
Appendix A: Data 
 

Sampling 
The Chinese dataset used in this paper was collected in year 2001 and 2003 under the Investment 
Climate Surveys by the World Bank. These surveys cover more than 26,000 firms in 53 
developing countries, and aim to understand how investment climates vary around the world and 
how they influence growth and poverty.  The sample of firms in each country is stratified by 
size, sector and location.  
 The original Chinese samples provide annual observations for up to 3 years in the period 
1998-2000 for 1548 firms distributed across 5 cities (Beijing, Chengdu, Guangzhou, Shanghai 
and Tianjin), and in the period 2000-2002 for 2400 firms distributed across 18 cities (Dalian, 
Benxi,  Changchun,  Ha’erbin,  Hangzhou, Wenzhou, Nanchang,  Zhengzhou,  Wuhan, 
Changsha, Shenzhen, Jiangmen, Nanning, Chongqing, Guiyang, Kunming, Xi’an and Lanzhou). 
Overall these 3948 firms were distributed across 10 manufacturing industries (auto and auto 
parts, biotech products and Chinese medicine, electronic equipment, chemical products and 
medicine, electronic parts making, food processing, garment and leather products,  household 
electronics, metallurgical products, and transportation equip) and 4 services industries 
(accounting and non-banking financial service, advertisement and marketing, business services, 
and information technology). 
 Compared with potential alternatives such as the China's Industrial Survey dataset, the 
dataset that we use has two important advantages. First, the sample of firms is stratified by size 
and therefore includes a large number of small firms. These firms are of particular interest 
because according to conventional wisdom, they are most likely to face an unfavorable 
investment climate in developing countries. However, such firms are excluded from the 
Industrial Survey, which only samples firms whose sales revenue exceeds 5 million Chinese 
Yuan. Second, the Investment Climate Survey explicitly asks about the investment expenditure 
on fixed assets for each firm in each year. Accurate information on investment is crucial in 
estimating any investment model. However, such information is not available in the Industrial 
Survey. 
 

Data cleaning 
Firms with number of permanent employees less than 10 or larger than 1000 are dropped to rule 
out extremely small or large observations. Using information from China Statistical Yearbook, 
we then deflate investment and capital stock data using province-specific price indices of 
investment in fixed assets and deflate profit and sales data using province-specific ex-factory 
price indices of industrial products. After calculating the five key variables in ratio or growth rate 
according to definition in Section 3.1, we trim the top and bottom 5% observations to rule out 
extreme values. The final sample used for estimation is a three-year panel of 3618 firms, with 
median number of employees 112.  

 



Macroeconomic background over sample period 
 

TABLE A1  
Macroeconomic indicators for China over 1998 to 2002  

 1998 1999 2000 2001 2002 
GDP (PPP) share of world total  10.2 10.6 10.9 11.5 12.1 
real GDP growth rate (secondary industry) 8.9 8.1 9.4 8.4 9.8 
real GDP growth rate (tertiary industry) 8.3 7.7 8.1 8.4 7.5 
inflation rate, GDP deflator -0.8 -1.4 0.4 0.7 -0.8 
fixed capital formation as share of GDP 37.1 36.7 35.1 36.3 37.9 

Notes: These numbers are in percentage.  
Source: World Economic Outlook, IMF; World Development Indicator, World Bank; China 
Statistical Yearbook; National Bureau of Statistics of China. 
 
 
Appendix B: Specification tests and robustness tests 
Specification tests 
Table A2 reports specification tests for alternative models. For reference, the preferred full 
model is listed in column (1). Columns (2) to (4) show what happens when we impose 
respectively no quadratic adjustment costs, no irreversibility and no fixed adjustment costs. 
Compared with the preferred full model, a model with quadratic adjustment costs together with 
either irreversibility (column (4)) or fixed adjustment costs (column (3)) could fit the data 
reasonably well. In other words, irreversibility and fixed adjustment costs are two alternative 
forms of non-convex adjustment costs and are substitutes for one another if we only allow for 
one of them. In contrast, a model without quadratic adjustment costs (column (2)) fits the data 
much worse and generates a substantially higher over-identifying restriction test statistic. This is 
because this restricted model cannot fit the large positive serial correlation in the investment rate. 
Furthermore, the simulated investment rate series is too volatile, too right-skewed and over-
responsive. 
 Column (5) presents a model which assumes a homogeneous capital share β. As one may 
expect, without heterogeneity in β, the model cannot match the large dispersion and the high 
serial correlation in log sales to capital ratio. As a result, the model over-estimates adjustment 
costs, heterogeneity in growth rate and level of uncertainty to match these important features of 
the data. Column (6) illustrates the result of imposing no heterogeneity in the growth rate μ. Such 
a model, first, cannot fit the positive serial correlation of the sales growth rate; and second, over-
estimates the quadratic adjustment costs. Comparison between columns (5), (6) and (1) therefore 
highlights the importance of allowing for unobserved heterogeneities in order to get consistent 
estimates for the adjustment costs. 
 



 
TABLE A2 

Specification tests 

  col (1) col (2) col (3) col (4) col (5) col (6) col (7) col (8) col (9) col (10) 
Parameters full bq= 0 bi = 0 bf = 0 σlogβ=0 σμ = 0 σmeK=0 σlogβ=0 free γ free σ 

        
σμ=0 

  
        

σmeK=0 
  bq 1.532 0.000 1.964 1.142 3.405 1.730 2.592 2.785 2.121 2.623 

bi 0.370 0.211 0.000 0.428 0.295 0.236 0.446 0.447 0.282 0.248 
bf 0.011 0.000 0.077 0.000 0.019 0.060 0.045 0.079 0.029 0.047 
ε 13.953 10.164 15.459 13.591 13.509 17.657 24.980 16.627 15.099 18.376 

μlogβ -2.498 -2.496 -2.448 -2.494 -2.345 -2.387 -2.201 -2.358 -2.484 -2.446 
σlogβ 1.386 1.265 1.346 1.376 0.000 1.381 1.263 0.000 1.350 1.393 
μμ 0.087 0.091 0.086 0.090 0.089 0.090 0.082 0.070 0.088 0.089 
σμ 0.089 0.000 0.044 0.092 0.141 0.000 0.063 0.000 0.089 0.087 

σmeK 0.522 0.580 0.517 0.525 0.500 0.494 0.000 0.000 0.546 0.595 
σ 0.569 0.285 0.585 0.555 0.639 0.655 1.160 1.160 0.580 0.629 

Simulated moments 
          mean(π/Y) 0.218 0.227 0.215 0.218 0.163 0.222 0.225 0.145 0.211 0.213 

mean(log(Y/Khat)) 0.554 0.657 0.712 0.509 0.433 0.607 0.171 -0.118 0.602 0.600 
mean(I/K) 0.151 0.171 0.148 0.156 0.168 0.153 0.122 0.110 0.152 0.157 
mean(∆logY) 0.088 0.091 0.086 0.091 0.095 0.091 0.080 0.071 0.088 0.088 
sd(log(Y/Khat)) 1.278 1.238 1.272 1.261 1.047 1.277 1.064 0.706 1.267 1.311 
sd(I/K) 0.190 0.310 0.181 0.204 0.200 0.182 0.131 0.106 0.189 0.199 
sd(∆logY) 0.338 0.213 0.330 0.332 0.320 0.349 0.472 0.491 0.333 0.334 
skew(log(Y/Khat)) 0.189 0.005 0.155 0.172 -0.249 0.166 0.641 -0.104 0.190 0.188 
skew(I/K) 2.553 4.223 2.394 2.768 1.838 2.369 1.277 0.750 2.529 2.795 
skew(dlogY) 0.048 0.461 0.049 0.062 0.025 0.059 0.077 0.031 0.043 0.050 
scorr(log(Y/Khat)) 0.843 0.817 0.846 0.839 0.786 0.857 0.921 0.804 0.827 0.813 
scorr(I/K) 0.492 0.091 0.360 0.484 0.592 0.345 0.740 0.662 0.474 0.432 
scorr(∆logY) 0.014 0.001 -0.015 0.025 0.088 -0.021 -0.021 -0.035 0.014 0.012 
corr(I/K, log(Y/K)) 0.407 0.275 0.402 0.406 0.756 0.414 0.549 0.831 0.412 0.418 
corr(∆logY, log(Y/K)) 0.213 0.164 0.204 0.218 0.407 0.216 0.324 0.462 0.207 0.198 
corr(I/K, ∆logY) 0.446 0.675 0.508 0.469 0.379 0.530 0.533 0.586 0.419 0.384 
Prop(I/K>0.2) 0.286 0.264 0.285 0.291 0.346 0.296 0.239 0.246 0.291 0.293 
Prop(I/K=0) 0.289 0.340 0.306 0.255 0.339 0.292 0.315 0.288 0.295 0.292 
Prop(I/K<0) 0.002 0.008 0.003 0.002 0.000 0.002 0.004 0.000 0.002 0.001 

OI 1051 4091 1374 1068 4132 1445 5136 10848 1018 969 
 
 
 



 Column (7) shows the result of imposing no measurement error, which implies 𝜎� =1.160 
by equation (20). Not surprisingly, this restricted specification is strongly rejected, mainly 
because the simulated sales growth rates are too volatile at such a high level of uncertainty. To 
dampen the sales growth rate, the model generates much higher estimates for the adjustment 
costs, which in turn makes the investment rate too persistent and not dispersed enough compared 
with the real data. 
 To investigate the overall effects of the empirical innovations introduced in this paper, 
column (8) re-estimates the model without allowing for any heterogeneity or measurement error. 
Most of the simulated moments are further away from their empirical counterparts and the model 
is clearly rejected. The estimated capital adjustment costs from such simple model are much 
higher than those from the benchmark specification.  

 Finally, instead of imposing �̅� =0.408, one may use 𝛾� = 1
𝑁
∑ 1

1+𝛽𝚤�(𝜀�−1)
𝑁
𝑖=1   in equation (20) 

where 𝛽𝚤�  and 𝜀̂ are estimated simultaneously with 𝜎𝑚𝑒𝐾. Column (9) implies that even greater 
capital adjustment costs are obtained under this alternative value of γ. Furthermore, to examine 
the effect of using the restriction (20) on the estimates, column (10) reports a model which 
estimates 𝜎𝑚𝑒𝐾  and σ simultaneously without using (20) at all. The alternative identification 
restriction is to assume that the noise-to-signal ratio is no larger than one, that is 𝜎𝑚𝑒𝐾 ≤ 𝜎. Such 
a model estimates even larger measurement error and a higher level of uncertainty. The estimates 
for capital adjustment costs, the key parameters of interest, are also more substantial than those 
in the benchmark specification. 
 
Robustness tests 
Table A3 presents robustness checks across three different parameters. Column (1) is the 
benchmark model, where δ = 0.03, r = 0.14 and ρ = 0.885. Columns (2) and (3) show the results 
for the same model but imposing the depreciation rate to be 0.02 and 0.04 respectively. Columns 
(4) and (5) present the results for the same model but imposing the discount rate to be 0.13 and 
0.15 respectively. Compared with the benchmark model, a model with lower depreciation rate or 
lower discount rate implies slightly higher quadratic adjustment costs and smaller demand 
elasticity, in order to match the empirical mean of log sales to capital ratio. Nevertheless, with 
the exception of the estimates for the mean of growth rate 𝜇𝜇, the estimates for other parameters 
are robust to the choice of depreciation rate and discount rate within the range we considered. 
Columns (6) and (7) show what happens when the same model is estimated but with serial 
correlation of 0.85 and 0.92, respectively. As expected, a model imposing higher serial 
correlation implies less heterogeneity in the growth rate. However, there is no significant 
difference between estimates reported in these two columns and the estimates in the benchmark 
model. 
 
 



 
TABLE A3 

Specification tests 

 
col (1) col (2) col (3) col (4) col (5) col (6) col (7) 

Parameters benchmark δ = 0.02 δ = 0.04 r= 0.13 r = 0.15 ρ = 0.85 ρ = 0.92 
bq 1.532 1.801 1.408 1.840 1.398 1.436 1.728 
bi 0.370 0.317 0.400 0.313 0.401 0.349 0.384 
bf 0.011 0.026 0.009 0.021 0.009 0.007 0.020 
ε 13.953 13.183 15.794 13.199 14.244 13.431 13.142 

μlogβ -2.498 -2.498 -2.490 -2.497 -2.499 -2.499 -2.499 
σlogβ 1.386 1.371 1.394 1.370 1.387 1.365 1.386 
μμ 0.087 0.094 0.080 0.085 0.084 0.086 0.089 
σμ 0.089 0.083 0.090 0.086 0.085 0.090 0.087 

σmeK 0.522 0.523 0.514 0.523 0.521 0.531 0.521 
σ 0.569 0.564 0.594 0.563 0.573 0.568 0.540 

Simulated moments 
       mean(π/Y) 0.218 0.220 0.213 0.220 0.217 0.218 0.222 

mean(log(Y/Khat)) 0.554 0.540 0.587 0.535 0.597 0.575 0.548 
mean(I/K) 0.151 0.146 0.156 0.147 0.148 0.150 0.153 
mean(∆logY) 0.088 0.094 0.081 0.085 0.085 0.087 0.089 
sd(log(Y/Khat)) 1.278 1.279 1.273 1.276 1.276 1.272 1.275 
sd(I/K) 0.190 0.180 0.197 0.181 0.190 0.187 0.194 
sd(∆logY) 0.338 0.338 0.341 0.337 0.338 0.341 0.327 
skew(log(Y/Khat)) 0.189 0.190 0.191 0.193 0.185 0.169 0.201 
skew(I/K) 2.553 2.425 2.604 2.436 2.680 2.539 2.598 
skew(dlogY) 0.048 0.040 0.058 0.040 0.054 0.045 0.051 
scorr(log(Y/Khat)) 0.843 0.841 0.846 0.840 0.842 0.835 0.845 
scorr(I/K) 0.492 0.482 0.497 0.490 0.489 0.480 0.502 
scorr(∆logY) 0.014 0.005 0.019 0.008 0.012 -0.007 0.040 
corr(I/K, log(Y/K)) 0.407 0.400 0.412 0.404 0.411 0.398 0.418 
corr(∆logY, log(Y/K)) 0.213 0.205 0.219 0.207 0.216 0.206 0.219 
corr(I/K, ∆logY) 0.446 0.436 0.459 0.431 0.455 0.433 0.451 
Prop(I/K>0.2) 0.286 0.278 0.294 0.281 0.277 0.285 0.290 
Prop(I/K=0) 0.289 0.305 0.280 0.296 0.288 0.285 0.292 
Prop(I/K<0) 0.002 0.001 0.002 0.002 0.002 0.002 0.002 

OI 1051 1052 1094 1046 1072 1028 1125 
 
 
 
 
 



Appendix C:    The effects of other factors 
As illustrated by equation (9)  and Figures 1a to 1c, optimal investment behavior is determined 
by five factors in this model: the Jorgensonian user cost of capital (J), production technology (β), 
demand schedule (ε), stochastic process characterizing investment opportunities (Z), and 
different forms of adjustment costs (bq, bi, bf). The aggregate output loss in this paper is derived 
by reducing capital adjustment costs while keeping all other factors constant. Thus the effects 
simulated in Sections 6.1 and 6.2 are by nature comparative static analyses. It is therefore 
interesting to discuss how these effects might be, in a general equilibrium framework where user 
cost of capital, production technology, demand schedule and investment opportunities are all 
potentially endogenous in the long run. 
 First, when aggregate capital stock increases with the elimination or reduction of capital 
adjustment costs, the interest rate r will endogenously fall due to the general equilibrium effect. 
The will induce even more investment expenditure at the firm level until a lower MRPK is 
equalized with a lower Jorgensonian user cost of capital in the long run. Second, when the 
economy becomes more abundant in capital, the relative factor prices between production factors 
will change. If firms can endogenously choose production technology, it will be optimal for them 
to adopt a more capital intensive technology. This implies a higher value of β. Third, with lower 
capital adjustment costs the net profit of each firm will increase. In an environment with free 
entry, higher profit of the incumbents will bring more new comers and lead to a more 
competitive market structure. This implies a higher value of ε. According to equations (3), 1 ‒ γ 
increases with both β and ε. Since the gain of aggregate output is an increasing function of 1 ‒ γ, 
endogenous technology and market structure will imply even larger gain from reducing 
investment frictions. Finally, if capital investment has positive externality or spillover effects, the 
growth rate of Z will endogenously increase with more aggregate capital stock. This implies a 
higher value of μ. Given that the aggregate output loss is also an increasing function of μ, the 
endogenous growth theory will predict even more aggregate output loss due to the presence of 
capital adjustment costs. 
 To sum, in a more general model where all other factors that affect investment decisions 
are allowed to change with an increase in aggregate capital stock, the aggregate output gain 
might be even greater than what has been derived from the comparative static analyses. 
Therefore, the effects reported in this paper could be taken as the lower bound of the true effects 
from a more general model. Estimating such a model is beyond the scope of this paper and will 
be an interesting task for future research. 
 


