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1 Introduction

Resource allocative effi ciency differs across countries. The differences have recently been found

important in accounting for the large cross-country difference in aggregate productive effi ciency.

Hsieh and Klenow (2009) infer the magnitude of resource misallocation by matching the disper-

sions of average revenue products (henceforth referred to as the ARP approach).1 The validity

of the inference hinges on two conditions: (1) average and marginal revenue products have the

same dispersion; and (2) the dispersion of marginal revenue products, a mirror image of price

heterogeneity, reflects the magnitude of misallocation. Both conditions are strict. Condition

(1) applies only to environments with homogeneous output and demand elasticities. Condition

(2) will not necessarily hold in a dynamic environment with frictions such as adjustment costs.

When it takes to the data, the ARP approach needs another condition that measurement er-

rors do not add to the dispersions. Violation of any of the conditions would lead to biased

estimation.

This paper develops a new method of identifying capital misallocation in a more general

environment, where none of the conditions has to hold. The new method has a distinctive

feature by matching a set of first and second moments of both the revenue-capital ratio (i.e.,

the average revenue product of capital) and the profit-revenue ratio. The profit-revenue ratio,

which has not yet been explored in the misallocation literature, plays an important role in

identification. Specifically, we match the variance of the revenue-capital and profit-revenue

ratios and the cross correlation between the two ratios. The three empirical moments allow us

to back out the three parameters governing the magnitude of the misallocation and unobserved

heterogeneities in output and demand elasticities. In addition, while the ARP approach uses

cross-sectional data, the new method explores between-group variations in panel data, which

can effectively mitigate the bias caused by capital adjustment costs and measurement errors.

We refer to the new method as the generalized ARP approach.

For illustrative purposes, we first present a simple model, where closed-form solutions make

the identification of the unobserved heterogeneities highly transparent. Simulations show that

the bias of the ARP approach caused by heterogeneities in output and demand elasticities

appears to be severe under reasonable parameterization. By contrast, the generalized ARP

approach manages to eradicate most of the bias.

1This is also called “the indirect approach”by Restuccia and Rogerson (2013). See their paper for a review
of the literature that adopts the approach to assess misallocation.
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We next extend the model by incorporating a rich structure of capital adjustment costs

and transitory measurement errors. The extent to which the generalized ARP approach is

biased in a panel depends on the magnitude of capital adjustment costs and measurement

errors, which, in turn, needs to be estimated. To this end, we adopt the simulated method

of moments to estimate structurally all the key parameters in the full-blown model. As an

extension to the identification condition in the generalized ARP approach, we illustrate how

the structural estimation can separately identify the much larger set of parameters.

Our main empirical exercise is to apply the generalized ARP approach and the structural

estimation to a firm-level panel data from the industrial survey conducted by China’s National

Bureau of Statistics. The generalized ARP approach finds that correcting capital misallocation

would increase China’s manufacturing output by 20 percent. In contrast, the ARP approach

implies a much larger effi ciency gain of 35 percent.

To control for other factors that may potentially bias the generalized ARP approach, we

back out the magnitude of capital misallocation for U.S. manufacturing firms in Compustat.

Improving capital allocation effi ciency to the level among the Compustat firms would increase

China’s manufacturing output by 16 percent. We then estimate a subsample in Compustat

consisting of large firms only as in Bloom (2009). It has been well documented by the literature,

for example, Fazzari et al. (1988), that large Compustat firms are less likely to be financially

constrained. Capital misallocation would, thus, be less severe among the large firms. Interest-

ingly, the generalized ARP approach finds much weaker evidence for capital misallocation in

the subsample. The heterogeneities in output and demand elasticities can essentially account

for all the dispersion of the revenue-capital ratio among large Compustat firms, even if the

magnitude of the dispersion is similar across the three samples.

We also apply the structural estimation to the three samples. The structural estimation

finds capital misallocation to be statistically significant and quantitatively similar to the mag-

nitude backed out by the generalized ARP approach throughout the three samples. Moreover,

the misallocation has no significance in the sample with large Compustat firms. In other

words, the generalized ARP approach provides a first-order approximation to the structural

estimation. We regard it as an important finding since the generalized ARP approach, which

preserves some tractability from the ARP approach, is much easier to implement than the

structural estimation.

A few extensions are conducted based on the generalized ARP approach. We provide a

rough estimate of labor misallocation without resorting to a full specification on labor adjust-
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ment costs and measurement errors.2 The magnitude of labor misallocation turns out to be

much smaller than that of capital misallocation. A complete removal of labor misallocation

would increase China’s manufacturing output by less than 5 percent.

Another interesting exercise is to understand the policies or institutional arrangements lying

hidden behind the veil of misallocation. Although such distortions are not directly observed, the

generalized ARP approach suggests that once heterogeneities in output and demand elasticities

are properly controlled, the between-group variation of the revenue-capital ratio would play

a key role in identification. Motivated by the insight, we regress the time-series mean of the

revenue-capital ratio of each firm on a set of firm characteristics. We find that small, young

and non-state Chinese firms are associated with significantly higher revenue-capital ratios than

their counterparts that are large, mature, and state-owned. These results are broadly consistent

with the findings from a growing literature on financial market imperfections in China.3

Within the growing literature studying the role of particular distortions, Midrigan and Xu

(2014) evaluate the importance of a particular collateral constraint on aggregate productive

effi ciency. They find a quantitatively small effect on surviving firms through the misallocation

channel. The main insight is that self-financing can undo the losses caused by the collateral

constraint. Using firm-specific borrowing costs for U.S. manufacturing firms directly from the

interest rate spreads on their outstanding publicly-traded debt, Gilchrist et al. (2013) also find

very modest losses in aggregate TFP.4 We estimate the magnitude of capital misallocation on

surviving firms caused by all kinds of financial frictions, policy distortions and institutional

arrangements. But our exercise is completely silent on entry and exit.

Asker et al. (2014) show that capital adjustment costs can be an important contributing

factor to the observed misallocation. Our approach differs from theirs in two aspects. First,

methodologically, like the ARP approach, we aim to back out the magnitude of misallocation

by matching empirical moments. Asker et al. (2014), instead, explores the extent to which

capital adjustment costs alone can explain the correlations between the dispersion and the time-

series volatility of productivity across industry and country. Second, empirically, our structural

approach, which can estimate capital misallocation and adjustment costs simultaneously, finds

the misallocation to be significant and quantitatively important in China’s manufacturing

sector.

In terms of structural estimation, Cooper and Haltiwanger (2006) and Bloom (2009) first

2See Cooper et al. (2010) for a structural estimation of labor adjustment costs in Chinese manufacturing.
3See, e.g., Dollar and Wei (2007), Brandt et al. (2013), Hsieh and Song (2014).
4The importance of credit market imperfections on aggregate productive effi ciency is far from being settled,

however. See Caselli and Gennaioli (2013), Buera et al. (2011), Buera and Shin (2013) and Moll (2014) for
different results.
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adopt the simulated method of moments to recover structural parameters of capital adjust-

ment costs. We contribute to the empirical investment literature by estimating unobserved

heterogeneities and measurement errors.

The rest of the paper is organized as follows. Section 2 outlines the simple model economy

with unobserved heterogeneities in production technology and market power. We then develop

the generalized ARP approach in the simple economy. Section 3 introduces the full-blown

model and the structural estimation. We apply both approaches to the China and U.S. data

in Section 4. Section 5 discusses some applications of the generalized ARP approach. Section

6 concludes.

2 A Simple Model

To illustrate the main idea of this paper, we begin with a simple model with two basic features.

First, firms face heterogeneous capital goods prices due to capital market distortions. Second,

capital output elasticity and markups differ across firms. The full-blown model with capital

adjustment costs and measurement errors will be presented in Section 3.

2.1 Production and Demand

Firm i in period t uses productive capital, labor and intermediate input, denoted by K̂i,t, Li,t

and Mi,t, respectively, to produce Qi,t units of good i. The production technology exhibits

constant returns to scale and takes a Cobb-Douglas form:

Qi,t = Ai,tK̂
αi
i,tL

βi
i,tM

1−αi−βi
i,t , (1)

where Ai,t is stochastic, representing randomness in productivity; αi > 0 and βi > 0 denote

firm-specific capital and labor output elasticities, respectively, αi + βi < 1.

The firm sells its goods in a monopolistic product market, subject to an isoelastic downward-

sloping demand curve,

Qi,t = Xi,tP
− 1
ηi

i,t . (2)

Here, Xi,t is stochastic, representing randomness in demand; Pi,t denotes the price of good i

in period t, and ηi ∈ (0, 1) is the inverse of firm-specific demand elasticity. Alternatively, one

may interpret the heterogeneity in ηi as product market distortions. But our estimation of

capital market distortions is independent of the interpretation.

For notational convenience, we define Yi,t ≡ Pi,tQi,t as sales revenue. A combination of (1)
and (2) leads to

Yi,t = X
ηi
i,tA

1−ηi
i,t

(
K̂αi
i,tL

βi
i,tM

1−αi−βi
i,t

)1−ηi
. (3)
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Denote wi,t and mi,t as wage rate and intermediate input price, respectively. For a given

productive capital stock K̂i,t, firm i chooses Li,t andMi,t to maximize its gross profits, denoted

by πi,t:

πi,t = max
Li,t,Mi,t

{Yi,t − wi,tLi,t −mi,tMi,t} , (4)

where Yi,t follows (3). Both capital income and markups are in the gross profits, πi,t.

The first-order conditions imply constant labor, intermediate input and profit shares:

wi,tLi,t
Yi,t

= βi(1− ηi), (5)

mi,tMi,t

Yi,t
= (1− αi − βi) (1− ηi), (6)

πi,t
Yi,t

= ηi + αi(1− ηi). (7)

The labor and intermediate input shares would reduce to βi and 1 − αi − βi in the limiting
case where the demand elasticity goes to infinity (i.e., ηi = 0). Accordingly, the profit-revenue

ratio would be identical to αi as profits are just capital income. (7) will be a key equation for

identifying the heterogeneities of αi and ηi.

The optimization also establishes a profit function:

πi,t = Z
γi
i,tK̂

1−γi
i,t , (8)

where

γi ≡ 1− αi(1− ηi)
ηi + αi(1− ηi)

, (9)

and Zi,t encompasses productivity, demand and input prices.5 One may consider Zi,t “prof-

itability”(Cooper and Haltiwanger, 2006) or “business environment”(Bloom, 2009). Since the

marginal revenue product of capital (MRPK henceforth), ∂Yi,t/∂K̂i,t, is identical to ∂πi,t/∂K̂i,t,

we have the following representation of MRPK:

MRPKi,t = αi (1− ηi)
Yi,t

K̂i,t

= (1− γi)
(
Zi,t

K̂i,t

)γi
. (10)

The first and second equalities come from (3) and (8), respectively.

2.2 Distortions and Misallocation

There is a long list of distortions that would cause capital misallocation. We do not need to

specify each of the distortions since the goal is to back out the magnitude of their overall effect.

5Zi,t ≡
(
ηi
γi

) 1
γi

[
(1− ηi)

1−αi
(
βi
wi,t

)βi ( 1−αi−βi
mi,t

)1−αi−βi] 1
ηi
−1
Xi,tA

1
ηi
−1

i,t .
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Use τ i to summarize the effects of various capital market distortions on the capital goods price

that firm i faces:

PKi,t = (1 + τ i)P
K
t , (11)

where PKt denotes the average capital goods price. A positive value of τ i may correspond to

the case that firm i has limited access to external financing and, hence, is subject to a higher

than average capital goods price. A negative value of τ i, on the other hand, may represent an

investment tax credit.

Denote Ii,t and Ki,t the new investment and capital at the beginning of each period t,

respectively. Ii,t contributes to the productive capital, K̂i,t, immediately within period t. K̂i,t

depreciates at the end of that period. The law of motion for capital is given by

Ki,t+1 = (1− δ)K̂i,t (12)

= (1− δ) (Ki,t + Ii,t) ,

where δ is the depreciation rate.

Optimal investment is chosen to maximize the discounted present value of dividends, which

is the profit net of investment expenditure. Risk-neutral investors allocate capital to maximize

the sum of future dividends, which are discounted at the required rate of return, r.6

Following Bloom (2009), our timing assumption on investment allows for a closed-form

solution in the simple model, which provides a convenient analytical benchmark. Denote Jt

the Jorgensonian user cost of capital:

Jt ≡ PKt −
1− δ
1 + r

Et
[
PKt+1

]
. (13)

Appendix 7.2 shows that

K̂i,t =

[
1− γi

(1 + τ i) Jt

] 1
γi

Zi,t. (14)

Intuitively, a firm facing unfavorable capital market distortions (τ i > 0) ends up with less

capital than a firm that is facing favorable distortions (τ i < 0) but otherwise identical.

Substituting (14) into (10) yields

MRPKi,t = αi (1− ηi)
Yi,t

K̂i,t

= (1 + τ i) Jt. (15)

6The risk-neutrality assumption is equivalent to having a complete market without aggregate shocks in which
risk-averse investors diversify all idiosyncratic risks. A relaxation of the assumption may cause r to vary across
firms in a number of ways. Appendix 7.5 will discuss some of the possibilities and how the estimation results
would be affected accordingly.
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The left- and right-hand sides of (15) represent MRPK and the firm-specific user cost of

capital, respectively. In the absence of distortions, MRPK would be identical across firms.7

In the presence of distortions, log (MRPKi,t) is proportional to log (1 + τ i). Denote στ the

standard deviation of log (1 + τ i) across firms. Appendix 7.1 shows that στ is a summary

statistics of the magnitude of capital misallocation: The aggregate output gain of removing

capital misallocation is proportional to σ2
τ . We will, thus, focus on the identification and

estimation of στ , the parameter of our primary interest.

2.3 The ARP Approach

We are now ready to demonstrate the potential bias of the ARP approach. Assume that each

firm has a firm-specific τ i, where log (1 + τ i) is drawn independently from an identical normal

distribution with mean zero and standard deviation στ :

log (1 + τ i)
i.i.d∼ N

(
0, σ2

τ

)
. (16)

We also allow αi and ηi to be firm-specific. They are drawn independently from the following

distributions:

logαi
i.i.d∼ N

(
µlogα, σ

2
logα

)
, (17)

log ηi
i.i.d∼ N

(
µlog η, σ

2
log η

)
. (18)

αi and ηi are truncated to exclude unrealistic values. Two remarks are in order. First, the log-

normality assumptions can well capture the skewness of the profit-revenue and revenue-capital

ratios in the data (see the structural estimation results in Section 4.4). Second, αi and ηi are

exogenous. We will relax this assumption in Section 5.2, which allows τ i to affect αi.

We assume that Zi,t follows a trend stationary AR(1) process:

logZi,t = µt+ zi,t, (19)

zi,t = ρzi,t−1 + ei,t,

where 0 < ρ < 1, ei,t
i.i.d.∼ N(0, σ2), and zi,0 = 0.8 The standard deviation of the shocks, σ, is

the parameter characterizing the level of uncertainty. We assume homogeneous µ and σ in the

7This is because of the timing assumption on K̂i,t. It is reassuring that the average revenue-capital ratio, a
key variable for estimating στ , has very similar empirical distributions in our samples regardless of whether the
denominator is K̂i,t or Ki,t. Therefore, the timing assumption should have little effect on our results.

8The stochastic process of Zi,t can be endogenously obtained from its definition, if we assume that each of
Ai,t, Xi,t, wi,t and mi,t follow a similar trend stationary AR(1) process. For (19) to hold, a suffi cient condition
is that these four random variables share a common level of persistence, ρ, and the shocks to each of these
random variables are independent.
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benchmark case. Appendix 7.7 shows that a relaxation of the assumption will not cause any

substantial changes to our main results.

Rearrange (15):

log

(
Yi,t

K̂i,t

)
= log Jt + log (1 + τ i)− log [αi (1− ηi)] . (20)

(20) is a cornerstone of the ARP approach in the misallocation literature. It shows how to

infer στ from the dispersion of the revenue-capital ratio. However, one challenge in the indirect

inference is that, besides capital market distortions, unobserved heterogeneities in αi and ηi

also cause the revenue-capital ratio to differ across firms. Under the assumption that τ i, αi

and ηi are independent of each other, heterogeneities in αi and ηi would bias upwards the

estimated στ .

2.4 The Generalized ARP Approach

We are ready to propose a new method, which generalizes the ARP approach along two dimen-

sions. First, the standard ARP approach infers στ by matching the variance of the revenue-

capital ratio only. The generalized ARP approach will, instead, explore the second moments of

both the revenue-capital and profit-revenue ratios, in order to control for the unobserved het-

erogeneities in αi and ηi. Second, while cross-sectional data are enough for the ARP approach,

the generalized ARP approach will explore panel data. For reasons that will be discussed in

Sections 3, using the between-group dispersions and correlations allows us to eliminate some

of the potential bias caused by capital adjustment costs and measurement errors.

The main challenge of identifying στ in the simple model is how to deal with heterogeneities

in αi and ηi. (7) suggests that the dispersion of the profit-revenue ratio is informative for

σlogα and σlog η. This, however, is not enough. We have two empirical moments — i.e., the

variances of log
(
Yi,t/K̂i,t

)
and πi,t/Yi,t, while there are three parameters governing unobserved

heterogeneities: στ , σlogα and σlog η. To resolve the under-identification issue, we introduce

the cross correlation between log
(
Yi,t/K̂i,t

)
and πi,t/Yi,t, which follows:

corr

[
πi,t
Yi,t

, log

(
Yi,t

K̂i,t

)]
< 0, if σlogα > 0 and σlog η = 0

> 0, if σlogα = 0 and σlog η > 0
. (21)

Intuitively, higher markups (ηi) increase both the profit-revenue and revenue-capital ratios,

while a larger αi increases the profit-revenue ratio but decreases the revenue-capital ratio. In

extreme cases, if there is no heterogeneity in ηi (αi), the profit-revenue ratio would be negatively
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(positively) correlated with the revenue-capital ratio. Therefore, the sign and magnitude of

the correlation help to pin down the relative importance of σlogα and σlog η.

Based upon the above identification condition, the generalized ARP approach uses five core

moments to back out the five parameters governing the distributions in (16) to (18): στ , µlogα,

µlog η, σlogα and σlog η. The five moments are means of πi,t/Yi,t and log
(
Yi,t/K̂i,t

)
, between-

group standard deviations of πi,t/Yi,t and log
(
Yi,t/K̂i,t

)
, and the between-group correla-

tion of πi,t/Yi,t and log
(
Yi,t/K̂i,t

)
, denoted as mean (π/Y ), mean

(
log
(
Y/K̂

))
, bsd (π/Y ),

bsd
(

log
(
Y/K̂

))
and bcorr

(
π/Y , log

(
Y/K̂

))
, respectively.9 This constitutes five equations

with five unknown variables:

mean
(
π
Y

)
mean

(
log
(
Y
K̂

))
bsd

(
π
Y

)
bsd

(
log
(
Y
K̂

))
bcorr

(
π
Y , log

(
Y
K̂

))


=



E [ηi] + E [αi (1− ηi)]

log J − E [logαi]− E [log (1− ηi)]√
var [ηi + αi (1− ηi)]√

σ2
τ + var [logαi (1− ηi)]

corr [ηi + αi (1− ηi) , log (1 + τ i)− log [αi (1− ηi)]]


. (22)

The first and third equations are about mean (π/Y ) and bsd (π/Y ), based on (7). The second

and fourth equations are about mean
(

log
(
Y/K̂

))
and bsd

(
log
(
Y/K̂

))
, based on (20). The

last equation is about bcorr
(
π/Y , log

(
Y/K̂

))
, which follows (21). The whole approach boils

down to solving a non-linear equation system. The system can easily be solved numerically.

The convergence of numerical solution turns out to be very fast and independent of initial

guess in all exercises that will be conducted below. Therefore, the generalized ARP approach

preserves some tractability of the ARP approach.

We examine numerically the identification condition of the generalized ARP approach in

a simulated panel of 100,000 firms and 24 years, where moments are calculated by data from

the last four years. The construction is consistent with the size of a balanced panel from

China’s industrial survey involving about 100,000 firms over 2004-2007 which will be used

in the following sections. All simulations assume constant PKt , normalized to unity, and set

r = 0.15, δ = 0.05, ρ = 0.9 and the steady state growth rate of Zi,t to 0.05. We set the means

of logα and log η to −2.5 and let the standard deviation of the shock to Zi,t equal 0.4, which

9The between-group correlation is defined as follows: bcorr
(
π/Y, log

(
Y/K̂

))
≡

corr
[
1/T ·

∑T
t=1 πi,t/Yi,t, 1/T ·

∑T
t=1 log

(
Yi,t/K̂i,t

)]
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fall in the range of the values estimated from the China and U.S. data. The results reported

below turn out to be very robust with various parameter values.

Panel A of Table 1 reports the five moments of the simulated data: Column (1) starts

with a model with no unobserved heterogeneities. We then add positive στ , σlogα and σlog η,

respectively, in Column (2) to (4). Column (2) shows that only bsd
(

log
(
Y/K̂

))
responds to

στ . In Column (3), σlogα > 0 increases both bsd (π/Y ) and bsd
(

log
(
Y/K̂

))
. As predicted

by (21), Column (3) and (4) show that σlogα > 0 and σlog η > 0 lead to negative and positive

bcorr
(
π/Y, log

(
Y/K̂

))
, respectively. The effect of σlog η on bsd

(
log
(
Y/K̂

))
appears to be

much smaller than the effect of σlogα. The last column lists the moments in the model where

all the unobserved heterogeneities are present. The various responses of the second moments

to changes in στ , σlogα and σlog η illustrate how these heterogeneties can be identified by the

generalized ARP approach.

[Insert Table 1]

We then apply the ARP and generalized ARP approaches to the simulated data. Panel B

of Table 1 presents the inferred values of στ . As expected, the ARP approach is unbiased only

in the simple model with no heterogeneities in σlogα and σlog η. By contrast, the generalized

ARP approach delivers unbiased estimates in all cases.

3 The Full-Blown Model

The simple model shows that the generalized ARP approach isolates capital market distortions

from unobserved heterogeneities in αi and ηi. There are other factors that are missing in the

simple model but may potentially contaminate the inference of στ . For instance, capital

adjustment costs would cause MRPK to vary across firms even if no distortions are present.

Measurement errors, which tend to be more significant in firm-level data from developing

economies, are another important issue. To address these concerns, we now turn to a full-blown

model that incorporates not only the unobserved heterogeneities, but also capital adjustment

costs and measurement errors.

3.1 Capital Adjustment Costs

We first introduce capital adjustment costs as a representation of frictions that reduce, delay

or protract investment (Khan and Thomas, 2006). The ARP approach would be biased with

the presence of such frictions. A simple way of illustrating the bias is to rewrite Jt in (15) as

Ji,t, which denotes the firm-specific user cost of capital. A combination of idiosyncratic shocks
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and capital adjustment costs would cause user cost of capital to vary across firms, adding to

the dispersion of the revenue-capital ratio.

Following the literature,10 we consider three forms of capital adjustment costs:

G(Ki,t; Ii,t) =
bq

2

(
Ii,t
Ki,t

)2

Ki,t − biPKi,tIi,t1[Ii,t<0] + bf1[Ii,t 6=0]πi,t,

where G(Ki,t; Ii,t) represents the function of capital adjustment costs, with 1[It<0] and 1[It 6=0]

being indicators for negative and non-zero investment; bq measures the magnitude of quadratic

adjustment costs; bi can be interpreted as the difference between the purchase price, PKi,t , and

the resale price expressed as a percentage of the purchase price of capital goods; finally, bf

stands for the fraction of gross profit loss due to any non-zero investment.

The model is disciplined by restricting the capital adjustment cost function, G, to be

homogenous across firms. If G were heterogeneous, a firm facing larger capital adjustment

costs, holding all else equal, would manifest such costs as a high τ i. A caveat is that G may

vary across industries. An auto production line, for instance, is more irreversible than offi ce

furniture. Allowing industry-specific G, however, gives essentially the same estimated στ .11

3.2 Measurement Errors

We next introduce measurement errors. The benchmark specification assumes that

Ki,t = Ktrue
i,t exp(eKi,t), eKi,t

i.i.d∼ N(0, σ2
meK), (23)

Yi,t = Y true
i,t exp(eYi,t), eYi,t

i.i.d∼ N(0, σ2
meY ), (24)

πi,t = πtruei,t (1 + eπi,t), eπi,t
i.i.d∼ U [−σmeπ, σmeπ]. (25)

Here, variables with and without the “true” superscript denote the true states and their ob-

served counterparts in the data, respectively. eKi,t and e
Y
i,t are measurement errors in capital

and revenue, respectively. They are drawn independently from an identical normal distribution

with mean zero and standard deviation σmeK and σmeY , respectively. eπi,t stands for measure-

ment errors in profit. It follows a uniform distribution U [−σmeπ, σmeπ]. The multiplicative

structure and the log-normality assumption guarantee positive values of capital stock and sales

revenue, while the reported profits are allowed to be negative.

We consider transitory measurement errors only. This is because persistent measurement

errors are by nature indistinguishable from unobserved firm characteristics. Still, abstracting

10See, for example, Abel and Eberly (1994), Cooper and Haltiwanger (2006) and Bloom (2009).
11Specifically, we estimate the model using two subsamples that consist of firms in the ten least and most

capital-intensive industries. The manufacturing capital intensity rank follows Song et al. (2011). The results
are available upon request.
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such errors may bias the estimate of στ . To address this concern, we will model transitory

measurement errors in investment Ii,t and allow Ki,t to accumulate the measurement errors

according to the law of motion of capital (12). Introducing persistent measure errors in capital

via this form has little effect on our main findings (see Appendix 7.7).

3.3 Identification of στ in the Full-Blown Model

Once again, we simulate a panel of 100,000 firms and 24 years and use the last four years only

to compute the five moments. The benchmark economy is parameterized as those in Column

(5) of Table 1.

We first introduce quadratic capital adjustment costs. Panel A of Figure 1 plots bsd
(

log
(
Y/K̂

))
and sd

(
log
(
Y/K̂

))
with respect to bq. On the one hand, both bsd

(
log
(
Y/K̂

))
and sd

(
log
(
Y/K̂

))
remain essentially flat for modest values of bq. Under the benchmark parameterization, the

variance of the revenue-capital ratio caused by unobserved heterogeneities predominates that

caused by modest capital adjustment costs. This explains the flat part of the standard devia-

tions, which, in turn, suggests that the generalized ARP approach would not be biased much

by modest quadratic capital costs. Column (1) of Table 2 shows that the inferred value of στ is

only 6 percent below its true value if we set bq to 1, close to the maximum value estimated from

our China and U.S. samples. Notably, the generalized ARP approach underestimates στ .12 In

other words, in contrast to the upward bias of the ARP approach caused by the presence of

capital adjustment costs, the generalized ARP approach delivers a lower bound estimate.

[Insert Figure 1 and Table 2]

On the other hand, the standard deviations of the revenue-capital ratio start to increase in

bq when bq is suffi ciently large. It illustrates a caveat of applying the generalized ARP approach

to an economy with large capital adjustment costs. One can find in Column (2) of Table 2

that the inferred value of would be 14 percent lower than its true value if bq = 10, a high-end

estimate of bq in the literature. This echos the issue raised by Asker et al. (2014), who show

that large capital adjustment costs can be an important contributing factor to the observed

misallocation. The potential bias motivates a more sophisticated structural estimation that

will be introduced below.

The standard deviations with respect to bi and bf turn out to be flat even when both bi

and bf are increased to 0.1, more than three times larger than the maximum values estimated
12A higher bq increases the mean of the revenue-capital ratio. The generalized ARP approach would (incor-

rectly) adjust upwards the inferred values of both µlogα and σlogα, due to the lognormal distributive assumption
(17). A higher σlogα, in turn, would account for a larger share of the disperson of the revenue-capital ratio and,
hence, infer a lower value of στ .
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from the China and U.S. data. The details can be found in Column (3) to (5) of Table A.1

in the appendix. The generalized ARP approach is, therefore, not sensitive to the presence of

investment irreversibility and fixed capital adjustment cost.

We next introduce measurement errors in the economy parameterized by those in Column

(5) of Table 1. Panel B of Figure 1 plots bsd
(

log
(
Y/K̂

))
and sd

(
log
(
Y/K̂

))
with respect to

σmeK . Not surprisingly, measurement errors on capital can easily blow up sd
(

log
(
Y/K̂

))
by

increasing the observed volatility of the revenue-capital ratio. In contrast, bsd
(

log
(
Y/K̂

))
re-

mains largely flat for σmeK below 0.5.13 σmeK starts to have a significant effect on bsd
(

log
(
Y/K̂

))
for σmeK above 0.5. The inferred values of στ are reported in Column (3) to (4) of Table 2.

The generalized ARP approach overestimates στ by 12 percent when σmeK = 0.5, represent-

ing large measurement errors on capital and higher than the value estimated from the China

data as will be shown below. Yet, the bias is much smaller than that of 74 percent by the

ARP approach, which matches sd
(

log
(
Y/K̂

))
. Although σmeK = 1 increases the bias of the

generalized ARP approach to 42 percent, the bias is still less than a third of that of the ARP

approach. Column (5) reports the results when both capital adjustment costs and measure-

ment errors are present. Since bq and σmeK bias στ in opposite direction, the inferred value of

στ is actually closer to the true value than its counterparts with bq or σmeK only.

The effect of σmeY on the dispersions of the revenue-capital ratio is identical to that of

σmeK . σmeπ has no effect on the dispersions since measurement errors on profits do not

affect the revenue-capital ratio. Finally, στ and σlogα continue to have first-order effects on

bsd
(

log
(
Y/K̂

))
. In summary, the above properties imply that the extension of the simple

model does not invalidate the conditions for the generalized ARP approach to identify στ if

capital adjustment costs or measurement errors are suffi ciently small.

3.4 Structural Estimation

We now propose a structural econometric approach to estimate all the relevant parameters

in the full-blown model. This is particularly useful for a sample with serious measurement

error issues or with firms that are subject to large capital adjustment costs. The full-blown

model will be estimated by the simulated method of moments (SMM). The SMM estimator

is defined in Appendix 7.6. The upper panel of Table 3 lists Θ, the set of parameters to

estimate. There are a total of 13 parameters, including the key parameter στ ; mean and

standard deviation of logα, µlogα and σlogα; mean and standard deviation of log η, µlog η and

13We will discuss in Appendix 7.7 how the results would change if measurement errors in capital entailed a
persistent component.
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σlog η; capital adjustment costs parameters, bq, bi and bf ; the trend growth rate, µ; standard

deviation of idiosyncratic shocks, σ; and standard deviations of measurement errors in capital,

revenue and profit, σmeK , σmeY , and σmeπ.

[Insert Table 3]

The lower panel of Table 3 lists Φ̂D, the set of moments to match. There are 21 moments.

The choice of the moments is guided by two principles. First, Φ̂D is a comprehensive set

of moments that characterize the distribution and dynamics of the relevant variables in the

model. Second, and more importantly, these moments are informative about the parameters to

estimate. Specifically, Φ̂D includes means (mean), between-group standard deviations (bsd),

within-group standard deviations (wsd), coeffi cients of skewness (skew) and serial correlations

(scorr) for πi,t/Yi,t, log
(
Yi,t/K̂i,t

)
, Ii,t/Ki,t and ∆ log Yi,t, together with the cross correlation

(bcorr) between the between-group πi,t/Yi,t and log
(
Yi,t/K̂i,t

)
. The following section will

establish the identification conditions through which Θ can be estimated by matching these

moments.

The investment policies, which have to be solved numerically in the presence of capital

adjustment costs, differ across firms with various (τ i, αi, ηi). To reduce the computational

burden, we adopt a standard approach in the literature (e.g., Eckstein and Wolpin, 1999) by

considering a finite type of firms. Our benchmark specification assumes 3 × 3 × 3 types of

firms. Each consists of a fixed proportion; i.e., 1/ (3× 3× 3), of the population. The type

set is defined as z = {(τu, αv, ηx) : u = 1, 2, 3; v = 1, 2, 3;x = 1, 2, 3}. Appendix 7.7 will
experiment with increasing the types of firms to 5×5×5. The results are essentially the same.

3.4.1 Identification of Capital Adjustment Costs and Measurement Errors

One advantage of the structural approach is to estimate capital adjustment costs and mea-

surement errors, which cannot be done by the generalized ARP approach. We first present the

identification condition for capital adjustment costs. Following the routine in the literature

(e.g., Bloom, 2009), our identification uses information on the investment rate, Ii,t/Ki,t, and

the revenue growth rate, ∆ log Yi,t, to identify bq, bi and bf . Column (1) in Table A.1 reports

the full set of moments based on the same parameter values from Column (5) in Table 1. As an

illustrative example, we add positive bq, bi and bf , respectively, to Column (2) to (4). Column

(5) lists the moments when bq, bi and bf are all positive.

Two results are relevant for identification. First, the moments for Ii,t/Ki,t are much more

sensitive than those for ∆ log Yi,t in response to changes in capital adjustment costs. This dif-
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ference distinguishes capital adjustment costs from the stochastic process of logZi,t. Moreover,

bq > 0 and bi > 0 decrease wsd (I/K) and increase scorr (I/K), bi > 0 and bf > 0 increase

skew (I/K), while bf > 0 has little effect on wsd (I/K) and scorr (I/K). These properties

distinguish different forms of capital adjustment costs from each other.

We now add measurement errors. Once again, let us start with Column (1) in Table A.2,

which is replicated from the last column in Table A.1. Columns (2) to (4) in Table A.2 reveal

the moments that are informative about measurement errors by adding positive σmeK , σmeY

and σmeπ, respectively. Column (5) reports the moments when σmeK , σmeY and σmeπ are all

positive. We find that σmeK only affects moments on log
(
Yi,t/K̂i,t

)
and Ii,t/Ki,t; σmeY only

affects moments on log
(
Yi,t/K̂i,t

)
, πi,t/Yi,t and ∆ log Yi,t; and σmeπ only affects moments on

πi,t/Yi,t. The three types of measurement errors can, thus, be distinguished from each other.

The remaining challenge is to separate measurement errors from capital adjustment costs.

Although capital adjustment costs and measurement errors have qualitatively similar effects

on wsd
(

log
(
Y/K̂

))
, their effects differ on other moments. In particular, both σmeK > 0 and

σmeY > 0 increase wsd (I/K) and wsd (∆ log Y ) and reduce scorr (I/K) and scorr (∆ log Y ),

while capital adjustment costs have the opposite or no effect on these moments. These prop-

erties guarantee the identification of measurement errors.

4 Data and Results

4.1 Data

We first use the firm-level data from China’s Annual Survey of Industry conducted by the

National Bureau of Statistics. The dataset (henceforth, the NBS dataset) includes all industrial

firms that are identified as state-owned or as non-state firms with sales revenue above RMB

5 million.14 Since the model is entirely silent on entry and exit, we will focus on a balanced

panel from 2004 to 2007, covering 107,579 firms. We take 2004 as the beginning year, when

the number of firms increases by a third due to an economic census conducted in that year.

Balanced panels with years earlier than 2004 will, hence, involve substantially fewer firms.

Appendix 7.3 provides detailed information on how to clean the data and to construct some

of the key variables in the model. In particular, we measure π by the difference between sales

and the cost of goods sold. Ideally, π should correspond to the difference between sales and the

cost of labor and intermediate inputs. Since the cost of labor is known to be poorly measured

in the NBS dataset, we use instead the cost of goods sold, which covers material, labor and

14These firms account for about 90 percent of the total industrial output.
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overhead for production.15

We also use two Compustat samples over 2002-2005. The first one, referred to as Compustat

I henceforth, covers U.S. manufacturing firms with sales revenue above USD 0.6 million in 2004

prices. The threshold is chosen to match its counterpart in the NBS sample, where most non-

state firms have sales above RMB 5 million. The second sample, referred to as Compustat II

henceforth, follows Bloom (2009) by including U.S. manufacturing firms with sales above USD

10 million in 2000 prices and more than 500 employees. This is, therefore, a more homogeneous

sample composed of large firms only. See Appendix 7.4 for more details.

4.2 Predetermined Parameters

In addition to the five parameters, δ, r and PKt also affect the revenue-capital ratio through

Jt. There is no obvious time trend in the revenue-capital ratio in any of the samples. So,

we assume PKt to be constant and normalize it to unity. (13) implies that Jt = J , where

J ≡ (r + δ) / (1 + r). δ is set equal to its value used in constructing real capital stock (see

Appendix 7.3 and 7.4 for details). Bai, Hsieh and Qian (2006) find a high and fairly stable

aggregate rate of return to capital in China over the period 1978-2004, ranging from 20 to

25 percent in most years. The rate of return is even higher for the secondary sector, which

includes mining, manufacturing and construction. We impose a conservative value, r = 0.20,

for manufacturing firms in the NBS sample. We set r = 0.10 for Compustat firms.16 Our main

findings are robust to alternative values of r.17

4.3 The Generalized ARP Approach

The first column of Table 4 reports the results from the NBS sample. The generalized

ARP approach finds στ = 0.684. The value of στ is quantitatively large. According to (16),

it implies that a firm with τ i at the 75th percentile would face a capital goods price 2.5 times

higher than the price for a firm with τ i at the 25th percentile.

[Insert Table 4]

We also find large values of σlogα and σlog η, suggesting the quantitative importance of

heterogeneities in αi and ηi. Under the log-normality specification (17), the estimated µlogα

15The cost of goods sold includes: (i) parts, raw materials and supplies used; (ii) labor, including associated
costs such as payroll taxes and benefits; and (iii) overhead of the business allocable to production.
16This is consistent with the fact that Compustat samples have much lower revenue-capital ratios than the

NBS sample (see Table 1 below for details).
17Table A.5 shows the results from robustness tests in a full-fledged model. The results in the simple model

are available upon request.
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and σlogα imply that αi has a mean of 0.086 and a standard deviation of 0.051. Both the mean

and standard deviation are close to those in the literature that estimates the capital output

elasticity in a three-factor model.18 By (18), the estimated µlog η and σlog η imply that ηi has

a mean of 0.082 and a standard deviation of 0.076. This translates into markups of 1.090.

The value of στ inferred by the ARP approach would be identical to any of the cross-

sectional standard deviation of the log revenue-capital ratio, which is very stable and around

0.89 during the sample period. Using bsd
(

log
(
Y/K̂

))
, rather than a cross-sectional standard

deviation, would reduce στ to 0.867, which is still considerably higher than the value obtained

by the generalized ARP approach. (20) suggests that the difference between the variance of

log
(
Y/K̂

)
, 0.8672, and the calibrated σ2

τ , 0.684
2, be driven by heterogeneities in αi and ηi.

So, the unobserved heterogeneities would account for 38 percent of bsd
(

log
(
Y/K̂

))
.

4.3.1 Unobserved Heterogeneities within and across Industries

The heterogeneities in αi and ηi could arguably be much smaller within an industry. To

mitigate the bias, the literature often applies the ARP approach to each industry. To evaluate

the quantitative importance of the within-industry heterogeneities in αi and ηi, we calibrate στ

in each of the 30 two-digit industries by the generalized ARP approach. The calibrated value

of στ has a mean of 0.645 over the 30 industries, similar to the value from the whole sample.

The x- and y-axis in Panel A of Figure 2 plot bsd
(

log
(
Y/K̂

))
and the calibrated στ in each

industry, respectively. In absence of heterogeneities in αi and ηi, the calibrated στ should be

located on the 45 degree. The figure shows a big difference between bsd
(

log
(
Y/K̂

))
and the

calibrated στ . The mean ratio of the calibrated σ2
τ to the variance of log

(
Y/K̂

)
is 61 percent,

very close to the ratio of 62 percent when we pool all industries together.

[Insert Figure 2]

We can further go down to the four-digit level, which has a total of 482 industries in the

NBS sample. It deserves attention that the generalized ARP approach fails to find solution

in 42 four-digit industries. The reason is two-fold. On the one hand, the empirical moments

could easily be influenced by outliers in industries with few firms. In fact, 28 out of the 42

unsuccessful cases involve industries with less than 100 firms. On the other hand, it reminds us

of the limitation of the method: It is based on an extremely simple model that could potentially

be mis-specified for some industries. We will enrich the model by incorporating a few other
18For example, Pavcnik (2002) estimated production function using consistent Olley and Pakes (1996) struc-

tural estimates for a large sample of Chilean manufacturing plants. The estimated capital shares vary substan-
tially across industries with an average around 0.085.
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important elements in the next section. That said, the main findings are essentially the same

as before. The ratio of σ2
τ to the variance of log

(
Y/K̂

)
have an average of 62 percent, close

to the results using the whole sample or two-digit industries.

To be sure, within-industry dispersions of αi and ηi are indeed smaller than the overall

dispersions. The mean of the calibrated σα and ση across the four-digit industries equals

0.50 and 0.71, respectively, as opposed to 0.55 and 0.79 using the whole sample. But the

within-industry heterogeneities appear to overwhelm the heterogeneities across industries.

4.3.2 Heterogeneities in J

One caveat with our empirical strategy is that any heterogeneity in J would show up as capital

misallocation. Therefore, heterogeneities in δ or r, if they exist, tend to bias the estimate of

στ upwards. Heterogeneous δ would arise if firms have different combinations of plant and

equipment that depreciate at different rates. r would also be firm-specific through the market

beta channel if we relax the assumption of risk-neutrality. Appendix 7.5 provides some back-

of-the-envelope calculations, suggesting a limited role of market beta in accounting for the

inferred misallocation. Market incompleteness may also generate heterogeneous r across firms

with different levels of uncertainty (e.g., Angeletos and Panousi, 2011). This can be considered

one type of financial market imperfection. A back-of-the-envelope calculation in Appendix 7.5

suggests that market incompleteness account for a small fraction of the inferred misallocation

from the NBS sample.

As an alternative approach, we calibrate στ for Compustat firms and take it as the bench-

mark. If the heterogeneity in J has similar magnitude across economies, the difference of the

calibrated στ would isolate the difference in the magnitude of capital misallocation for Chinese

and U.S. firms.

The generalized ARP approach finds στ = 0.31 in Compustat I, much smaller than its

counterpart of 0.68 in China. στ becomes much smaller in Compustat II. These are consistent

with the findings that China has a highly distorted capital market (see, e.g., Dollar and Wei,

2007; Hsieh and Song, 2014). The small στ for firms in Compustat II is also in line with

the well-established fact that larger firms are less likely to be affected by financial market

imperfections. In fact, it suggests that the overall magnitude of capital misallocation plus

heterogeneity in J appears to be small for large U.S. manufacturing firms, consistent with the

finding in Gilchrist et al. (2013).

It should also be emphasized that bsd
(

log
(
Y/K̂

))
has the same order of magnitude across

the three samples, while the calibrated στ differs a lot. In particular, despite the relatively
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small 30-percent difference in bsd
(

log
(
Y/K̂

))
between NBS and Compustat II, the calibrated

of στ essentially goes down to zero in Compustat II. The unobserved heterogeneities in αi and

ηi account for a major share of the dispersion of the revenue-capital ratio for the U.S. firms.

The ARP approach would, thus, lead to more biased results.

Although we do not model product market distortions, the heterogeneity in ηi is isomorphic

to the heterogeneity in τYi —the measure of product market distortions in Hsieh and Klenow

(2009).19 One may want to interpret heterogeneous markups as product market distortions.

Interestingly, the order of the calibrated value of σlog η is exactly the same as that of στ across

the three samples. The alternative interpretation would suggest the product market to be most

distorted for NBS firms and least distorted for firms in Compustat II.

4.4 Structural Estimation

We impose the same values as those in the generalized ARP approach for the predetermined

parameters. We set ρ = 0.90 in (19) for NBS and Compustat firms.20 We do not estimate

ρ structurally since the model cannot distinguish between a stationary process with heteroge-

neous µ and σ and a unit root process with homogeneous µ and σ. Appendix 7.7 will investigate

the sensitivity of our estimates to different values of r and ρ in the full-blown model.

Table 5 presents the structural estimation results for NBS firms. The first and second

columns of the left panel report the optimal estimates and the corresponding numerical stan-

dard errors. Simulated moments at the optimal estimates are listed in the right panel. We

also report the corresponding empirical moments, for which the standard errors are obtained

by bootstrapping.

[Insert Table 5]

στ has an estimated value of 0.71. The small simulated standard error suggests that the

estimate significantly differs from zero. The structurally estimated στ is very close to the one

backed out by the generalized ARP approach. The difference is less than 5 percent. The

estimates of σlogα and σlog η are also highly significant and close to those in Table 4. Overall,

the simulated moments provide a close fit to the five core moments, which are key to identifying

the unobserved heterogeneities.

19See also Peters (2011) where dispersion in markups leads to ineffi cient TFP losses.
20ρ can be calibrated by applying system GMM (Blundell and Bond, 1998) to estimate a dynamic panel data

model of log πi,t (e.g., Cooper and Haltiwanger, 2006). The regressors include log πi,t−1, log K̂i,t, log K̂i,t−1
and year dummies. The estimated autoregressive coeffi cient is 0.41 for NBS firms, in contrast to 0.89 found by
Cooper and Haltiwanger (2006). The substantially lower estimate may reflect the attenuation bias due to large
measurement errors in China’s profit data, which will be confirmed by our structural estimation.
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The structural estimation finds statistical evidence for quadratic and fixed adjustment

costs.21 As discussed in Section 3.4.1, a positive bq reflects positive serial correlation of the

investment rate and the revenue growth rate, while a positive bf comes from a larger skewness

of the investment rate than that of the revenue growth rate. The point estimates imply that

quadratic adjustment costs increase the user cost of capital by 4.5 percent and any investment

or disinvestment would cause a loss of 3.4 percent of gross profits in that period.

The estimated µ is 0.08, in line with Brandt et al.’s (2012) estimate of TFP growth in

Chinese manufacturing over 1998-2007. Chinese firms face considerably higher risks. σ has an

estimated value of 0.42, 60 percent higher than its counterpart of firms in Compustat I that

will be reported below.

Two of the three measurement errors we consider turn out to be statistically significant.

Consistent with the usual concern about the accuracy of capital and profit data at the firm

level, both σmeK and σmeπ are significant and quantitatively large. By contrast, the model

finds σmeY to be virtually zero, implying a much better measurement of revenue in the NBS

sample.

Robustness of the results is reported in Appendix 7.7. We experiment alternative values of

r and ρ; allow the long-run growth rate of Zi,t, µ, and the level of uncertainty, σ, to be firm-

specific; and replace measurement errors in capital with measurement errors in investment.

We also increase the number of firm type from 3× 3× 3 to 5× 5× 5. The estimated value of

στ seem very robust with respect to these variations.

We further conduct specification tests in Appendix 7.8. Three different models are esti-

mated in order. The first one assumes homogenous αi and ηi, while the second and third take

out capital adjustment costs and measurement errors, respectively. In line with the finding

that capital adjustment costs and measurement errors are not important for the estimation of

the key parameters, the estimated values of στ in the second and third models are close to

that in the benchmark model. Assuming no heterogeneities in αi and ηi, instead, leads to a

considerably higher estimate of στ .

Table 6 presents results for Compustat firms. The estimated value of στ for firms in Com-

pustat I is significant and almost identical to that obtained by the generalized ARP approach.

The structural estimation also finds στ to be close to that inferred by the generalized ARP

approach for firms in Compustat II. Moreover, the structurally estimated στ is statistically

21Similar to Cooper and Haltiwanger (2006) and Bloom (2009), we also find that only one form of the non-
convex adjustment costs is necessary to fit the data. To be specific, Cooper and Haltiwanger (2006) find bq > 0
and bf > 0 for plants in the Longitudinal Research Database; Bloom (2009) finds bq > 0 and bi > 0 for large
firms in Compustat. Most firms in the NBS sample are single-plant enterprises. Our finding that a combination
of bq > 0 and bf > 0 fits the data best is, hence, in line with Cooper and Haltiwanger (2006)̇.
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insignificant. The parameters governing αi and ηi are all highly significant. They are also

close to those backed out by the generalized ARP approach.

[Insert Table 6]

A somewhat surprising result is that the estimated quadratic capital adjustment costs are

much larger for Compustat firms. This reflects the smaller dispersion, less skewness and more

persistence in the data on Compustat firms’ investment rate (see the empirical moments in

Tables 5 and 6). One possible explanation is that Compustat firms are much larger and have

more plants. Firms in Compustat I, for instance, have mean (median) employees of 10.4 (0.8)

thousand; in contrast, the corresponding numbers are only 0.33 (0.13) for Chinese firms in the

NBS sample. Therefore, the investment of Compustat firms, consolidated across several plants

within firm, is more condensed, symmetric and persistent (Bloom, 2009).

In summary, the structurally estimated values of στ in the three samples are all close to

those by the generalized ARP approach. The reason is straightforward by the findings in

Section 3.3 — i.e., neither capital adjustment costs nor measurement errors are found to be

large enough to have a significant effect on bsd
(

log
(
Y/K̂

))
. This is practically useful since

the generalized ARP approach maintains some tractability of the ARP approach. In terms

of computational costs, the structural estimation typically takes hours to converge, while the

generalized ARP approach delivers results within seconds.

4.5 Welfare Implications

The simple model provides a useful framework to quantify the effect of capital misallocation

on aggregate output. Take the values inferred by the generalized ARP approach. Reducing

στ from 0.68 to zero, holding aggregate capital and labor constant, would increase China’s

manufacturing output by 20.4 percent. One may also want to cut στ from 0.68 to 0.31, the

value for Compustat I firms, as a more conservative experiment. The aggregate output would

increase by 16.2 percent. The fall is modest since the aggregate output gain is proportional to

the variance of τ i (see Appendix 7.1).

The ARP approach naturally implies larger welfare gains. For instance, the ARP approach

infers στ = 0.89 from the average sd
(

log
(
Y/K̂

))
for NBS firms. This translates into aggregate

output losses of 34.5 percent, which are more than two-thirds larger than that implied by the

generalized ARP approach.
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5 Extensions

5.1 Labor Misallocation

The generalized ARP approach motivates a simple way of backing out the magnitude of labor

misallocation, which we have not addressed. Analogous to (11), we assume that the actual

wage rate paid by firm i is

wi,t =
(
1 + τLi

)
wt, (26)

where wt is the average wage rate and τLi is a firm-specific component caused by labor market

distortions. log
(
1 + τLi

)
follows a normal distribution with mean zero and standard deviation

στL . Notice that in the simple model, the presence of τ
L
i does not affect any of the five core

moments that are relevant for the inference of στ .

Substituting (26) back into (5) yields

log
Yi,t
Li,t

= logwt + log
(
1 + τLi

)
− log [βi (1− ηi)] . (27)

(27) is akin to (20). (5) allows us to obtain bsd (log (β (1− η))) by computing the between-

group standard deviation of labor income share.22 Then, a combination of (27) and (5) implies

a simple way of backing out στL . For the following two reasons, we refer to this method

as an extension of the generalized ARP approach for backing out labor misallocation. First,

the main challenge, analogous to that for the inference of capital misallocation, is to control

for unobservable heterogeneities in output elasticity and markups. Here, the identification

is more straightforward because there is a one-to-one mapping between labor income share

and βi (1− ηi) in (27). By contrast, we cannot infer αi (1− ηi) from one minus the sum of

the intermediate input and labor shares, which involves both capital income and markups.

Second, it explores the between-group dispersion of the revenue-labor ratio in panel data,

which mitigates the biases caused by potential labor adjustment costs and measurement errors

for exactly the same reasons discussed in Section 3.3.

To address the concern that labor quality differs across firms, we construct effi ciency units

of labor, Lei,t, as follows:

Lei,t =
∑
h

exp (b · s (h))Li,t (h) ,

22The ratio of labor compensations (including benefits) to sales is unusually low (around 0.08) in the NBS
sample. One important reason is the severely under-reported labor compensations (Qian and Zhu, 2011). We
use the difference between the costs of goods sold and material costs to back out the actual labor compensations.
This leads to a labor share of 0.125, averaged over the sample period. Recall that the average capital share is
0.158 for this sample. Therefore, the labor share is roughly equal to the capital share in Chinese manufacturing,
which is in line with the aggregate statistics and firm-level evidence in Qian and Zhu (2011).
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where b is the Mincerian rate of return to education, s (h) denotes years of schooling for

education group h and Li,t (h) is the number of workers in education group h. We set b = 0.10

and let s (h) be 6, 9, 12 and 16 for employees with primary school education and below, middle

school education, high school education and college education and above, respectively.23 The

firm-level data on educational composition of employees are available only in the 2004 NBS

sample. We assume the educational composition in each firm to be constant over time —i.e.,

Li,t (h) /Li,t = Li,2004 (h) /Li,2004 for t > 2004.

The raw labor data find στL = 0.289. Using effi ciency units of labor reduces the value to

0.230. The difference suggests a non-trivial heterogeneity in labor quality across Chinese firms.

Both values of στL are substantially smaller than the calibrated value of στ . Accordingly, a

removal of labor misallocation by reducing στL from 0.230 to zero would increase aggregate

output by 4.9 percent. The formula of calculating aggregate output losses caused by labor

misallocation is provided in Appendix 7.1.

5.2 Endogenous Capital Output Elasticity

Our empirical specification assumes αi and τ i to be exogenous. This assumption does not

seem innocuous if a firm can choose αi. Song et al. (2011), for instance, show that in a

two-sector model, financially constrained firms would penetrate the labor-intensive industry,

while financially integrated firms would stay in the capital-intensive industry. They also find

evidence from Chinese manufacturing that is consistent with the theory. In the context of our

model economy, such mechanism would imply a negative correlation between αi and τ i, which

biases the estimate of στ . This section develops a model that incorporates a technological

choice on αi. Then, we show a simple way of back out στ by adapting the generalized ARP

approach to the new environment.

Assume that, before entering the market, each firm must make an irreversible choice on

αi ∈ {αl, αh}, with αl < αh. Formally,

α∗i = arg max
αi∈{αl,αh}

E [V (αi)] , (28)

where E [V (αi)] stands for the ex-ante expected firm value conditional on the technological

choice of αi. In the simple model without capital adjustment costs, E [V (αi)] solves a static

optimization problem according to (37). Dropping the irrelevant time subscript t and using

23Zhang et al. (2005) estimated returns to education in China’s urban areas. The averaged returns are 10.3
percent in 2001.
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(8), (38) and the facts that Ii = δK̂i, we have

E [V (αi)] =
1 + r

r

[
1− δ (1− γi (αi))

J

] [
1− γi (αi)

(1 + τ i) J

] 1
γi(αi)

−1

E [Zi (αi)] , (29)

where

γi (αi) = 1− αi(1− ηi)
ηi + αi(1− ηi)

,

E [Zi (αi)] =

[
ηi

γi (αi)

] 1
γi(αi)

[
(1− ηi)1−αi

(
1− αi − βi

mi

)1−αi−βi
] 1
ηi
−1

Z,

and Z, independent of αi, is an unimportant constant.24 Since γi (αl) > γi (αh), substituting

(29) back into (28) yields

α∗i =


αl

αh

if τ i > Π (αl, αh)

if τ i < Π (αl, αh)
, (30)

where

Π (αl, αh) =
1

J

J − δ (1− γi (αh))

J − δ (1− γi (αl))

[1− γi (αh)]
1

γi(αh)
−1

[1− γi (αl)]
1

γi(αl)
−1

E [Zi (αh)]

E [Zi (αl)]


γi(αh)γi(αl)
γi(αl)−γi(αh)

− 1.

When τ i = Π (αl, αh) — i.e., firms are indifferent between αl and αh —we assume that αi

will be chosen in a random way. (30) shows that a firm would optimally choose the more

capital-intensive technology if τ i is suffi ciently low.

We use the NBS sample to calibrate the model. We maintain the assumptions that r =

0.20, log ηi
i.i.d∼ N

(
µlog η, σ

2
log η

)
and log (1 + τ i)

i.i.d∼ N
(
0, σ2

τ

)
. For simplicity, we assume no

heterogeneity in βi and mi such that βi = β and mi = m. So, there are seven parameters, αl,

αh, β, m, µlog η, σlog η and στ , left to be estimated.

For any given β and m, the generalized ARP approach can directly be applied to back out

αl, αh, µlog η, σlog η and στ by matching the five core moments. The only difference is that

µlogα and σlogα are now replaced with αl and αh. We calibrate β to match the aggregate labor

income share in the NBS data (see footnote 20), which yields a value of β = 0.136. To pin

down m, we assume that half of the firms would choose αh in the absence of distortions (i.e.,

τ i = 0 for all firms). As will be shown below, the estimation turns out to be insensitive to the

distortionless distribution of αi.
24Here, we let βi be independent of αi. Alternatively, under the assumption of constant returns to scale, we

may let 1 − αi − βi be independent of αi. Then, ((1− αi − βi) /mi)
1−αi−βi in E [Zi (αi)] should be replaced

with (βi/wi)
βi . Accordingly, the following estimation would involve 1−αi− βi and wi, rather than βi and mi.

The alternation has no effect on the estimation of στ .
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The benchmark results are reported in the first row of Table 7. Compared with those in

Table 4, the technological choice model finds a smaller στ (0.68 vs. 0.58). The second and

third rows report the estimates when m is calibrated to 20 percent and 80 percent of firms

choosing αh in the distortionless environment, respectively. The parameter of key interest, στ ,

is basically unaffected.

[Insert Table 7]

5.3 Regressions on Firm Characteristics

In the generalized ARP approach, bsd
(

log
(
Y/K̂

))
is the only empirical moment informative

for στ . The other moments are deployed to tease out the effects of heterogeneous αi and ηi on

bsd
(

log
(
Y/K̂

))
. In other words, the average revenue-capital ratio, 1

T

∑T
t=1 log

(
Yi,t/K̂i,t

)
,

may serve as a proxy for τ i once we control for heterogeneities in αi and ηi. This moti-

vates a reduced-form regression that allows us to check the correlation between τ i and firm

characteristics, which is hard to get by structural approach.

Specifically, we run simple regression of 1
T

∑T
t=1 log

(
Yi,t/K̂i,t

)
on firm characteristics. We

add four-digit industry dummies and the average profit-revenue ratio, 1
T

∑T
t=1 log (πi,t/Yi,t), to

the control variables. The idea is that industry dummies control the heterogeneities across in-

dustries, while the average profit-revenue ratio takes care of the within-industry heterogeneities.

Admittedly, the average profit-revenue ratio alone cannot control both of the within-industry

heterogeneities in αi and ηi since it is co-determined by αi and ηi. Nevertheless, our simu-

lations suggest that bsd
(

log
(
Y/K̂

))
is not sensitive to σlog η (see Table 1). This provides a

justification for omitting the heterogeneity in ηi in the regression.

The regression equation is:

1

T

∑T

t=1
log
(
Yi,t/K̂i,t

)
= b0 + b1 ·

1

T

∑T

t=1
log (πi,t/Yi,t) + b2 ·Di + b3 ·Xi + ξi, (31)

where Di represents a vector of industry dummies and Xi is a vector of firm characteristics.

The parameter of interest is b3, which isolates the channel linking the revenue-capital ratio to

firm characteristics via capital market distortions.

Table 8 presents the regression results for NBS firms. The baseline model uses firm age and

size as Xi. All else being equal, it predicts that the capital goods price of a firm is 3 percent

lower if a firm is one year older, and 4 percent lower if a firm has 1000 more employees. This is

consistent with the common finding in the large literature on capital market imperfections.25

25For instance, Hadlock and Pierce (2010) examine many commonly-used measures or sorting criteria for the
severity of financial constraints and find that firm age and size are the most reliable and useful predictors of
financial constraint levels.
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[Insert Table 8]

The regional disparity of capital returns documented by Brandt et al. (2013) indicates a

role of firm location. NBS classifies all 31 provinces into four regions: eastern, central, western

and northeastern. We take the eastern region as the reference group. Dummy variables for the

central (CENTRAL), western (WESTERN) and northeastern (NORTHEASTERN) regions

are added to Xi in the second regression. Consistent with Brandt et al. (2013), we find

significant and large coeffi cients for the western and northeastern provinces, suggesting that

the state government has been heavily subsidizing firms in these regions. The capital goods

price for firms in northeastern provinces, for instance, appears to be a quarter lower than that

for firms in the eastern provinces.

There is a growing literature on heterogeneous financing costs across firms with different

ownership in China. State firms often have much better access to external financing than

non-state firms (e.g., Dollar and Wei, 2007; Song et al., 2011; Hsieh and Song, 2014). To

check the role of ownership, we take state-owned enterprises (SOE) as the reference group.

Dummy variables for collective-owned enterprises (COE), domestic private enterprises (DPE),

foreign-invested enterprises (FIE) and other ownership types (OTHERS) are included in the

third regression.26 All the ownership dummies turn out to be positive and highly significant,

suggesting lower capital goods prices for state firms. Specifically, the capital goods prices of

COE, DPE, FIE and “others”are 50, 45, 10 and 26 percent higher, respectively, than that of

SOE.

6 Conclusion

Misallocation has been viewed as a promising candidate for explaining the large TFP differ-

ences across countries. To evaluate the importance of misallocation, we need to estimate its

magnitude at disaggregate levels. The ARP approach, which has been widely adopted in the

literature, relies on the dispersion of revenue productivity to back out misallocation. However,

such dispersion may also be generated by unobserved heterogeneities other than the factors

that cause misallocation. This paper contributes to the literature in two aspects. The first

is methodological. To address the identification issue, we present models that incorporate (i)

unobserved heterogeneities in the capital output elasticity and markups; (ii) capital adjust-

ment costs; and (iii) measurement errors. All three factors contribute to the dispersion of the

revenue-capital ratio and, hence, bias the estimate upwards. We then develop identification
26The category of “OTHERS”includes cooperative units, joint ownership units, limited liability corporations

and share-holding corporations Ltd.
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conditions that isolate capital misallocation. In particular, we propose the generalized ARP

approach to calibrate a simple model and a structural approach to estimate a full-blown model.

Secondly, when applying the methods to a firm-level panel dataset from Chinese manufactur-

ing, we find the magnitude of capital misallocation to be quantitatively sizable. In contrast,

for large Compustat firms, capital misallocation turns out to be negligible. If capital adjust-

ment costs and measurement errors are found to be modest, the generalized ARP approach

would become our favorite due to its tractability and good approximation to the structural

estimation.

To be sure, there are potentially other factors that may bias the results upwards. Our

estimate can, thus, be taken as a more reasonable upper bound than those from the ARP

approach. It is also worth emphasizing that our model does not distinguish the channels

through which capital is misallocated. Midrigan and Xu (2014), for instance, find a large effect

of credit constraint on misallocation via entry. A future research direction would be to identify

the underlying mechanism of misallocation. Moreover, like most others in the literature, our

paper accommodates static misallocation only.27 It would be interesting in exploring dynamic

welfare implications of misallocation.
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Figure 1: Identification in the Full-Blown Model 

 
Figure 1: This figure plots the sensitivity of the standard deviation (sd) and the between-group standard 
deviation (bsd) of log(Y/Khat) with respect to quadratic capital adjustment cost (Panel A) and 
measurement error on capital (Panel B), respectively. The benchmark parameterization is set equal to that 
in Column (5) of Table 1. 



Figure 2: Results from Two- and Four-Digit Industries  

 
Figure 2: Panel A plots the between-group standard deviation of log(Y/Khat) (x-axis) and the calibrated στ 

(y-axis) by the generalized ARP approach in each two-digit industry. The solid line is the 45 degree line. 
Panel B plots the results from each four-digit industry. 

 



Table 1 Illustration for Identification in the Simple Model 

   
Panel A 

  Parameters (1) (2) (3) (4) (5) 

 
στ = 0.0 στ = 0.5 στ = 0.0 στ = 0.0 στ = 0.5 

 
σlogα = 0.0 σlogα = 0.0 σlogα = 0.5 σlogα = 0.0 σlogα = 0.5 

 
σlogη = 0.0 σlogη = 0.0 σlogη = 0.0 σlogη = 0.5 σlogη = 0.5 

Set of Moments           
mean(π/Y) 0.157 0.157 0.167 0.167 0.170 
mean(log(Y/Khat)) 0.834 0.834 0.834 0.847 0.840 
bsd(π/Y) 0.000 0.000 0.044 0.044 0.061 
bsd(log(Y/Khat)) 0.000 0.496 0.495 0.054 0.682 
bcorr(π/Y, log(Y/Khat)) N.A. N.A. -0.954 0.991 -0.378 
   Panel B   
Inferred στ (1) (2) (3) (4) (5) 
The APR Approach 0.000 0.496 0.495 0.054 0.682 
The Generalized ARP Approach N.A. N.A. 0.000 0.000 0.489 
   Panel C   
Estimates for other parameters (1) (2) (3) (4) (5) 
μlogα N.A. N.A. -2.498 -2.499 -2.498 
σlogα N.A. N.A. 0.505 0.000 0.491 
μlogη N.A. N.A. -2.372 -2.391 -2.493 
σlogη N.A. N.A. 0.098 0.423 0.490 
Note: The imposed parameter values are δ = 0.05, r = 0.15, μlogα = μlogη = ‒2.50, σlogα = σlogη = 0.50, ρ = 0.90, μ = 0.05, σ = 0.40,  

and bq = bi = bf = σmeK = σmeY = σmeπ = 0. 

 

 

 

 



Table 2 Illustration for Identification in the Full-Blown Model 

   Panel A   

Parameters (1) (2) (3) (4) (5) 

 
bq = 1 bq = 10 σmeK = 0.5 σmeK =1 bq =1, σmeK = 0.5  

Set of Moments         
mean(π/Y) 0.170 0.170 0.170 0.170 0.170 
mean(log(Y/Khat)) 0.865 1.209 0.840 0.765 0.854 
bsd(π/Y) 0.061 0.061 0.061 0.061 0.061 
bsd(log(Y/Khat)) 0.676 0.716 0.733 0.835 0.711 
bcorr(π/Y, log(Y/Khat)) -0.392 -0.350 -0.350 -0.304 -0.371 
   Panel B   
Inferred στ (1) (2) (3) (4) (5) 
The APR Approach 0.688 0.727 0.872 1.188 0.822 
The Generalized ARP Approach 0.469 0.432 0.561 0.708 0.523 
   Panel C   
Estimates for other parameters (1) (2) (3) (4) (5) 
μlogα -2.521 -2.840 -2.497 -2.429 -2.511 
σlogα 0.503 0.585 0.490 0.470 0.499 
μlogη -2.467 -2.210 -2.493 -2.582 -2.478 
σlogη 0.478 0.402 0.491 0.524 0.483 
Note: The imposed parameters are δ = 0.05, r = 0.15, μlogα = μlogη = ‒2.50, σlogα = σlogη = 0.50, ρ = 0.90, μ = 0.05 and σ = 0.40. 

Column (1) and (2): bi = bf = σmeK = σmeY = σmeπ = 0 

Column (3) and (4): bq = bi = bf = σmeY = σmeπ = 0 

Column (5): bi = bf = σmeY = σmeπ = 0 

 

 

 



 

Table 3: Parameters and Moments in the Structural Estimation 

Parameters Definition 
στ standard deviation of heterogeneities in capital goods price 

μlogα mean of log capital output elasticity in production function 
σlogα standard deviation of log capital output elasticity 
μlogη mean of log inverse of demand elasticity 
σlogη standard deviation of log inverse of demand elasticity 
bq quadratic adjustment costs 
bi partial irreversibility 
bf fixed adjustment costs 
μ mean of growth rate in Zi,t 
σ standard deviation of  shocks to Zi,t 

σmeK standard deviation of measurement errors in capital stock 
σmeY standard deviation of measurement errors in sales revenue 
σmeπ standard deviation of measurement errors in gross profit 

Moments Definition 
mean(π/Y) mean of profit-revenue ratio 
mean(log(Y/Khat)) mean of log revenue-capital ratio 
mean(I/K) mean of investment rate 
mean(∆logY) mean of revenue growth rate 
bsd(π/Y) between-group standard deviation of profit-revenue ratio 
wsd(π/Y) within-group standard deviation of profit-revenue ratio 
bsd(log(Y/Khat)) between-group standard deviation of log revenue-capital ratio 
wsd(log(Y/Khat)) within-group standard deviation of log revenue-capital ratio 
bsd(I/K) between-group standard deviation of investment rate 
wsd(I/K) within-group standard deviation of investment rate 
bsd(∆logY) between-group standard deviation of revenue growth rate 
wsd(∆logY) within-group standard deviation of revenue growth rate 
skew(π/Y) skewness of profit-revenue ratio 
skew(log(Y/Khat)) skewness of log revenue-capital ratio 
skew(I/K) skewness of investment rate 
skew(dlogY) skewness of revenue growth rate 
scorr(π/Y) serial correlation of profit-revenue ratio 
scorr(log(Y/Khat)) serial correlation of log revenue-capital ratio 
scorr(I/K) serial correlation of investment rate 
scorr(∆logY) serial correlation of revenue growth rate 

bcorr(π/Y, log(Y/Khat)) 
cross correlation between between-group profit-revenue ratio  
and log revenue-capital ratio     

       



 

Table 4: Results by the Generalized ARP Approach 

Parameters NBS Compustat I Compustat II 

στ 0.6843 
(0.7143) 

0.3095 
(0.3020) 

0.1313 
(0.1113) 

μlogα -2.6189 
(-2.6058) 

-1.9320 
(-1.8745) 

-1.9788  
(-2.1797) 

σlogα 0.5539 
(0.5568) 

0.6259 
(0.6271) 

0.5643  
(0.5338) 

μlogη -2.8086 
(-2.8084) 

-1.4527 
(-1.5831) 

-1.6241  
(-1.6313) 

σlogη 0.7887 
(0.7253) 

0.5246 
(0.5949) 

0.5587  
(0.5235) 

Moments    

mean(π/Y) 0.1578 0.3929 0.3514 
mean(log(Y/Khat)) 1.1377 0.5659 0.5542 
bsd(π/Y) 0.0763 0.1591 0.1448 
bsd(log(Y/Khat)) 0.8666 0.7288 0.6064 
bcorr(π/Y, log(Y/Khat)) -0.2422 -0.0738 -0.0879 
Descriptive Statistics    

No. of firms  107579 1431 970 
span of years 2004-2007 2002-2005 2002-2005 
mean(sales) 97 2066 3132 
med(sales) 20 121 461 
mean(employees) 0.33 10.4 20.8 
med(employees) 0.13 0.8 4.3 

Note: The numbers in parentheses are the results of structural estimation of the full-blown model (see 
Table 5 for more details). The imposed parameters are δ = 0.05 (0.10), r = 0.20 (0.10) for Chinese 
(Compustat) firms, respectively. Unit of sales is millions of RMB (USD) in 2004 prices for Chinese 
(Compustat) firms. Unit of employees is thousand. 
 
 

 

 

 

 

 

 

 

 

 

 

 



 

Table 5: Structural Estimation Results for Chinese Firms 

Parameters estimate s.e.  Moments empirical s.e. simulated 
στ 0.7143 0.0033  mean(π/Y) 0.1578 0.0002 0.1542 

μlogα -2.6058 0.0019  mean(log(Y/Khat)) 1.1377 0.0025 1.1456 
σlogα 0.5568 0.0043  mean(I/K) 0.1640 0.0005 0.1729 
μlogη -2.8084 0.0051  mean(∆logY) 0.0963 0.0005 0.0803 
σlogη 0.7253 0.0061  bsd(π/Y) 0.0763 0.0001 0.0745 
bq 0.2777 0.0038  wsd(π/Y) 0.0506 0.0001 0.0488 
bi 0.0001 0.0395  bsd(log(Y/Khat)) 0.8666 0.0011 0.8781 
bf 0.0335 0.0006  wsd(log(Y/Khat)) 0.3470 0.0009 0.3321 
μ 0.0802 0.0004  bsd(I/K) 0.1991 0.0006 0.1642 

σ 0.4253 0.0016  wsd(I/K) 0.2027 0.0006 0.2149 

σmeK 0.4010 0.0013  bsd(∆logY) 0.1876 0.0004 0.1632 

σmeY 0.0007 0.1255  wsd(∆logY) 0.2042 0.0004 0.2187 
σmeπ 0.5777 0.0020  skew(π/Y) 0.7760 0.0039 0.8539 

   
skew(log(Y/Khat)) 0.0570 0.0038 0.0037 

   
skew(I/K) 2.2307 0.0075 2.2510 

   
skew(dlogY) 0.1567 0.0037 0.1760 

   scorr(π/Y) 0.5703 0.0021 0.5993 
   scorr(log(Y/Khat)) 0.8403 0.0009 0.8377 
   scorr(I/K) 0.1188 0.0030 0.2430 
    scorr(∆logY) 0.0685 0.0028 0.0526 
    bcorr(π/Y, log(Y/Khat)) -0.2422 0.0034 -0.2707 

    OI/100   183   
Note: The imposed parameter values are δ = 0.05, r = 0.20, and ρ = 0.90. 

 



 

Table 6: Structural Estimation Results for Compustat Firms 

Sample Compustat I Compustat II 
 

Sample Compustat I Compustat II 
Parameters estimate s.e. estimate s.e.  Moments empirical simulated empirical simulated 

στ 0.3020 0.0676 0.1113 0.1822  mean(π/Y) 0.3929 0.3839 0.3458 0.3206 
μlogα -1.8745 0.0193 -2.1797 0.0225  mean(log(Y/Khat)) 0.5659 0.5600 0.8560 0.8194 
σlogα 0.6271 0.0272 0.5338 0.0308  mean(I/K) 0.1338 0.1463 0.1779 0.1752 
μlogη -1.5831 0.0305 -1.6313 0.0270  mean(∆logY) 0.0900 0.0274 0.0696 0.0523 
σlogη 0.5949 0.0146 0.5235 0.0186  bsd(π/Y) 0.1591 0.1624 0.1251 0.1300 
bq 1.1355 0.1489 0.9992 0.0741  wsd(π/Y) 0.0450 0.0481 0.0456 0.0327 
bi 0.0073 0.1836 0.0008 0.5095  bsd(log(Y/Khat)) 0.7288 0.7148 0.5297 0.5544 
bf 0.0017 0.0017 0.0003 0.0136  wsd(log(Y/Khat)) 0.2301 0.1829 0.2662 0.1978 
μ 0.0263 0.0017 0.0524 0.0018  bsd(I/K) 0.0729 0.0614 0.0755 0.0217 
σ 0.2636 0.0096 0.2009 0.0060  wsd(I/K) 0.0522 0.0582 0.0667 0.0696 

σmeK 0.2014 0.0117 0.1875 0.0055  bsd(∆logY) 0.1483 0.1020 0.1040 0.0239 
σmeY 0.0023 0.2542 0.0010 0.2222  wsd(∆logY) 0.1297 0.1497 0.1182 0.1433 
σmeπ 0.2286 0.0112 0.1678 0.0089  skew(π/Y) 0.4315 0.3018 0.3549 0.3385 

    skew(log(Y/Khat)) -0.2917 0.0636 -0.0427 0.0555 

 
   skew(I/K) 0.9393 0.7311 1.0737 0.6744 

    skew(dlogY) 0.3168 0.0435 0.6425 0.0052 
    scorr(π/Y) 0.9183 0.8926 0.9500 0.9374 
    scorr(log(Y/Khat)) 0.9117 0.9245 0.9265 0.9078 
    scorr(I/K) 0.5630 0.4926 0.6206 0.4558 
      scorr(∆logY) 0.2057 -0.0253 0.3217 -0.0202 
      bcorr(π/Y, log(Y/Khat)) -0.0738 -0.1149 -0.0298 -0.0398 

      OI/100 10 26 
Note: See the text for the definition of Compustat I and II. The imposed parameter values are δ = 0.10, r = 0.10, ρ = 0.90.



 

Table 7: Estimation with Endogenous Capital Output Elasticity 

  στ μlogη σlogη αl αh β m 
(1) 0.5784 -2.7460 0.7841 0.0551 0.1090 0.1369 1.2024 
(2) 0.5800 -2.7456 0.7838 0.0555 0.1097 0.1369 1.1769 
(3) 0.5887 -2.7434 0.7817 0.0576 0.1142 0.1369 1.0396 

Note: m and β denote the material cost relative to the unit price of capital and labor output elasticity, 
respectively. (1) is the benchmark case where 50% of firms would choose αh if τi = 0. (2) and (3) refer to 
the cases where 20% and 80% of firms would choose αh if τi = 0, respectively. 



 

Table 8: Regressions on Firm Characteristics 

Dep. Variable The average log revenue-capital ratio 
 (1) age and size (2) region (3) ownership 

log(π/Y) -0.3929 
(0.0027) 

-0.3921 
(0.0027) 

-0.3590 
(0.0026) 

age -0.0304 
(0.0002) 

-0.0303 
(0.0002) 

-0.0291 
(0.0002) 

emp -0.0399 
(0.0032) 

-0.0394 
(0.0032) 

-0.0244 
(0.0021) 

CENTRAL   
0.0610 

(0.0040) 
0.0319 

(0.0039) 

WESTERN   
-0.1673 
(0.0045) 

-0.1721 
(0.0044) 

NORTHEASTERN   
-0.2495 
(0.0056) 

-0.2551 
(0.0055) 

COE     
0.4973 

(0.0075) 

DPE     
0.4481 

(0.0064) 

FIE     
0.0986 

(0.0067) 

OTHERs     
0.2614 

(0.0063) 
Obs. 107579 107579 107579 
R-sq 0.2420 0.2493 0.2806 

Note: 1. The parentheses report robust standard errors. 
2. 4-digital industry dummies are included in all regressions. 
3. Age is the difference between 2004 and the year of firm foundation. 
4. Emp is the number of total employees normalized by 1000. 
5. Baseline group is EASTERN--dummy = 1 if province is Beijing, Tianjin, Hebei, Shanghai, Jiangsu, 
Zhejiang, Fujian, Shandong, Guangdong, or Hainan.  

CENTRAL--dummy = 1 if province is Shanxi, Anhui, Jiangxi, Henan, Hubei or Hunan.  
WESTERN--dummy =1 if province is Inner Mongolia, Guangxi, Chongqin, Sichuan, Guizhou, Yunnan, 

Tibet, Shaanxi, Gansu, Qinghai, Ningxia or Xinjiang.  
NORTHWESTERN-- dummy = 1 if province is Liaoning, Jilin or Heilongjiang. 

6. Baseline group is SOE--dummy = 1 if state-owned; defined as registration type = 110, 141 and 151. 
COE--dummy = 1 if collective owned; defined as registration type = 120 and 142. 
DPE--dummy = 1 if domestic private-owned; defined as registration type from 170 to 174. 
FIE--dummy = 1 if foreign-owned; defined as registration type from 200 to 240 or from 300 to 340. 
OTHERS--dummy = 1 if other types, including cooperative units, joint ownership units, limited 

liability corporations and share-holding corporation Ltd. 
 

 



7 Appendix

7.1 Aggregate TFPR Gains

We first transform gross output into value added. Define value added as Ŷi,t ≡ maxMi,t {Yi,t −mi,tMi,t}.
This yields

Ŷi,t = (1− (1− αi − βi) (1− ηi))
[

(1− αi − βi) (1− ηi)
mi,t

] (1−αi−βi)(1−ηi)
1−(1−αi−βi)(1−ηi)

(
Ẑ

ηi
1−ηi
i,t K̂αi

i,tL
βi
i,t

) (1−ηi)
1−(1−αi−βi)(1−ηi)

,

where Ẑi,t ≡ Xi,tA
1
ηi
−1

i,t . We then calculate effi ciency gain from capital reallocation within each

type of firms associated with the same αi and ηi. The aggregate output gain is obtained by

averaging the gain across different types of firms.

For notational convenience, consider an economy in which all firms have the same α, η

and, thus, γ. Effi cient capital allocation features identical MRPK across firms. Without loss

of generality, we drop time subscript. For simplicity, we assume away labor and intermediate

input distortions such that wi = w and mi = m. Value-added would, thus, follow

Ŷi =

(
Ẑ

η
1−η
i K̂α

i L
β
i

) (1−η)
1−(1−α−β)(1−η)

, (32)

where irrelevant terms are omitted.

Denote L∗i and K̂
∗
i firm i’s labor and productive capital in the effi cient allocation. (14)

implies K̂∗i ∝ Ẑi. Using (5) to (8), together with the fact that K̂∗i ∝ Ẑi, we have L∗i ∝ Ẑi.

Define K̂ ≡
∑

i K̂
∗
i and L ≡

∑
i L
∗
i as the total productive capital and labor, respectively. (32)

implies that the total value added in the effi cient allocation is equal to

Ŷ ∗ =
(
K̂αLβ

) (1−η)
1−(1−α−β)(1−η) ×

∑
i Ẑi(∑

i Ẑi

) (α+β)(1−η)
1−(1−α−β)(1−η)

. (33)

We omit irrelevant constant terms.

Now we turn to the actual total value added in the economy with capital distortions. (14)

implies K̂i ∝ Ẑi/ (1 + τ i)
η+α(1−η)

η . Moreover, (5) to (8) establish that Li ∝ Ẑi/ (1 + τ i)
α(1−η)

η .

Then, the actual total value added follows

Ŷ =
(
K̂αLβ

) (1−η)
1−(1−α−β)(1−η) ×

∑
i

Ẑi

(1+τ i)
α(1−η)

η(∑
i

Ẑi

(1+τ i)
η+α(1−η)

η

)α(∑
i

Ẑi

(1+τ i)
α(1−η)

η

)β
(1−η)

1−(1−α−β)(1−η)
.

(34)
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The effi ciency gain from capital reallocation can, thus, be represented by the difference between

Ŷ ∗ and Ŷ :

log Ŷ ∗ − log Ŷ =
α (1− η)

1− (1− α− β) (1− η)
log

∑
i

Ẑi

(1+τ i)
η+α(1−η)

η∑
i Ẑi

− η + α(1− η)

1− (1− α− β) (1− η)
log

∑
i

Ẑi

(1+τ i)
α(1−η)

η∑
i Ẑi

.

With a large number of firms, the effi ciency gain can be approximated by:

log Ŷ ∗ − log Ŷ ≈ 1

2

α (1− η)

η

η + α(1− η)

1− (1− α− β) (1− η)
V ar [log (1 + τ i)] . (35)

(35) shows that the effi ciency gain from removing capital misallocation is proportional to the

variance of log (1 + τ i).

Now we aggregate the effi ciency gain across different firm types.

Aggregate output gain = log

∫
Ŷ ∗ (j)ψ (j)− log

∫
Ŷ (j)ψ (j) ,

where ψ (j) represents the density for the number of firms associated with α (j) and η (j).

7.1.1 Labor Market Distortions

We now introduce labor distortions but maintain the assumption that intermediate inputs

are effi ciently allocated. (14) implies K̂i ∝ Ẑi/

(
(1 + τ i)

η+α(1−η)
η

(
1 + τLi

)β(1−η)
η

)
. Equations

(5), (26), together with (7) and (8), imply that Li ∝ Ẑi/

(
(1 + τ i)

α(1−η)
η

(
1 + τLi

)β(1−η)+η
η

)
.

Therefore, the total value added with both capital and labor distortions follows

Ŷ L =
(
K̂αLβ

) (1−η)
1−(1−α−β)(1−η) × ∑ Ẑi

(1+τ i)
α(1−η)

η (1+τLi )
β(1−η)

η(∑
i

Ẑi,t

(1+τ i)
η+α(1−η)

η (1+τLi )
β(1−η)

η

)α(∑
i

Ẑi,t

(1+τ i)
α(1−η)

η (1+τLi )
β(1−η)+η

η

)β
(1−η)

1−(1−α−β)(1−η)
.

Effi cient allocation features identical marginal revenue products of both capital and labor

across firms. It is immediate that the total value added in the effi cient allocation is identical

to that in (33). The effi ciency gain from reallocation can thus be approximated by

log Ŷ ∗ − log Ŷ L ≈ 1

2

α (1− η)

η

η + α(1− η)

1− (1− α− β) (1− η)
V ar [log (1 + τ i)] (36)

+
1

2

β (1− η)

η

η + β (1− η)

1− (1− α− β) (1− η)
V ar

[
log
(
1 + τLi

)]
,
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where we assume that τ i and τLi are uncorrelated. The second term on the right-hand side of

(36) captures the welfare gain from correcting labor misallocation.

7.2 Investment Decision

The investment problem is defined by the stochastic Bellman equation:

V (Zi,t,Ki,t) = max
Ii,t

{
π(Zi,t,Ki,t; Ii,t)− PKi,tIi,t −G(Ki,t; Ii,t) +

1

1 + r
Et [V (Zi,t+1,Ki,t+1)]

}
,

(37)

where Zi,t+1 andKi,t+1 follow the law of motion (19) and (12), respectively. WhenG(Zi,t,Ki,t; Ii,t) =

0, the optimal investment rate is a linear function of Zi,t/Ki,t:

Ii,t
Ki,t

=

[
1− γi

(1 + τ i) Jt

] 1
γi

(
Zi,t
Ki,t

)
− 1, (38)

which leads to (14). When G(Ki,t; Ii,t) > 0, the investment policy can be solved numerically.

Wu (2014) provides further details.

7.3 China Data

Brandt et al. (2012) provide an excellent description of the dataset and implement a series

of consistency checks. We strictly follow them in constructing a panel and cleaning the data.

A few things deserve attention. The first is how to construct capital data. The survey does

not contain information on investment expenditures. However, firms report the book value of

their fixed capital stock at original purchase prices. Since these book values are the sum of

nominal values from different years, they should not be used directly. To construct the real

capital stock series, we use the following formula:

Ki,t = (1− δ)Ki,t−1 +
BKi,t −BKi,t−1

Pt
,

where BKi,t is the gross book value of capital stock for firm i in year t; Pt is the price index

of investment in fixed assets in year t constructed by Perkins and Rawski (2008). The initial

book value of capital stock is taken directly from the dataset for firms founded later than 1998.

For firms founded before 1998, we predict it to be

BKi,t0 =
BKi,t1

(1 + gi)
t1−t0 ,

where BKi,t0 is the projected initial book value of capital stock when firm i was born in year

t0; BKi,t1 is the book value of capital stock when firm i first appears in our dataset in year t1;

and gi is the average capital stock growth rate of firm i for the period we observe in the data

since year t1.
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The calibration of δ is based on the law of motion of capital (12), which implies that

log

(
1 +

Ii,t
Ki,t

)
= 4 log K̂i,t − log (1− δ)

' 4 log K̂i,t + δ.

The model implies that both K̂i,t and Yi,t grow at the same rate in the long run.28 So, the

above equation suggests calibrating δ by matching the difference between log (1 + Ii,t/Ki,t)

and ∆ log Yi,t. This gives δ = 0.05. Investment expenditure Ii,t is then recovered according to

equation (12).

Four key variables for estimation are then constructed by definition: profit-revenue ratio,

(πi,t/Yi,t), log revenue-capital ratio,
(

log
(
Yi,t/K̂i,t

))
, investment rate, (Ii,t/Ki,t), and revenue

growth rate, (∆ log Yi,t). The revenue and profit data are deflated by the GDP deflator for

the secondary industry from the China Statistical Yearbook. We exclude outliers by trimming

the top and bottom 5 percent of observations for each variable in each year. The model

assumes that firms are on the balanced-growth path. In the presence of capital adjustment

costs, however, it would take years for firms to reach their balanced-growth path. Therefore, we

exclude firms that are less than 5 years old when they first enter our dataset. Furthermore, our

investment model does not consider entry and exit, which means that the model’s implications

are valid only for existing and ongoing firms. Finally, many existing non-state-owned firms

with sales revenue beyond RMB 5 millions were missing from the survey in the early years but

have appeared in the NBS data since 2004 thanks to the economic census conducted in that

year. For these reasons, our empirical exercise utilizes a sample of firms surviving from 2004

to 2007 and being at least 5 years old in 2004. This gives us a balanced panel consisting of

107,579 firms and spanning 4 years. The annual mean values of each of the four variables in

the balanced panel are reported in Table A.3.

[Insert Table A.3]

Our simulations in the structural estimation assume firms to be around their balanced

growth paths. Since the estimation is to match moments of the four variables, we need to

check the stationarity of the four variables from a fast-changing economy like China’s. It is

hard to give a formal test, given the fact that the panel has only four time-series observations.

Nevertheless, one can still see from Table A.3 that except for the falling investment rate, none

of the other three variables features an obvious trend.
28This result carries over to the case with capital adjustment costs. Bloom (2000) shows that when a firm is

on its balanced growth path, the gap between capital stock with and without adjustment costs is bounded.
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7.4 Compustat Data

We construct capital stock and deflate the data strictly following Bloom (2009). To be specific,

capital stocks for firm i in industry m in year t are constructed by the perpetual inventory

method: Ki,t = (1− δ)Ki,t−1 (Pm,t/Pm,t−1)+Ii,t, initialized using the net book value of capital,

where δ = 0.10, Ii,t is net capital expenditures on plant, property, and equipment, and Pm,t

is the industry-level capital goods deflator from Bartelsman et al. (2000). Sales revenue and

cost of goods sold are deflated by the CPI. We use a sample from 2002 to 2005 since Pm,t is

not available after 2005. Finally, we also trim the top and bottom 5 percent of observations

for each variable in each year in Compustat.

7.5 Back-of-the-Envelope Calculations for the Effects of Market Beta and
Market Incompleteness

We back out the following distribution of τ i:

log (1 + τ i)
i.i.d.∼ N

(
0, 0.6842

)
.

Suppose that all the heterogeneity comes from Ji or, more precisely, ri, the firm-specific dis-

count factor. log Ji would follow a log-normal distribution with variance of 0.6842. Since

log Ji ' log (ri + δ), it implies that

log (ri + δ)
i.i.d.∼ N

(
log (0.25) , 0.6842

)
.

We can, thus, back out var (ri) = 0.2442.

Risk-averse investors would assign higher discount rates to firms with Zi,t that are more

correlated to aggregate shocks. To see the capacity of market beta in generating var (ri),

consider a typical CAPM,

ri = rf + (rm − rf ) · betai,

where rf is the interest rate on riskless assets, rm is the expected market return and rm − rf
is the expected market risk premium.

If all the heterogeneity in ri is driven by heterogeneous market beta, var (betai) has to

be 2.442 to match var (ri) = 0.2442 with a 10 percent risk premium. Since few firms in the

NBS data are listed, we cannot calculate the dispersion of market beta. Morck et al. (2000)

find the stock returns in emerging economies to be more synchronous, probably due to a poor

capitalization of firm-specific information. This implies that the market betas tend to be less

dispersed in emerging economics than those in developed economies. Picking up the number

from Mankiw and Shapiro (1986), var (betai) is 0.382 for 464 U.S. stocks over 92 quarters.
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Even if we take this value as the upper limit for var (betai) in China, var (ri) would be 0.0382,

merely 2.4 percent of the 0.2442 that is needed to explain the estimated σ2
τ .

To see the importance of market incompleteness in generating heterogeneity in ri, we adopt

the framework in Angeletos and Panousi (2011). Following their notations in equation (18),

we have

ri = rf +

√
2θγ (d− rf )

θ + 1
σi,

where d > 0 is the discount factor, γ > 0 is the coeffi cient of relative risk aversion, and θ > 0 is

the elasticity of intertemporal substitution. What we need is a measure of σi and its dispersion

in the data.

Assume that Zi,t follows the stochastic process in (19), where σi parameterizes the risk

level for firm i. Bloom (2000) shows that revenue and capital will still grow at the same rate

of µ in the long run. This implies

∆ log Yi,t = ∆ logZi,t

= µ+ zi,t − zi,t−1

' µ+ ei,t,

if ρ → 1. Therefore, when panel data are available, the variance of a firm’s sales growth,

var (∆ log Yi,t), serves as a proxy for its risk level, σ2
i .

In the NBS sample, the value of var (∆ log Yi,t) has an estimate of 0.1422. If all the

heterogeneity in Ji is driven by idiosyncratic risks,
√

2θγ (d− rf ) / (θ + 1) should be as large

as 1.718. If d − rf = 0.10 and θ = 1, the coeffi cient of relative risk aversion γ has to be as

large as 30 to match var (ri) = 0.2442. Alternatively, if θ = 1 and γ = 5, then var (ri) would

be equal to 0.12, which accounts for about 16.9 percent of the estimated σ2
τ .

7.6 The Simulated Methods of Moments

The SMM estimator Θ∗ solves the following minimal quadratic distance problem (Gouriéroux

and Monfort, 1996):

Θ∗ = arg min
Θ

(
Φ̂D − 1

S

S∑
s=1

Φ̂M
s (Θ)

)′
Ω

(
Φ̂D − 1

S

S∑
s=1

Φ̂M
s (Θ)

)
, (39)

where Θ is the vector of parameters of interest; Φ̂D is a set of empirical moments estimated

from an empirical dataset; Φ̂M (Θ) is the same set of simulated moments estimated from a

simulated dataset based on the model; S is the number of simulation paths; and Ω is a positive

definite weighting matrix. See Wu (2009) for the technical details on how to solve the minimal
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quadratic distance problem of (39), to draw optimal weighting matrix from the data and to

calculate the numerical standard errors for the estimates.

Suppose that the empirical dataset is a panel with N firms and T years. We use the

asymptotics of fixed T and large N . At the effi cient choice for Ω∗, the SMM procedure provides

a global specification test of the overidentifying restrictions of the model:

OI =
NS

1 + S

(
Φ̂D − 1

S

S∑
s=1

Φ̂M
s (Θ)

)′
Ω∗

(
Φ̂D − 1

S

S∑
s=1

Φ̂M
s (Θ)

)
∼ χ2

[
dim

(
Φ̂
)
− dim (Θ)

]
.

7.7 Robustness Tests

Table A.4 presents results for a set of robustness checks. Column (1) corresponds to the

benchmark model, where r = 0.20 and ρ = 0.90. Columns (2) and (3) test the sensitivity to

the discount factor by imposing r = 0.15 and 0.25, respectively. Columns (4) and (5) report

the results with ρ = 0.85 and 0.95, respectively. Overall, we see only some modest variations

in the estimates. In particular, the estimated στ , ranging from 0.67 to 0.75, appears to be

robust to the alternative choices of r and ρ.

[Insert Table A.4]

Column (6) increases the number of type in each dimension of heterogeneity from 3 to

5. The alternative simulation specification triples the estimation time but causes virtually no

change in any of the estimates.

Columns (7) and (8) allow the long-run growth rate of Zi,t, µ, and the level of uncertainty, σ,

to be firm-specific. In Column (7), µi follows a normal distribution with mean µ and standard

deviation σµ. In Column (8), σi follows a normal distribution with mean σ and standard

deviation σσ. Introducing an additional dimension of heterogeneity involves an additional

state variable. The estimation time increases by 2.5 times accordingly. Not surprisingly,

allowing more heterogeneities improves the overall fitness. The estimate of στ , however, is

almost unaffected.

Column (9) replaces measurement errors in capital with measurement errors in investment.

To be specific, Ki,t+1 = (1−δ) (Ki,t + Ii,t), where Ii,t = Itruei,t exp
(
eIi,t

)
and eIi,t

i.i.d∼ N(0, σ2
meI).

The alternative specification implies a persistent effect on the measurement of capital through

capital accumulation. We find much larger capital adjustment costs. The estimated στ , how-

ever, increases little, by less than 5 percent.

7



7.8 Specification Tests

To evaluate the importance of each of the three components (i.e., the unobserved hetero-

geneities, capital adjustment costs and measurement errors), Table A.5 reports specification

tests for three restricted models. The full-blown model is taken as the benchmark, with esti-

mation results listed in Column (1).

[Insert Table A.5]

Column (2) reports the results with homogeneous αi and ηi —i.e., σlogα = σlog η = 0. The

estimated στ increases from 0.706 to 0.924, implying a large bias by omitting the unobserved

heterogeneities. Moreover, the model fails to match the data in a number of aspects, including

all moments of the profit-revenue ratio (except for the mean) and the correlation between the

revenue-capital and profit-revenue ratio. As a result, the overall fitness of the restricted model

degenerates substantially.

Column (3) reports the results with no capital adjustment costs — i.e., bq = bi = bf = 0.

The estimate for στ is just 7 percent lower than the benchmark result. For reasons discussed in

the text, the unobserved heterogeneities can essentially be identified by the five core moments,

on which capital adjustment costs have little impact. Nevertheless, without capital adjustment

costs, the model cannot match some salient features, such as positive serial correlation, in the

investment rate and revenue growth.

Column (4) reports the results with no measurement errors —i.e., σmeK = σmeY = σmeπ =

0. The estimate for στ is, once again, very close to the benchmark result, with a difference of

3 percent. Like capital adjustment costs, measurement errors have only second-order effects

on the between-group standard deviations. Consequently, the estimation of the unobserved

heterogeneities is largely unaffected by measurement errors. Regarding the fitness, the re-

stricted model generates too small within-group standard deviations of the profit-revenue and

revenue-capital ratios and too much serial correlation in these two ratios.

8



Appendix for Tables 
 

Table A.1: Illustration for Identification of Capital Adjustment Costs 

Parameters (1) (2) (3) (4) (5) 

 
bq = 0.0 bq = 1.0 bq = 0.0 bq = 0.0 bq = 1.0 

 
bi = 0.0 bi = 0.0 bi = 0.1 bi = 0.0 bi = 0.1 

  bf = 0.0 bf = 0.0 bf = 0.0 bf = 0.1 bf = 0.1 
Set of Moments 

     mean(π/Y) 0.170 0.170 0.170 0.170 0.170 
mean(log(Y/Khat)) 0.837 0.865 0.780 0.852 1.006 
mean(I/K) 0.202 0.111 0.137 0.187 0.112 
mean(∆logY) 0.050 0.049 0.050 0.051 0.048 
bsd(π/Y) 0.061 0.061 0.061 0.061 0.061 
wsd(π/Y) 0.000 0.000 0.000 0.000 0.000 
bsd(log(Y/Khat)) 0.682 0.676 0.682 0.689 0.674 
wsd(log(Y/Khat)) 0.009 0.131 0.096 0.124 0.128 
bsd(I/K) 0.233 0.080 0.170 0.266 0.098 
wsd(I/K) 0.451 0.065 0.242 0.505 0.114 
bsd(∆logY) 0.216 0.135 0.171 0.188 0.142 
wsd(∆logY) 0.336 0.190 0.232 0.270 0.199 
skew(π/Y) 0.176 0.176 0.176 0.176 0.176 
skew(log(Y/Khat)) 0.000 0.036 0.019 0.059 0.039 
skew(I/K) 1.412 0.674 2.712 3.380 1.376 
skew(dlogY) 0.000 0.037 0.431 0.774 0.200 
scorr(π/Y) 1.000 1.000 1.000 1.000 1.000 
scorr(log(Y/Khat)) 1.000 0.967 0.980 0.967 0.968 
scorr(I/K) -0.058 0.619 0.184 -0.049 0.331 
scorr(∆logY) -0.067 0.009 0.043 0.001 0.013 
bcorr(π/Y, log(Y/Khat)) -0.379 -0.392 -0.383 -0.376 -0.381 

      Note: The imposed parameter values are δ = 0.05, r = 0.15, μlogα = μlogη = ‒2.50, σlogα = σlogη = 0.50, ρ = 
0.90, μ = 0.05, σ = 0.40, and σmeK = σmeY = σmeπ = 0. 



Table A.2: Illustration for Identification of Measurement Errors 

Parameters (1) (2) (3) (4) (5) 

 
σmeK  = 0.0 σmeK  = 0.5 σmeK  = 0.0 σmeK  = 0.0 σmeK  = 0.5 

 
σmeY  = 0.0 σmeY  = 0.0 σmeY  = 0.5 σmeY  = 0.0 σmeY  = 0.5 

 
σmeπ  = 0.0 σmeπ  = 0.0 σmeπ  = 0.0 σmeπ  = 0.5 σmeπ  = 0.5 

Set of Moments           
mean(π/Y) 0.170 0.170 0.193 0.170 0.193 
mean(log(Y/Khat)) 1.006 0.996 1.007 1.006 0.997 
mean(I/K) 0.112 0.127 0.112 0.112 0.127 
mean(∆logY) 0.048 0.048 0.048 0.048 0.048 
bsd(π/Y) 0.061 0.061 0.088 0.066 0.094 
wsd(π/Y) 0.000 0.000 0.094 0.045 0.111 
bsd(log(Y/Khat)) 0.674 0.711 0.720 0.674 0.755 
wsd(log(Y/Khat)) 0.128 0.416 0.451 0.128 0.600 
bsd(I/K) 0.098 0.125 0.098 0.098 0.125 
wsd(I/K) 0.114 0.163 0.114 0.114 0.163 
bsd(∆logY) 0.142 0.142 0.276 0.142 0.276 
wsd(∆logY) 0.199 0.199 0.695 0.199 0.695 
skew(π/Y) 0.176 0.176 1.989 0.706 2.284 
skew(log(Y/Khat)) 0.039 -0.021 0.016 0.039 -0.016 
skew(I/K) 1.376 2.871 1.376 1.376 2.871 
skew(dlogY) 0.200 0.200 0.006 0.200 0.006 
scorr(π/Y) 1.000 1.000 0.288 0.575 0.227 
scorr(log(Y/Khat)) 0.968 0.669 0.634 0.968 0.490 
scorr(I/K) 0.331 0.229 0.331 0.331 0.229 
scorr(∆logY) 0.013 0.013 -0.445 0.013 -0.445 
bcorr(π/Y, log(Y/Khat)) -0.381 -0.359 -0.474 -0.351 -0.423 

 

Note: The imposed parameter values are δ = 0.05, r = 0.15, μlogα = μlogη = ‒2.50, σlogα = σlogη = 0.50, ρ = 
0.90, μ = 0, σ = 0.40, bq =1.0, and bi = bf = 0.1. 

  



Table A.3: The 2004-2007 Balanced Panel for NBS Firms 

Year 2004 2005 2006 2007 
No. of  firms 107579 107579 107579 107579 
mean(π/Y) 0.155 0.159 0.157 0.160 
mean(log(Y/Khat)) 1.143 1.145 1.129 1.134 
mean(I/K) .. 0.187 0.161 0.144 
mean(∆logY) .. 0.109 0.083 0.097 

       



Table A.4: Robustness Tests 

  (1) (2) (3) (4) (5) 
Parameters benchmark r = 0.15 r = 0.25  ρ = 0.85 ρ = 0.95 

στ 0.714 0.670 0.746 0.712 0.729 
μlogα -2.606 -2.727 -2.496 -2.595 -2.602 
σlogα 0.557 0.606 0.524 0.559 0.549 
μlogη -2.808 -2.672 -2.973 -2.826 -2.812 
σlogη 0.725 0.666 0.794 0.729 0.730 
bq 0.278 0.387 0.273 0.258 0.346 
bi 0.000 0.000 0.005 0.000 0.014 
bf 0.034 0.060 0.025 0.024 0.029 
μ 0.080 0.080 0.083 0.081 0.085 
σ 0.425 0.412 0.447 0.427 0.416 
σmeK 0.401 0.379 0.410 0.405 0.411 
σmeY 0.001 0.000 0.001 0.000 0.004 
σmeπ 0.578 0.575 0.579 0.581 0.574 

Moments     
mean(π/Y) 0.154 0.153 0.155 0.154 0.154 
mean(log(Y/Khat)) 1.146 1.127 1.165 1.143 1.159 
mean(I/K) 0.173 0.170 0.177 0.174 0.179 
mean(∆logY) 0.080 0.080 0.083 0.081 0.084 
bsd(π/Y) 0.075 0.075 0.074 0.074 0.075 
wsd(π/Y) 0.049 0.049 0.049 0.049 0.049 
bsd(log(Y/Khat)) 0.878 0.874 0.882 0.879 0.884 
wsd(log(Y/Khat)) 0.332 0.319 0.337 0.333 0.337 
bsd(I/K) 0.164 0.153 0.170 0.155 0.178 
wsd(I/K) 0.215 0.209 0.215 0.217 0.214 
bsd(∆logY) 0.163 0.160 0.165 0.158 0.168 
wsd(∆logY) 0.219 0.222 0.215 0.224 0.211 
skew(π/Y) 0.854 0.856 0.846 0.855 0.857 
skew(log(Y/Khat)) 0.004 0.007 0.006 0.002 -0.002 
skew(I/K) 2.251 2.320 2.206 2.168 2.181 
skew(dlogY) 0.176 0.208 0.146 0.165 0.169 
scorr(π/Y) 0.599 0.608 0.590 0.596 0.600 
scorr(log(Y/Khat)) 0.838 0.849 0.834 0.837 0.835 
scorr(I/K) 0.243 0.200 0.274 0.202 0.297 
scorr(∆logY) 0.053 0.026 0.073 0.015 0.099 
bcorr(π/Y, log(Y/Khat)) -0.271 -0.280 -0.275 -0.270 -0.259 

OI/100 183 208 179 215 157 
  



Table A.4: Robustness Tests – Continued 

  (1) (6) (7) (8) (9) 
Parameters benchmark type-5 σµ > 0 σσ > 0 σmeI >0 

στ 0.714 0.690 0.721 0.712 0.745 
μlogα -2.606 -2.620 -2.604 -2.592 -2.654 
σlogα 0.557 0.557 0.551 0.556 0.577 
μlogη -2.808 -2.851 -2.805 -2.805 -2.776 
σlogη 0.725 0.692 0.728 0.719 0.716 
bq 0.278 0.284 0.325 0.308 0.405 
bi 0.000 0.001 0.000 0.000 0.479 
bf 0.034 0.034 0.039 0.031 0.059 
μ 0.080 0.082 0.083 0.080 0.061 
σ 0.425 0.424 0.411 0.403 0.465 
σmeK 0.401 0.402 0.404 0.390 .. 
σmeY 0.001 0.000 0.002 0.001 0.001 
σmeπ 0.578 0.597 0.576 0.575 0.561 
σµ .. .. 0.080 .. .. 
σσ .. .. .. 0.151 .. 
σmeI .. .. .. .. 0.114 

Moments       
mean(π/Y) 0.154 0.148 0.154 0.155 0.153 
mean(log(Y/Khat)) 1.146 1.155 1.154 1.147 1.104 
mean(I/K) 0.173 0.175 0.177 0.171 0.135 
mean(∆logY) 0.080 0.082 0.083 0.080 0.060 
bsd(π/Y) 0.075 0.071 0.074 0.074 0.075 
wsd(π/Y) 0.049 0.048 0.048 0.049 0.047 
bsd(log(Y/Khat)) 0.878 0.880 0.883 0.875 0.870 
wsd(log(Y/Khat)) 0.332 0.331 0.334 0.324 0.144 
bsd(I/K) 0.164 0.165 0.180 0.161 0.135 
wsd(I/K) 0.215 0.214 0.213 0.213 0.169 
bsd(∆logY) 0.163 0.163 0.168 0.162 0.165 
wsd(∆logY) 0.219 0.217 0.210 0.218 0.230 
skew(π/Y) 0.854 1.010 0.852 0.846 0.846 
skew(log(Y/Khat)) 0.004 0.013 0.004 0.006 0.029 
skew(I/K) 2.251 2.193 2.225 2.295 2.412 
skew(dlogY) 0.176 0.176 0.195 0.157 0.268 
scorr(π/Y) 0.599 0.581 0.604 0.598 0.620 
scorr(log(Y/Khat)) 0.838 0.839 0.838 0.844 0.976 
scorr(I/K) 0.243 0.250 0.292 0.237 0.268 
scorr(∆logY) 0.053 0.058 0.103 0.051 0.021 
bcorr(π/Y, log(Y/Khat)) -0.271 -0.319 -0.263 -0.274 -0.299 

OI/100 183 229 148 179 741 
  



Table A.5: Specification Tests 

 col (1) col (2) col (3) col (4) 
 benchmark σlogα=σlogη=0 bq=bi=bf=0 σmeK=σmeY=σmeπ=0 

Parameters         
στ 0.714 0.924 0.665 0.734 
μlogα -2.606 -2.351 -2.645 -2.742 
σlogα 0.557 0.000 0.587 0.500 
μlogη -2.808 -2.494 -2.716 -2.998 
σlogη 0.725 0.000 0.660 0.885 
bq 0.278 0.443 0.000 0.163 
bi 0.000 0.000 0.000 0.476 
bf 0.034 0.082 0.000 0.041 
μ 0.080 0.078 0.100 0.054 
σ 0.425 0.354 0.205 0.443 
σmeK 0.401 0.380 0.420 0.000 
σmeY 0.001 0.123 0.110 0.000 
σmeπ 0.578 0.816 0.541 0.000 

Moments         
mean(π/Y) 0.154 0.171 0.155 0.141 
mean(log(Y/Khat)) 1.146 1.011 1.151 1.218 
mean(I/K) 0.173 0.168 0.206 0.127 
mean(∆logY) 0.080 0.078 0.100 0.053 
bsd(π/Y) 0.075 0.042 0.073 0.071 
wsd(π/Y) 0.049 0.073 0.047 0.000 
bsd(log(Y/Khat)) 0.878 0.848 0.872 0.851 
wsd(log(Y/Khat)) 0.332 0.328 0.343 0.137 
bsd(I/K) 0.164 0.146 0.145 0.136 
wsd(I/K) 0.215 0.218 0.274 0.177 
bsd(∆logY) 0.163 0.153 0.123 0.160 
wsd(∆logY) 0.219 0.254 0.227 0.221 
skew(π/Y) 0.854 0.184 0.887 0.391 
skew(log(Y/Khat)) 0.004 0.008 0.011 0.013 
skew(I/K) 2.251 2.220 1.586 2.450 
skew(dlogY) 0.176 0.213 0.002 0.370 
scorr(π/Y) 0.599 -0.001 0.604 1.000 
scorr(log(Y/Khat)) 0.838 0.830 0.822 0.977 
scorr(I/K) 0.243 0.126 -0.047 0.242 
scorr(∆logY) 0.053 -0.149 -0.223 0.027 
bcorr(π/Y, log(Y/Khat)) -0.271 -0.019 -0.304 -0.208 

OI/100 183 1510 653 3127 
 


