

2

π
+

2

π

λ

σ
εi.

Thus, (13) becomes

0 =
N∑
i=1

(yi − x′iβ)xi + λσ
N∑
i=1

φ(λσεi)

1− Φ(λσεi)
xi ≈

N∑
i=1

(yi − x′iβ)xi + λσ
N∑
i=1

(

√
2

π
+

2

π

λ

σ
εi)xi

= (1 +
2

π
λ2)

N∑
i=1

(yi − x′iβ)xi +

√
2

π
λσ

N∑
i=1

xi.

That is,

N∑
i=1

(yi − x′iβ)xi +

√
2
πλ

(1 + 2
πλ

2)

√
σ2

N∑
i=1

xi = 0. (15)

In matrix form, the equation (15) above can be written as

X ′y −X ′Xβ + ϕ(λ)
√
σ2X ′ι = 0 (16)

where ϕ(λ) =
√

2
πλ/(1 + 2

πλ
2) and ι is the N × 1 vector of ones. Equivalently,

β̂CMLE ' (X ′X)−1X ′y + ϕ(λ)
√
σ2(X ′X)−1X ′ι. (17)

In the presence of wrong skewness, OLS (i.e., λ = ϕ = 0) is a local maximum of the log-likelihood.

Under the constraint (14), the estimator of β is adjusted by the second term in equation (17).19

Given the fact that ϕ(λ) is monotonically increasing in λ in the range [0,
√
π/2 ≈ 1.2533],

the difference between the constrained MLE and the OLS of β is positively related to the value

18Strictly speaking, restricting λ as a constraint yields a different result from constraint (7). Though the population
skewness is equal to g(k0) and thus a monotonic function of λ, the sample skewness is not a function of λ. However,
the insights derived here on the effect of the chosen value of k0 on estimation still apply.

19As pointed out by a referee, the second term on the right-hand side of (17) is a constant in X. See Papadopoulos
(2018), pp 338-339. This is due to the fact we only take a first-order Taylor expansion of φ(λ

σ
εi)/[1−Φ(λ

σ
εi)]. With

higher-order terms included, constrained MLE and COLS involve additional terms.

15



of λ.20 The larger λ (or k0) is imposed, the bigger is the difference between the OLS and the

constrained MLE. Furthermore, in a given sample this difference depends not only on ϕ(λ), but

also on the sample value of the regressors and σ2 jointly determined by first-order equations. We

conjecture that constraint (10) with a small value of k0, slightly adjusts the estimators of β and

σ2
v , but has a much larger effect on the estimated σ2

u and λ. This point is confirmed in the Monte

Carlo experiments and empirical example below.

5 Monte Carlo Experiments

In this section, Monte Carlo experiments are conducted to study how the proposed constraints

affect the estimates and how the chosen value of k0, the imposed lower bound of k, is affected

by the sample size. Since respecification is always a solution to wrong skew, we also study our

approach under model misspecification. We consider two forms of misspecification: when the

inefficiency distribution is binomial (Carree, 2002) and when it is exponential. The binomial case is

particularly relevant since it is a specification that allows for residual skewness in either direction.

We compare our approach under misspecification to the correctly specified estimators in term of

the Root Mean Squared Error (RMSE) of the estimated efficiency variance and average efficiency,

and the proposed method’s performance is surprisingly good (given the misspecification) when the

sample size is small. Due to its computational convenience, our focus is on the constrained COLS

estimator.

We consider a specification

yi = β0 + β1x1i + β2x2i + εi, εi = −ui + vi, i = 1, · · · , N,

where β0 = 1, β1 = 0.8, β2 = 0.2, x1i ∼ log(|N(4, 100)|), x2i ∼ log(|N(2, 60)|), vi ∼ N(0, σ2
v) and

ui ∼ |N(0, σ2
u)|. k = V ar(ui)/V ar(εi) is the inefficiency variance ratio.21 σ2

u = π
π−2V ar(ui) =

π−2
π kV ar(εi) and σ2

v = (1− k)V ar(εi). We set V ar(εi) = σ2
v + V ar(ui) = 0.026, so the variance of

x1i and V ar(εi) are comparable to those in the empirical example below.

Since the focus is the proposed correction for samples with wrong residual skewness, we report

the frequency of wrong skewness in the replications and drop the samples with correct skewness.

The number of replications is 4, 000 before dropping the samples with correct skewness. We conduct

20For a small value of k0, e.g., k0 ∈ [0.1, 0.3], λ lies in the interval [0.5530, 1.0860].
21Coelli (1995) also uses this signal-to-noise ratio measure, denoted by γ∗, in his Monte Carlo experiments.
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experiments with k = 0.1, 0.2, 0.3, 0.5, 0.7 and N = 50, 100, 200. For our binomial misspecification

experiments we generate ui ∼ B(10, p) with V ar(u) = p(1 − p). For exponential misspecification,

we generate ui ∼ Exp(σu) with V ar(u) = σ2
u. The same inefficiency variance ratio and sample size

combinations are considered in both cases.

Table 1 reports the simulation results. Column (2) gives the average value of k̂0. To obtain k̂0 for

each sample, a grid search is conducted to minimize C(k0) on the interval [0.05, 0.9]. As expected,

the average value of k̂0 decreases with N . Column (3) shows that there is still a possibility of wrong

skewness after the proposed finite sample correction. The frequency depends on the inefficiency

variance ratio and sample size, varying from 16.3% to 39.9%. For example, for k = 0.5, N = 100,

our finite sample correction approach could fail with a possibility of 28.4%. This failure is a cost of

the linearization approximation (8). When k0 is small, g(k0)(µ̂′2)3/2 could be a small negative value

close to zero. Consequently, due to approximation error, a linearized constraint does not guarantee

a negative third moment of residuals or skewness. However, as k increases, the failure frequency

can be greatly reduced, e.g., to 16.3% for k = 0.7, N = 200.

For parameter estimators, columns (4)-(7) indicate that with the correction of σ̂u
√

2/π, con-

strained COLS of β0 is less biased than OLS, but with a much larger root mean squared errors

(RMSE). But when k and N increase, the RMSE of constrained COLS is comparable to that of

OLS. (Bias and RMSE of OLS of β0 (and β1) are included in columns (6), (8) (and (10), (12))

for comparison). In addition, compared with OLS, the constrained COLS of β1 is slightly upward

biased with bigger RMSE, and the bias and RMSE decrease with k and N .

In the presence of wrong skewness, σ2
u is typically assumed to be zero. Using our correction,

column (12) shows that the estimated σ2
u tends to be overestimated for a small value of k and

underestimated for a big value of k. Compared with σ2
u, σ2

v can be estimated more accurately in

terms of bias, as indicated in column (14).

Columns (14) and (15) report the bias and RMSE of the mean technical efficiency E[exp(−ui)] =

2 exp(σ2
u/2)[1 − Φ(σu)]. In the presence wrong skewness, traditional practice suggests that the

estimated σ2
u is 0, implying that the estimated mean technical efficiency is 1. This practice obviously

overestimates the true mean technical efficiency. Column (14) shows that the mean technical

efficiency estimator using the proposed correction could be unbiased with a reasonable RMSE for

a sizable value of k, say, 0.2 here under the current design. It is downward biased for a small value

of k, and upward biased for k > 0.2.
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Under binomial misspecification we focus on the performance of the variance estimate of σ2
u and

the mean technical efficiency score E(e−u). The binomial case is particularly relevant since it is

a specification that accommodates residual skewness in either direction. The results are reported

in Table 2. Columns (1)-(3) are very similar to those in Table 1 except that the frequency of

wrong skewness after applying the proposed finite sample correction is higher. This makes sense

considering the misspecified model in the current setting. Columns (4)-(7) report the coefficient

estimates and Columns (12)-(15) for Carree’s (2002) approach, which is OLS estimated with a

binomial inefficiency. Columns (8)-(11) report the bias and RMSE of the variance estimates and

mean technical efficiency estimates for the proposed constrained COLS, and those using the Carree

(2002) approach are in columns (16)-(19). We find that the proposed method works well (i.e.,

smaller bias and RMSE) when the sample size or k is small.22 As sample size increases, the

precision of binomial estimation improves very fast, and its is similar to that of the proposed

method.

We also conduct misspecified simulations, assuming that inefficiency follows an exponential

distribution, while applying our proposed finite sample correction in Section 4 based on a half-

normal distribution. The results are reported in Table 3. In general, the performance of proposed

estimator is similar to that in Table 1 (the normal-half normal design), except for that of the mean

technical efficiency, which depends heavily on the distribution of the data generating process. The

bias of the variance estimator is small, indicating a degree of robustness of our approach.

6 Empirical Example: the US Airline Industry

In this section, an airlines example is used to illustrate our approach. This is an unbalanced panel

data set with 256 observations. See Greene (2007) for detailed information of this data set. In this

example, the dependent variable is the logarithm of output and the independent variables include

the logarithm of fuel, materials, equipment, labor and property. Here, the unbalanced panel is

treated as a cross section for 256 firms to ensure that the wrong skewness issue arises.23 Column

(2) of Table 4 presents the OLS estimates along with standard errors (column 3). Except for the

22Due to misspecification and small sample, the variance estimates with proposed method do not show a consistency
property and may yield extreme estimates in some cases, for instance N = 200 with k = 0.5.

23With the exception of perhaps Green and Mayes (1991), Mester (1997) and Parmeter and Racine (2012), there
appear to be very few empirical studies with wrong skewness in the literature. As in Greene (2007, Table 2.11), we
use this panel data example as a cross-sectional one only for the purpose of illustration.
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constant term, the slope coefficients are consistent with Table 2.11 in Greene (2007). The OLS

residual skewness (0.0167) is in the wrong direction for the estimated normal-half normal model.

Thus, the estimates of λ and σ2
u are set to zero and firms are considered to be ”super efficient”.

However, Greene (2007, footnote 84) does suggest that there is evidence of technical inefficiency

in the data. The second root of the likelihood with positive λ is reported in the second section

of Table 4. This MLE yields a small positive residual skewness 0.0093.24 Usually, in the presence

of ”wrong” skewness, researchers are advised to obtained a new sample or respecify the model.

For the purpose of comparison, we also report the 95% confidence (prediction) intervals for MLE

obtained using the bagging procedure of Simar and Wilson (2010) in column (4) and corresponding

standard errors in column (5).

Instead, we use the constrained MLE (and constrained COLS), a finite sample adjustment to

the existing MLE (and COLS). The optimal value of k0 can be chosen by BIC(k0) (and C(k0) for

the constrained COLS) proposed above. For purposes of illustration, we present constrained MLE

results of k0 = 0.05, 0.1, 0.15, and 0.2 in columns (8)-(15) of Table 4 and compare the values of

BIC(k0), showing that k̃0 = 0.15 achieves the minimum of BIC(k0). Thus, the constrained MLE of

λ and σu are positive, 0.6829 and 0.1015 respectively. We also report the mean technical efficiency,

i.e., E(e−u) for comparison. Furthermore, consistent with the negative population skewness of the

composed error, the skewness of constrained MLE residuals (−0.0599) has the desired sign.

Since the constraint slightly adjusts the coefficients of constrained MLE, as expected, the rest

of the coefficients are very close to the unconstrained MLE and OLS. For example, the constrained

estimated coefficient of variable Log fuel is 0.3907 (column (12)), while its unconstrained counterpart

is 0.3836 (in column 4) and OLS coefficient is 0.3828 (in column (2)). All estimates obtained from

constrained MLE stay within the bagging confidence intervals. In addition, the bagging standard

errors are closer to those from the constrained MLE in column (12) than those from unconstrained

MLE in column (5) or OLS in column (3). These provide a degree of comfort for the validity of

our proposed method.

Consistent with the analysis in Section 4.2, the difference between the constrained MLE slope

coefficients and its OLS (and unconstrained MLE) counterparts is positively related to the mag-

24Inconsistent with the statements of Waldman (1982) and Greene (2007) the MLE with positive λ achieves a
slightly bigger value of log-likelihood than OLS for this dataset. Similarly, the inconsistency between OLS and MLE
in the presence of positive OLS residual skewness by using FRONTIER is discussed by Simar and Wilson (2009).
Greene (2007, p.202) notes: ”... for this data set, and more generally, when the OLS residuals are positively skewed,
then there is a second maximizer of the log-likelihood, OLS, that may be superior to the stochastic frontier.”
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nitude of k0. The bigger the value of k0 , the larger is the difference. However, this difference

is relatively small. For example, the constrained estimated coefficients of variable Log fuel using

k0 = 0.2 is 0.3939 (in column (14) of Table 4), compared with the OLS 0.3828 and the uncon-

strained MLE 0.3836 (in columns (2) and (4) of Table 4). This is also the case for σv and σ2. In

stark contrast to this small difference in slope coefficients, the residual skewness and estimated k

change significantly, since they are implicitly determined by the chosen value of k0 in the constraint.

Another important point observed in Table 4 is that the value of the likelihood decreases with k0.25

The results of constrained COLS are reported in columns (8)-(15) of Table 5 and are very close

to their constrained MLE counterparts for given values of k0 = 0.05, 0.1, 0.15, and 0.2.26 However,

for the constrained COLS, the optimal value of k0 is 0.1 by applying Mallows’ Cp-type criterion

C(k0) proposed above. (Table 5 reports N ×C(k0) instead of C(k0).) This is slightly different from

k̃0 = 0.15 by minimizing BIC(k0) in the constrained MLE. Therefore, the constrained COLS of σu

is 0.0853 and skewness is −0.0325 in column (10).

It is worth mentioning that the value of criterion C(0.15) is nearly equal to C(0.1) in this

empirical example, implying that BIC(k0) for the constrained MLE and C(k0) for the constrained

COLS result in similar optimal values of k0. Again, all the estimates obtained from constrained

COLS stay within the bagging confidence intervals by Simar and Wilson (2010) and the bagging

standard errors are very close to those from constrained COLS.

Since the proposed finite sample adjustment restricts the inefficiency variance ratio, it indirectly

affects the estimated σ2
u. In this example, it is 0.10152, for the constrained MLE. Consequently,

the mean technical efficiency estimate, 2 exp(σ̂2
u/2)[1 − Φ(σ̂u)], depends on the chosen value of

k0. However, efficiency rankings appear to be preserved under different choices of k0. For the

unconstrained MLE, the least efficient firm is the 79th with technical efficiency .8958. If we impose

k0 = 0.05, 0.1, 0.15, 0.2 in the constraint, the technical efficiency becomes .8583, .8308, .8015, .7722

respectively, and it remains lowest among the 256 firms. The most efficient firm is the 250th with

25This property can be obtained by the equation (3) in Waldman (1982, p.278):

∆l =
µ3

6s3

√
2

π

π − 4

π

N∑
i=1

e3i

where µ can be regarded as λ changing from 0 as in the analysis in Section 3.1. Since π − 4 < 0, in the presence

wrong skewness (
N∑
i=1

e3i > 0), the log-likelihood decreases with the imposed value of λ (and k0).

26The constant term is calculated by OLS intercept plus
√

2σ̂2
u/π. The standard errors formula of the COLS

estimators of constant term, σ2 and γ (not λ) can be found in Coelli (1995).
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technical efficiency .9696, 0.9669, .9655, .9644, .9636 for the unconstrained MLE and constrained

MLE with k0 = 0.05, 0.1, 0.15, 0.2, respectively. This is also the case for the median firm.

Finally, we also calculate the bagging prediction intervals for efficiency scores of the least efficient

firm (i.e., the 79th firm) and the most efficient firm (i.e., the 250th firm): [0.5366, 0.9987] and

[0.8865,0.9988], respectively. All above estimates fall safely into these prediction intervals.

7 Conclusions

This paper studies the wrong skewness issue in parametric stochastic frontier models. Following

Simar and Wilson’s (2010), we consider wrong skewness to be a consequence of estimation in finite

samples when the inefficiency variance ratio is small. (Another possibility is that the model is

misspecified.) In finite samples the data may fail to be informative enough to detect the existence

of inefficiency term in stochastic frontier models, even though the population inefficiency variance

ratio could be fairly large. Thus, the resulting residuals could display skewness in either direction

with probability of as high as 50%.

As an alternative to the usual ”solutions” to the wrong skew problem, we propose a feasible finite

sample adjustment to existing estimates. When there is evidence of inefficiency, it is reasonable to

impose a lower bound on the inefficiency variance ratio in the normal-half normal model, equivalent

to a negative upper bound on the residual skewness. Thus, we propose to use this negative bound

on residual skewness as a constraint in the MLE and COLS in the event of wrong skewness.

The idea of the proposed constrained estimators is to slightly adjust the slope coefficients in

finite samples. They provide a point estimate that yields a negative residual skewness, though a

correct sign of residual skewness is not always guaranteed. Since the constraint is based on k0, the

choice of k0 affects estimation results. A model selection approach is proposed to select k0. Monte

Carlo experiments show that the bias of constrained estimates is less of a concern when sample size

is large and inefficiency variance ratio increases. The proposed method is comparable with existing

methods in the literature such as the binomial estimation by Carree (2002). The empirical example

in this paper also shows that the value k0 has little effect on the estimated slope coefficients and σv,

σ2, while the residual skewness and estimated k are implicitly determined by the value of k0. In this

sense, the proposed method can be regarded as a finite sample adjustment to existing estimators,

rather than a new estimator. When the sample size is large, since wrong skewness is less likely to
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occur, such adjustment becomes unnecessary.
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Appendix: Constrained COLS

Proof of Proposition 1.

As defined in Section 3, the constrained COLS is the restricted least squares with the linear

constraint

Rβ = q(k0)

where R = 1
N ẽ
′M0X and q(k0) = Rβ̂OLS +

µ̂′3
3 + Π

3 k
3/2
0 (µ̂′2)3/2, with the slope estimator

β̂r(k0) = β̂OLS − (X ′X)−1R′[R(X ′X)−1R′]−1[Rβ̂OLS − q(k0)]

and the corresponding sum of squared residuals

SSRr(k0) = SSR+ [Rβ̂OLS − q(k0)]′[R(X ′X)−1R′]−1[Rβ̂OLS − q(k0)],

where β̂OLS = (X ′X)−1X ′y. Thus,

dSSRr(k0)

dk0
= −2[Rβ̂OLS − q(k0)]′[R(X ′X)−1R′]−1dq(k0)

dk0
.

Given the facts that µ̂′3 > 0 in the presence of wrong skewness, the scalar

Rβ̂OLS − q(k0) = Rβ̂OLS − [Rβ̂OLS +
µ̂′3
3

+
Π

3
k

3/2
0 (µ̂′2)3/2]

= −[
µ̂′3
3

+
Π

3
k

3/2
0 (µ̂′2)3/2] < 0.

In addition,
dq(k0)

dk0
=

1

2
(µ̂′2)3/2Πk

1/2
0 > 0,

and the scalar R(X ′X)−1R′ > 0 since the matrix X ′X is positive definite. Therefore,

dSSRr(k0)

dk0
> 0.

Since C(k0) = 1
N SSRr(k0)− k0σ̂

2
ε

lnN
N , the FOC is

1

N

dSSRr(k0)

dk0
− σ̂2

ε

lnN

N
= 0,

or

−2[Rβ̂OLS − q(k0)]′[R(X ′X)−1R′]−1dq(k0)

dk0
− σ̂2

ε lnN = 0.

Substituting Rβ̂OLS − q(k0) = −[
µ̂′3
3 + Π

3 k
3/2
0 (µ̂′2)3/2] and dq(k0)

dk0
= 1

2(µ̂′2)3/2Πk
1/2
0 into the equation

above, we obtain

[
1

Π

µ̂′3
(µ̂′2)3/2

+ k
3/2
0 ]k

1/2
0 =

3

Π2

σ̂2
ε

(µ̂′2)3
lnN · [R(X ′X)−1R′].
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The LHS k2
0 + 1

Π
µ̂′3

(µ̂′2)3/2
k

1/2
0 is a monotonic increasing function of k0, with a minimum 0 at k0 = 0

and a maximum of 1 + 1
Π

µ̂′3
(µ̂′2)3/2

at k0 = 1. Since the OLS residual skewness
µ̂′3

(µ̂′2)3/2
is usually a very

small positive number in the presence of wrong skewness, 1 + 1
Π

µ̂′3
(µ̂′2)3/2

is slightly bigger than 1.

Consider the RHS 3
Π2

σ̂2
ε

(µ̂′2)3
lnN
N ·N [R(X ′X)−1R′]. It is positive. In addition, The positive scalar

N ·R(X ′X)−1R′ =
1

N
ẽ′M0X(X ′X)−1X ′M0ẽ =

1

N
(ẽ− µ̂′2ι)′X(X ′X)−1X ′(ẽ− µ̂′2ι)

=
1

N
[ẽ′PX ẽ− 2µ̂′2ẽ

′PXι+ (µ̂′2)2ι′PXι]

=
1

N
[ẽ′PX ẽ−N(µ̂′2)2] =

1

N
ẽ′PX ẽ− (µ̂′2)2,

where PXι = ι and ẽ′ι = Nµ̂′2. We normalize ẽ by dividing it by its average µ̂′2, i.e., e̊ = ẽ/µ̂′2 ,

such that e̊′ι = ẽ′ι/µ̂′2 = N . Thus,

3

Π2

σ̂2
ε

(µ̂′2)3
lnN · [R(X ′X)−1R′]

=
3

Π2

σ̂2
ε

(µ̂′2)3
lnN · 1

N2
ẽ′M0X(X ′X)−1X ′M0ẽ]

=
3

Π2

lnN

N
· 1

N
e̊′M0X(X ′X)−1X ′M0e̊].

Since for a large N ,

e̊′M0X(X ′X)−1X ′M0e̊ =
1

N
e̊′M0X(

X ′X

N
)−1X ′M0e̊ = Op(1),

we obtain,

RHS =
3

Π2

lnN

N
· Op(1)

N
.

For a relatively large sample size N , RHS falls into the unity interval, implying the existence of k̂0

as the solution to mink0∈[0,1)C(k0).

Uniqueness of k̂0 is guaranteed by the second order condition. The second order derivative of

C(k0) is

d2C(k0)

dk2
0

=
1

N

d2SSRr(k0)

dk2
0

=
Π2(µ̂′2)3

3N [R(X ′X)−1R′]

d[ 1
Π

µ̂′3
(µ̂′2)3/2

k
1/2
0 + k2

0]

dk0

=
Π2(µ̂′2)3

3N [R(X ′X)−1R′]
[

1

2Π

µ̂′3
(µ̂′2)3/2

k
−1/2
0 + 2k0] > 0

for any 0 < k0 < 1 since OLS residual skewness
µ̂′3

(µ̂′2)3/2
> 0 in the presence of wrong skewness.
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k 0 frequency σ u
2 σ v

2

N average bias OLS bias RMSE OLS RMSE bias OLS bias RMSE OLS RMSE bias bias bias RMSE
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

50 0.059 0.399 -0.025 -0.067 0.458 0.088 0.009 0.000 0.112 0.022 0.082 0.006 -0.025 0.698
100 0.051 0.394 -0.037 -0.068 0.572 0.078 0.017 0.000 0.270 0.015 0.091 0.000 -0.023 0.785
200 0.050 0.374 -0.017 -0.067 0.533 0.072 0.005 0.000 0.140 0.011 0.064 -0.001 -0.024 0.718

50 0.059 0.395 -0.063 -0.096 0.344 0.111 0.009 0.000 0.105 0.022 0.028 0.003 0.006 0.728
100 0.052 0.379 -0.057 -0.095 0.363 0.103 0.006 0.000 0.111 0.015 0.034 0.003 0.007 0.706
200 0.050 0.353 -0.041 -0.095 0.437 0.098 0.004 0.000 0.102 0.011 0.080 0.000 0.006 0.721

50 0.061 0.366 -0.075 -0.117 0.297 0.130 0.005 0.000 0.087 0.022 0.018 0.004 0.027 0.639
100 0.052 0.340 -0.076 -0.117 0.373 0.123 0.006 0.000 0.097 0.015 0.035 0.006 0.030 0.666
200 0.050 0.312 -0.065 -0.117 0.325 0.120 0.000 0.000 0.091 0.011 0.031 0.002 0.036 0.618

50 0.062 0.319 -0.110 -0.150 0.272 0.160 0.006 0.000 0.086 0.022 -0.010 0.009 0.061 0.615
100 0.053 0.284 -0.105 -0.150 0.262 0.155 0.003 0.000 0.069 0.015 -0.005 0.008 0.070 0.586
200 0.050 0.248 -0.108 -0.151 0.326 0.153 0.004 0.000 0.087 0.010 0.006 0.009 0.073 0.481

50 0.068 0.270 -0.138 -0.176 0.215 0.185 0.003 0.000 0.076 0.023 -0.038 0.013 0.092 0.510
100 0.054 0.208 -0.138 -0.179 0.215 0.183 0.003 0.000 0.057 0.016 -0.039 0.013 0.099 0.442
200 0.050 0.163 -0.138 -0.178 0.188 0.180 0.002 0.000 0.045 0.011 -0.041 0.014 0.105 0.385

Notes:
1. Column (3) represents the proportions of wrong skewness after the finite sample correction using a linearized constraint.
2. Columns (5), (7), (9) and (11) refer to the bias and root mean squared error of OLS of β 0 and β 1.
3. The mean technical efficiency is calculated as E(e-u).

mean efficiency

k= 0.5

k= 0.7

Table 1: Monte Carlo Results: Constrained COLS 
β 0 β 1

k= 0.1

k= 0.2

k= 0.3



k 0 frequency
N average bias RMSE bias RMSE bias RMSE bias RMSE bias RMSE bias RMSE bias RMSE bias RMSE
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19)

50 0.058 0.400 0.048 0.319 0.005 0.096 0.048 0.318 -0.084 0.825 0.001 0.057 0.000 0.022 0.713 0.931 1.150 1.449
100 0.052 0.393 0.027 0.251 0.007 0.075 0.022 0.108 -0.078 0.810 -0.003 0.037 0.001 0.015 0.531 0.672 0.600 0.970
200 0.050 0.413 0.017 0.284 0.011 0.090 0.026 0.125 -0.081 0.844 0.000 0.025 0.000 0.010 0.396 0.502 0.195 0.814

50 0.059 0.395 0.052 0.272 0.003 0.075 0.032 0.198 -0.082 0.815 0.002 0.052 0.000 0.020 0.688 0.871 1.083 1.303
100 0.051 0.403 0.047 0.235 0.004 0.076 0.024 0.095 -0.085 0.828 -0.001 0.033 0.000 0.013 0.547 0.675 0.658 0.928
200 0.050 0.358 0.047 0.294 0.006 0.091 0.032 0.209 -0.081 0.754 -0.001 0.025 0.001 0.010 0.357 0.450 0.086 0.769

50 0.057 0.418 0.021 0.241 0.010 0.093 0.019 0.173 -0.072 0.852 0.001 0.047 -0.001 0.018 0.788 0.989 1.393 1.480
100 0.051 0.380 0.043 0.255 0.004 0.086 0.022 0.152 -0.076 0.789 0.001 0.032 -0.001 0.013 0.519 0.655 0.582 0.963
200 0.050 0.400 0.037 0.355 0.012 0.093 0.064 0.914 -0.076 0.824 0.002 0.023 0.000 0.009 0.368 0.463 0.128 0.790

50 0.058 0.443 0.022 0.228 0.006 0.077 0.010 0.130 -0.069 0.895 -0.001 0.042 0.000 0.016 0.839 1.065 1.561 1.610
100 0.051 0.425 0.030 0.399 0.002 0.098 0.047 0.954 -0.063 0.864 -0.001 0.027 0.000 0.011 0.565 0.716 0.739 1.029
200 0.050 0.395 0.100 0.937 -0.013 0.264 0.375 1.893 -0.071 0.816 -0.001 0.019 0.001 0.008 0.346 0.435 0.078 0.783

50 0.058 0.405 0.041 0.199 0.000 0.057 0.004 0.146 -0.058 0.829 -0.003 0.032 0.001 0.012 0.723 0.892 1.229 1.323
100 0.051 0.383 0.028 0.164 0.004 0.055 -0.007 0.049 -0.050 0.789 0.003 0.022 -0.001 0.008 0.511 0.652 0.591 0.993
200 0.050 0.340 0.031 0.212 -0.002 0.067 -0.003 0.076 -0.053 0.721 -0.001 0.014 0.000 0.006 0.334 0.433 0.060 0.792

Notes:
1. Column (3) represents the proportions of wrong skewness after the finite sample correction using a linearized constraint.
2. The coefficient estimates in Carree (2002) is OLS estimates with a binomial inefficiency.
3. The mean technical efficiency is calculated as E(e-u).

σ u
2 mean efficiency

Table 2: Monte Carlo Results: Comparison between Constrained COLS VS Carree (2002)

σ u
2 mean efficiencyβ 0 β 1 β 0 β 1

Constrained COLS Carree's (2002) approach

k= 0.2

k= 0.3

k= 0.5

k= 0.7

k= 0.1



k 0 frequency σ u
2 σ v

2

N average bias OLS bias RMSE OLS RMSE bias OLS bias RMSE OLS RMSE bias bias bias RMSE
(1) (2) (3) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

50 0.062 0.413 -0.030 -0.052 0.471 0.077 0.000 -0.001 0.143 0.022 0.084 0.000 0.870 0.876
100 0.052 0.395 -0.020 -0.050 0.352 0.062 0.012 -0.001 0.094 0.015 0.042 0.000 0.871 0.876
200 0.050 0.348 -0.004 -0.049 0.257 0.056 0.006 -0.001 0.077 0.011 0.027 0.002 0.870 0.875

50 0.058 0.385 -0.038 -0.078 0.290 0.097 0.008 0.002 0.086 0.023 0.047 0.001 0.855 0.860
100 0.052 0.360 -0.038 -0.073 0.209 0.082 0.003 -0.001 0.059 0.015 0.016 0.004 0.856 0.861
200 0.050 0.270 -0.019 -0.072 0.205 0.077 0.002 0.001 0.058 0.010 0.013 0.005 0.858 0.862

50 0.062 0.330 -0.066 -0.087 0.349 0.102 0.014 0.001 0.114 0.021 0.011 0.004 0.846 0.852
100 0.053 0.363 -0.027 -0.090 0.573 0.098 -0.002 0.001 0.163 0.015 0.132 0.011 0.848 0.853
200 0.050 0.288 -0.036 -0.085 0.246 0.089 0.000 0.000 0.077 0.010 0.025 0.005 0.849 0.853

50 0.065 0.290 -0.072 -0.104 0.213 0.119 0.012 -0.001 0.195 0.022 0.002 0.007 0.833 0.838
100 0.054 0.245 -0.061 -0.108 0.156 0.114 0.001 0.000 0.043 0.014 -0.003 0.007 0.833 0.838
200 0.050 0.228 -0.051 -0.108 0.560 0.111 -0.005 0.000 0.144 0.011 0.114 0.001 0.833 0.838

50 0.075 0.210 -0.091 -0.125 0.133 0.137 0.005 0.000 0.038 0.021 -0.011 0.008 0.820 0.827
100 0.056 0.170 -0.079 -0.128 0.138 0.133 0.003 0.001 0.039 0.014 -0.010 0.009 0.820 0.827
200 0.051 0.143 -0.083 -0.123 0.117 0.126 0.000 0.000 0.023 0.010 -0.013 0.009 0.820 0.827

Notes:
1. Column (3) represents the proportions of wrong skewness after the finite sample correction using a linearized constraint.
2. An exponential inefficiency term is assumed. 
3. The mean technical efficiency is calculated as E(e-u).

k= 0.3

k= 0.5

k= 0.7

Table 3: Monte Carlo Results: Constrained COLS with Exponential Inefficiency
β 0 β 1

k= 0.1

k= 0.2

mean efficiency



Dependent variable: Log output

Variables estimates se estimates se bagging inteval bagging se estimates se estimates se estimates se estimates se
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Log fuel 0.3828 0.0712 0.3836 0.0707 [0.2465, 0.5094] 0.0690 0.3857 0.0696 0.3879 0.0697 0.3907 0.0698 0.3939 0.0700
Log materials 0.7192 0.0773 0.7167 0.0800 [0.5836, 0.8907] 0.0800 0.7097 0.0685 0.7028 0.0685 0.6940 0.0685 0.6836 0.0685
Log equipment 0.2192 0.0739 0.2196 0.0731 [0.0709, 0.3554] 0.0736 0.2201 0.0730 0.2206 0.0729 0.2210 0.0729 0.2215 0.0729
Log labor -0.4101 0.0645 -0.4114 0.0648 [-0.5368, -0.2802] 0.0638 -0.4146 0.0618 -0.4178 0.0618 -0.4219 0.0618 -0.4267 0.0618
Log property 0.1880 0.0298 0.1897 0.0336 [0.1386, 0.2436] 0.0278 0.1945 0.0184 0.1992 0.0184 0.2053 0.0184 0.2126 0.0185
constant -0.9105 -0.8562 0.1835 [-0.9864, -0.6804] 0.0767 -0.8442 0.1103 -0.8361 0.0959 -0.8279 0.0870 -0.8199 0.0814
σ v 0.1608 0.1553 0.0338 0.1527 0.0219 0.1508 0.0196 0.1486 0.0180 0.1463 0.0169
σ u 0.0000 0.0676 0.2098 0.0820 0.1079 0.0917 0.0848 0.1015 0.0692 0.1110 0.0586
σ 2 0.0259 0.0287 0.0182 [0.0228, 0.0485] 0.0085 0.0301 0.0116 0.0311 0.0103 0.0324 0.0095 0.0337 0.0089
λ 0.0000 0.4351 0.2428 [0.0346, 0.8637] 0.2846 0.5371 0.1288 0.6082 0.1032 0.6829 0.0858 0.7587 0.0740

1.0000 0.9483 [0.5366, 0.9988] 0.9378 0.9308 0.9239 0.9172
skewness 0.0167 0.0093 -0.0115 -0.0325 -0.0599 -0.0927
k 0.0000 0.0644 0.0949 0.1185 0.1449 0.1730
log-likelihood 105.0588 105.0617 105.0617 105.047 105.002 104.898 104.707
BIC(k 0) -210.123 -210.371 -210.558 -210.6272 -210.5235
Notes:
1. Columns (6) and (7) report bagging intervals and standard errors proposed by Simar and Wilson (2010). 
2. Columns (12) and (13) are the constrained MLE based on the selected value of k0 using the proposed BIC-type criterion. 

Table 4: Estimates of Airlines Example: Constrained MLE 

OLS Constrained MLE
k 0=0.05 k 0=0.1 k 0=0.15 k 0=0.2

MLE

𝐸𝐸(𝑒𝑒−𝑢𝑢)



Dependent variable: Log output

Variables estimates se bagging interval bagging se estimates se estimates se estimates se estimates se estimates se
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Log fuel 0.3828 0.0712 [0.2465, 0.5094] 0.0690 0.3879 0.0697 0.3860 0.0701 0.3883 0.0701 0.3912 0.0702 0.3947 0.0703
Log materials 0.7192 0.0773 [0.5836, 0.8907] 0.0800 0.7028 0.0685 0.7098 0.0692 0.7029 0.0692 0.6940 0.0692 0.6835 0.0693
Log equipment 0.2192 0.0739 [0.0709, 0.3554] 0.0736 0.2206 0.0729 0.2197 0.0737 0.2200 0.0738 0.2204 0.0738 0.2210 0.0739
Log labor -0.4101 0.0645 [-0.5368, -0.2802] 0.0638 -0.4178 0.0618 -0.4145 0.0625 -0.4177 0.0625 -0.4218 0.0625 -0.4266 0.0626
Log property 0.1880 0.0298 [0.1386, 0.2436] 0.0278 0.1992 0.0184 0.1944 0.0185 0.1991 0.0186 0.2052 0.0186 0.2123 0.0186
constant -0.9105 [-0.9864, -0.6804] 0.0767 -0.8361 0.0959 -0.8619 -0.8417 -0.8258 -0.8121
σ v 0.1608 0.1508 0.0196 0.1567 0.1525 0.1481 0.1437
σ u 0.0000 0.0917 0.0848 0.0604 0.0853 0.1046 0.1212
σ 2 0.0259 [0.0228, 0.0485] 0.0085 0.0311 0.0103 0.0282 0.0305 0.0329 0.0353
λ 0.0000 [0.0346, 0.8637] 0.2846 0.6082 0.1032 0.3854 0.5593 0.7064 0.8436

1.0000 [0.5366, 0.9988] 0.9308 0.9536 0.9354 0.9217 0.9102
skewness 0.0167 -0.0325 -0.0115 -0.0325 -0.0599 -0.0927
k 0.0000 0.1185 0.0512 0.1021 0.1535 0.2055
SSR 6.596 105.0617 6.598 6.602 6.611 6.625
N*C (k 0) 6.596 6.591 6.588 6.589 6.597
Notes:
1. Columns (4) and 5) report bagging intervals and standard errors proposed by Simar and Wilson (2010). 
2. Columns (10) and (11) are the constrained COLS based on the selected value of k0 using the proposed C-type criterion. 

Table 5: Estimates of Airlines Example: Constrained COLS 

OLS Constrained MLE Constrained COLS
k 0=0.1 k 0=0.05 k 0=0.1 k 0=0.15 k 0=0.2

MLE

𝐸𝐸(𝑒𝑒−𝑢𝑢)
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