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Abstract—We consider a new family of asymmetric Lee codes
that arise in the design and implementation of DNA-based storage
systems and systems with parallel string transmission protocols.
The codewords are defined over a quaternary alphabet, although
the results carry over to other alphabet sizes, and have symbol
distances dictated by their underlying binary representation. Our
contributions are two-fold. First, we derive upper bounds on the
size of the codes under the asymmetric Lee distance measure based
on linear programming techniques. Second, we propose code con-
structions which imply lower bounds.
Keywords. Coding for DNA-based storage, Coding theory

I. INTRODUCTION

Codes for classical channels with single-sequence inputs
and single-sequence outputs have been studied extensively,
leading to a diverse suite of solutions including algebraic
codes [15], codes on graphs, such as LDPC codes [14], and
polar codes [16]. Similar advances have been reported for
parallel channels [7], with the rather common underlying as-
sumption that the channels introduce uncorrelated errors. The
alphabet size of the codes used in both scenarios is usually
restricted by the system design, and often, input sequences
are de-interleaved or represented as arrays over smaller alpha-
bets in order to enable more efficient transmission. Far less is
known about channels that operate on several sequences at the
same time and introduce correlated symbol errors, or output
ordering errors. The goal of this work is to analyze one such
scenario, motivated by emerging applications in DNA-based
storage systems.

To motivate our analysis, consider a transmission model in
which two binary input sequences are simultaneously passed
through two channels that introduce substitution errors with
some probability 0 < p < 1/2 (Figure 1). Simultaneous errors
in both strings are less likely than individual string errors. In
addition to the substitution errors, the outputs of the channels
may be switched – in other words, the label of the channel
from which the output symbol originated may be in error. The
confusion graph of this type of channel is depicted in Figure 2.
In Figure 2, the vertices are indexed by pairs of bits denot-
ing the inputs into the two channels. The labels of the edges
denote the channel confusion parameters (weights, distances).

One application of such a model arises in DNA sequencing
for archival storage [6], where multiple sequences are read in
parallel. The readout errors are rare and it is very uncommon
to make simultaneous mistakes in both sequences; nevertheless,
the identity of the strands may be confused due to string sorting
issues. Another unrelated way to view this model is to assume
that the binary encodings represent four symbols of the DNA
alphabet {A, T,G,C}, say 00 → G, 11 → C, 01 → A and

Fig. 1. A pair of channels with individual substitution errors, for which the out-
puts may also be switched. For the given example, the outputs of the channels
at position three are switched.

10 → T . In this case, the proposed metric illustrates a DNA
readout channel in which the bases {A, T} are very likely to be
mutually confused during sequencing, while the basis {G,C}
are much less likely to be misinterpreted for each other. Illu-
mina systems and some other sequencing devices have substi-
tution errors that exhibit such “bias” phenomena, and similar
effects may be expected for single base sequencing technolo-
gies of the third generation [13].

The problem of interest is to design pairs of sequences –
henceforth, termed codewords – such that any two codewords
are at a sufficiently large “distance” from each other. We subse-
quently refer to the distance imposed by Figure 2 as the asym-
metric Lee distance (ALD). The ALD resembles a weighted
version of the Lee metric [2], with the exception of two sym-
bols being treated differently. These two symbols capture the
uncertainty about the actual ordering of the readouts. Given the
connection with the Lee metric, a partial analysis of the ALD
and related code construction questions may be addressed by
invoking results for codes in the Lee metric [1], [2]. Neverthe-
less, due to the asymmetry of the distance, specialized tech-
niques need to be developed to find bounds on the code size
and to construct codes that approach these bounds. To accom-
plish this task, we formally define the ALD as a judiciously
chosen combination of the Lee and the Hamming distance.

The paper is organized as follows. In Section II we introduce
the ALD, and then proceed to derive upper and lower bounds
on the size of the largest code in this metric using results on
codes in the Lee metric. In Section III, we turn our attention
on computing tighter upper bounds on the size of codes by ap-
plying generalized sphere packing techniques not known from
the Lee coding literature. New code constructions and related
questions are discussed in Section IV.

II. PROBLEM FORMULATION

We start by characterizing the channel errors by introducing
a new distance measure, which we refer to as the asymmetric
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Fig. 2. Weighted confusion graph for codelength n = 1.

Lee distance (ALD).
We refer to an error that causes a paired-symbol transition

from (1, 0) to (0, 1) as a Class 1 (switch) error; similarly, we
refer to an error that causes a single substitution in one of the
input strings as a Class 2 error. An error that causes a paired-
symbol transition from (0, 0) to (1, 1) is referred to as a Class 3
(simultaneous substitution) error. Note that based on Figure 2,
an edge in the confusion graph corresponding to a Class 1 error
has weight λ, an edge for a Class 2 error has weight 1+λ, while
an edge for a Class 3 error has weight 2(1 + λ).

Let m > 2 be an integer. For a1, a2, . . . , am ∈ Z2, the
indicator function χ is such that χ(a1, a2, . . . , am) = 1, if
a1 = a2 = · · · = am and χ(a1, a2, . . . , am) = 0 other-
wise. Consider next four sequences a = (a1, . . . , an), b =
(b1, . . . , bn), c = (c1, . . . , cn),d = (d1, . . . , dn) ∈ Zn2 , paired
as (a, b) and (c,d), and define two pseudo-metrics:

dS((a, b); (c,d)) :=

n∑
i=1

χ(ai, bi) + χ(ci, di)− 2χ(ai, bi, ci, di),

dD((a, b); (c,d)) :=

n∑
i=1

2(χ(ai, bi) + χ(ci, di))+

χ(ai, b̄i, c̄i, di)− 4χ(ai, bi, ci, di),

where x̄ = 1 − x, and x ∈ Z2. Note that the pseudo-metrics
dS((a, b); (c,d)) and dD((a, b); (c,d)) both depend on how
much the sequences within the pairing (ai, bi), (ci, di), i ∈ [n],
disagree from each other, as well as how much the pairs dif-
fer themselves. Furthermore, observe that dS is invariant under
the change of order in the pairing, i.e., dS((a, b); (c,d)) =
dS((b,a); (c,d)), and that it takes the maximum value 2n if
and only if the sequences a, b are identical and complements
of c,d. Hence, this pseudo-metric does not penalize reorderings
of symbols in the same pair of strings. On the other hand, it is
easy to see that dD is actually a metric which assigns non-zero
distances to pairs in which the bits are switched. Consequently,
combining dS and dD in the coding process should allow one
to control both the effects of symbol switching events between
the channels and the substitution errors in the channels.

For a positive real number λ, define the ALD dλ((a, b); (c,d))
as a combination of dS and dD,

λdD((a, b); (c,d)) + (1− λ)dS((a, b); (c,d)) (1)

=

n∑
i=1

(1 + λ) (χ(ai, bi) + χ(ci, di)) + λχ(ai, b̄i, c̄i, di)

−2(1 + λ)χ(ai, bi, ci, di).

It can be shown that dλ((a, b); (c,d)) is a metric. Hence, for
any λ > 0, dλ is non-negative, symmetric and satisfies the tri-

angle inequality. We henceforth focus our attention on integer
λ.

From (1), we observe that the paired symbol distance is
asymmetric, in so far that complementary pairs are treated
differently than non-complementary pairs. Furthermore, when
pairs are complementary, the distance depends on the binary
weight of the pairs. The choice of the parameter λ governs the
degree of the asymmetry in the distance.

In order to highlight the relationship between dλ((a, b); (c,d))
and the Lee distance, define the mapping Z : Z2

2 → Z4 so that
00 → 1, 10 → 0, 01 → 2 and 11 → 3. Then, by changing the
weight between (10) and (01) – from λ to 2(1 + λ), we ar-
rive at a scaled version of the Lee distance dL(x, y) between
symbols x, y ∈ Z4, which reads as

(1 + λ) · min{4− |x− y|, |x− y|} = (1 + λ) · dL(x, y).
(2)

More precisely, for two sequences x,y over Z4, we have

dλ(x,y) =(1 + λ) · dL(x,y)− (3)

(λ+ 2)
∑

{xi,yi}={0,2}

χ(xi, yi) 6 (1 + λ) · dL(x,y).

The main difference between the ALD and the Lee metric is
that the distance between pairs of symbols, say (s, p), (q, r) ∈
Z2
2 is not completely characterized by the weight of the vec-

tor (s, p) + (q, r), and that in particular, it depends on the exact
values of (s, p) in a manner analogous to asymmetric error cor-
recting codes. This connection between the ALD, Lee metric,
and asymmetric error correcting codes will be used in our sub-
sequent derivations.

Let d be a real positive integer. We say that two pairs of se-
quences (a, b), (c,d) ∈ Zn2 × Zn2 are (d,λ)-distinguishable if
their ALD dλ is at least d; similarly, we say that two pairs of
sequences are (d,λ)-indistinguishable if their ALD is less than
d. We use Aλ(n, d) to denote the largest number of (d, λ)-
distinguishable sequences of length n. In the next section, we
derive a number of upper bounds on Aλ(n, d).

III. UPPER BOUNDS

We start by computing Aλ(n, d) using bounds on the size of
codes in the Lee metric. Let Z : Z2

2 → Z4 denote the mapping
introduced in the previous section. Furthermore, let AL(n, d, q)
denote the size of the largest code of length n with minimum
Lee distance d over Zq . Since Z is invertible, we have the fol-
lowing result which easily follows from (3).

Proposition 1. For positive integers n and d, and positive integer
λ, Aλ(n, d) 6 AL(n, b d

1+λc, 4).

A recent Singleton-type bound for codes in the Lee metric
and over an even-sized alphabet [1] asserts that

Aλ(n, d) 6 AL(n, b d

1 + λ
c, 4) 6 22n−b

d
1+λ c+1. (4)

Note that the bound is general, as it applies to codes that are
not necessarily linear.



A. Sphere Packing Bounds on Aλ(n, d) for large n
In what follows, we first derive an expression for the size

of a ball of radius r in the ALD. Using this expression, we
proceed to find asymptotic upper bounds on Aλ(n, 2r + 1).

Given a vector x ∈ Zn2 , let wt(x) denote the Hamming
weight of x. For a pair of sequences (a, b) ∈ Zn2 × Zn2 , let

B(r,λ)(a, b) := {(c,d) ∈ Zn2 × Zn2 : dλ((a, b); (c,d)) 6 r}
denote the set of pairs of sequences that are (r + 1, λ)-
indistinguishable from (a, b). Note that from (1), the quantity
|B(r,λ)(a, b)| is a function of the Hamming weight of a − b,
which we for simplicity denote by w = w(a, b). Let

Sλ(n,w, δ) := |{(c,d) ∈ Zn2 × Zn2 : dλ((a, b); (c,d)) = δ}|,
and

Vλ(n,w, r) := |B(r,λ)(a, b)|,
where we omitted the arguments a, b on the left-hand side of
the equations for simplicity of notation. Clearly, Vλ(n,w, r) =∑r
j=0 Sλ(n,w, j).
Using the same techniques as described in [2], we compute

the generating function of Sλ(n,w, δ),
∞∑
w=0

∞∑
r=0

Sλ(n,w, r)xwzr =xw
(
zλ + (1 + 2z1+λ)

)w · (5)(
z2(1+λ) + (1 + 2z1+λ)

)n−w
.

From (5), it follows that Sλ(n,w, r) equals the coefficient of
xwzr. Since Vλ(n,w, r) =

∑r
i=0 Sλ(n,w, i), the next lemma

follows after some straightforward algebraic manipulations. For
simplicity of notation, we use k∗`∗m 6 (r, λ) to denote (2k+
`)(1 + λ) + λm 6 r.

Lemma 2. For integers n,w, r, Vλ(n,w, r) may be written as∑
k∗`∗m6(r,λ)

(
w
m

)(
n− w
k

)(
n− k −m

`

)
2`.

Corollary 3. For positive integers n,w, and r, it holds that
Vλ(n,w, r) > Vλ(n,w − 1, r).

Using Lemma 2, one can derive the following asymptotic up-
per bound on the size of an ALD, following similar arguments
as those used in [11, Theorem 3].

Lemma 4. There exists an N such that for n > N , we have

Aλ(n, 2r+ 1) 6
4n

Vλ(n, bn/2−
√

5nr log2(n)c, r)
· (1 + o(1)).

From Lemma 4, one recovers the following two special upper
bounds.

Corollary 5.For n > N and L(n) = bn/2−
√

10n log2(n)c,

A1(n, 5) 6
4n

1 + 2n+
∑2
j=1

(
L(n)
j

) .
Corollary 6. For n > N and L(n) = bn/2−

√
15n log2(n)c,

A1(n, 7) 6
4n

1 +
∑3
j=1

(
L(n)
j

)
+ 2L(n)(n− 1) + 2n

.

B. Non-Asymptotic Upper Bounds

We start by introducing our notation, following [4]. Fix r, λ,
x and recall the definition of B(r,λ)(x). Define a directed graph
G(r,λ) on the vertex set Zn2 × Zn2 such that there exists an arc
from x to y if y ∈ B(r,λ)(x). Let A(r,λ) be an adjacency matrix
of dimension 4n × 4n, indexed by the elements in Zn2 × Zn2 .
Then A(r,λ)(i, j) = 1 if xi ∈ B(r,λ)(xj), and zero otherwise.

Let R+ denote the set of non-negative reals, and define

τ∗
(
A(r,λ)

)
= min

{
4n∑
i=1

wi : w ∈ R4n

+ , AT
(r,λ) ·w > 1

}
. (6)

The results of [10] show that one may use τ∗
(
A(r,λ)

)
as an

upper bound for Aλ(n, 2r + 1) . However, (6) is a linear pro-
gram involving 4n equations and we may significantly reduce
this number by observing certain symmetries of G(r,λ).

An automorphism of G(r,λ) is a permutation of its vertices
that preserves adjacency. Let Sn be the symmetric group on n
symbols. The set of all automorphisms of G(r,λ) is defined as
Aut(G(r,λ)) = {π ∈ Sn|π is an automorphism of G}. Given a
subgroup H of Aut(G(r,λ)), let H partition the vertex set into
nH equivalence classes {X1, . . . , XnH}. Let AH,(r,λ) be an
nH × nH adjacency matrix corresponding to the subgroup H ,
such that for 1 6 i, j 6 nH ,

AH,(r,λ)(i, j) =
|{(x,y) : x ∈ Xj ,y ∈ Xi,y ∈ B(r,λ)(x)}|

|Xi|
.

The authors of [4] demonstrated that solving (6) is equivalent
to solving a linear program involving only AH,(r,λ). Combining
this result with those of [10], we have the following.

Theorem 7.(c.f. [4], [10]) Let H be a subgroup of Aut(G(r,λ))
and define AH,(r,λ) as above. Then,

τ∗(A(r,λ)) = min

{
nH∑
i=1

|Xi|·wi : w ∈ RnH+ ,AT
H,(r,λ)·w > 1

}
.

and Aλ(n, 2r + 1) 6 τ∗(A(r,λ)).

Next, we define a set of automorphisms on G(r,λ) as fol-
lows. We first introduce a mapping denoted πσ,x. For every
permutation σ in the symmetric group Sn and any x ∈ Zn2 ,
let πσ,x : Zn2 × Zn2 → Zn2 × Zn2 be a mapping such that for
all (a, b) ∈ Zn2 × Zn2 , (πσ,x(a, b))i = (aσ(i), bσ(i)) if xi = 0
and (πσ,x(a, b))i = (bσ(i),aσ(i)) otherwise. For instance, if
(a, b) = ((0, 0, 1), (1, 0, 1)), x = (0, 1, 0), and σ = (3, 1, 2),
then πσ,x(a, b) = ((1, 1, 0), (1, 0, 0)). It can be shown that the
set H = {πσ,x : σ ∈ Sn,x ∈ Zn2} is a subgroup of Aut(G(r,λ)).
As a result of the previous discussion, a bound on Aλ(n, 2r+1)
may be obtained by considering the quantity

τ∗(A(r,λ)) = min

{
2n ·

n∑
`=0

(
n
`

)
· w` : (7)

w ∈ Rn+1
+ ,AT

H,(r,λ) ·w > 1

}
.

Note that using the automorphism group, the dimension of the
weight vector w has been reduced from O(4n) (as in (6)) to



n+1 in (7). The next theorem provides a feasible weight vector
for the optimization problem in (7).

Theorem 8. Let Vλ(n,w, r) = Vλ(n, 0, r) for w < 0.
Suppose that n, r, λ > 0 and that µ = b r

1+λc. Let w =

(w0, w1, . . . , wn) ∈ Rn+1
+ be defined as wi = 1

Vλ(n,i−µ,r) .
Then,

Aλ(n, 2r + 1) 6 2n ·
n∑
i=0

(
n
i

)
· 1

Vλ(n, i− µ, r)
.

Proof: The result follows directly from Theorem 7 and (7),
provided that we can show that AT

H,(r,λ) ·w > 1. For the given
weight assignment, and for an arbitrary choice of (a, b) ∈ Zn2×
Zn2 , we have∑
(c,d)∈B(r,λ)(a,b)

ww(c,d) =
∑

(c,d)∈B(r,λ)(a,b)

1

Vλ(n,w(c,d)− µ, r)

>
∑

(c,d)∈B(r,λ)(a,b)

1

Vλ(n,w(a, b), r)

=
Vλ(n,w(a, b), r)

Vλ(n,w(a, b), r)
= 1.

Since (c,d) ∈ B(r,λ)(a, b), w(c,d) 6 w(a, b)+µ and now the
inequality follows from Corollary 3.

Throughout the remainder of this section, we consider more
sophisticated weight assignments that in many cases improve
the upper bound of Theorem 8. Notice first that if r = λ, then
the choice of weights w from the previous theorem produces
the best possible upper bound on Aλ(n, 3) achievable via The-
orem 7. This can be seen by noting when r = λ, one may
write

τ∗(A(λ,λ)) = min

{
2n ·

n∑
`=0

(
n
`

)
· w` :

w` · (`+ 1) > 1, 0 6 ` 6 n,w` > 0

}
.

Proposition 9 Suppose that r = λ. Then

τ∗(A(r,λ)) = 2n ·
n∑
`=0

(
n
`

)
`+ 1

=
2n(2n+1 − 1)

n+ 1
.

Hence, Aλ(n, 2λ+ 1) 6 2n(2n+1 − 1)/(n+ 1).

Proposition 10 For integers r, λ, where λ|r,

Aλ(n, 2r + 1) 6 2n ·
n∑
`=0

(
n
`

)
∑r/λ
j=0

(
`
j

) .
We now consider the case where r > 2 and λ = 1. To ease

the notation, we introduce the function

V (n,w, r, `) =
∑

4k+m6r−2`

(
n− w
k

)(
w
m

)
2`.

We also assume that V (n,w, r, `) = 0 if r−2` < 0. Given this
setup, we may write AT

H,(r,1) = (ai,j)
n+1
i=1,j=1, where ai,j =

V (n, j − 1, r, |i− j|). We produce a weight assignment for (7)

by considering another matrix Â(n, r) related to AT
H,(r,1). The

weights are given as w = Â(n, r)−1 · 1. Theorem 11 states
that, indeed, w = Â(n, r)−1 ·1 is a feasible weight assignment
for (7).

We introduce the matrix Â(n, r) as follows: Let Â(n, r) =

(âi,j)
n+1
i=1,j=1 be defined so that for j 6= i, âi,j = min

(
V (n, j−

1, r, |i−j|), 1r (V (n, j−1, r, 0)−1)
)

and âj,j = V (n, j−1, r, 0).

Theorem 11. For integers n, r,

A1(n, 2r + 1) 6 2n ·
n∑
`=0

(
n
`

)
· ŵi,

where ŵ = (ŵ0, . . . , ŵn+1) = ŵ = Â(n, r)−1 · 1.

The results of our bounds on A1(n, 5), when n 6 20, are listed
in Table I. As can be seen from the table, for every code length
considered, Theorem 11 provides a tighter bound than Theo-
rem 8.

TABLE I
COMPARISON OF UPPER BOUNDS FOR A1(n, 5)

Length Bound from (7) Theorem 8 Proposition 10 Theorem 11
5 65 716 254 197
6 209 2348 793 589
7 681 7545 2508 1771
8 2285 23959 8048 5396
9 7723 75688 26190 16719
10 27137 239112 86393 52906
11 95480 758457 288649 170584
12 340889 2422954 975954 562157
13 1233644 7812585 3336118 1885717
14 4471386 25462344 11518362 6425947
15 16320256 83943512 40130869 22271529
16 59909131 279998120 140971957 78091743
17 220589555 944741909 498899141 276648820
18 815168373 3222862985 1777507455 991500693
19 3022921187 11108080869 6371682078 3578006784
20 11241799535 38650901357 22966595378 12983261249

IV. CODE CONSTRUCTIONS

In what follows, we present constructions of linear codes un-
der the ALD for the case where λ = 1. We first address the
case where the minimum ALD is equal to three.

For a positive integer v, let H ′3 ∈ Fv×(2
v−2)

2 be a matrix
which has as its columns all non-zero vectors from Fv2, except
for the all-ones vector. Write H ′3 = (h′1,h

′
2, . . . ,h

′
2v−2), where

for i ∈ {1, . . . , 2v − 2}, h′i represents the i-th column of H ′3.
Furthermore, let 1v ∈ Fv×12 be the all-ones vector.

In this setting, let C(2v− 2, 3) ⊆ Z2v−2
2 ×Z2v−2

2 be equal to

C(2v − 2, 3) :=
{

(a, b) ∈ F2v−2
2 × F2v−2

2 :

2v−2∑
i=1

ai · h′i +

2v−2∑
i=1

bi · 1v = 0}.

Note that a code with minimum ALD distance three (for λ =
1) can either:

1) Correct a single Class 1 error, or
2) Detect a single Class 2 error.

In the following lemma, we show that the code C(2v−2, 3) can
perform either 1) or 2).



Lemma 12. For any positive integer n, d1(C(2v − 2, 3)) > 3.
Proof: Let n = 2v − 2. Suppose that (a, b) ∈ C(n, 3) was

transmitted and that the vector (c,d) ∈ Fn2 × Fn2 was received,
where (c,d) = ((c1, d1), (c2, d2), . . . , (cn, dn)) is the result of
at most a single Class 2 error occurring in (a, b). For the re-
mainder of this proof, let s =

∑n
i=1 ci ·h

′
i +
∑n
i=1 di · 1v . If a

single Class 2 error has occurred in position j ∈ {1, . . . , n} of
a, then s = h′j 6= 0. Otherwise, if the Class 2 error occurred
in position j of b, then s = 1v 6= 0 holds as well. Clearly, if
no Class 2 errors occured, we have s = 0. Thus, C(n, 3) can
detect whether a single Class 2 error has occurred by checking
if s is non-zero.

Suppose that (a, b) ∈ C(n, 3) was transmitted and
that the vector (c,d) ∈ Fn2 × Fn2 was received, where
(c,d) = ((c1, d1), (c2, d2), . . . , (cn, dn)) is the result of at
most one Class 1 error in (a, b). We describe next how to re-
cover (a, b) from (c,d). Let s2 = s + 1v . Note that if (c,d)
is the result of a single Class 1 error in (a, b), then

s2 =

(
n∑
i=1

ci · h′i +

n∑
i=1

di · 1v

)
+ 1v = h′j + 1v + 1v = h′j ,

where j ∈ {1, . . . , n} is the position of the error in (a, b). Oth-
erwise, if no error occured, s2 = s+1v = 1v . From the above
discussion (recall h′j 6= 1v by design) it is clear that a C(n, 3)
decoder can recover (a, b) from (c,d) from s2 as follows. If
s2 = 1v , then the decoder concludes that no errors have oc-
curred. Otherwise, if s2 = h′j for some j ∈ {1, . . . , n}, then
the decoder corrects a Class 1 error at position j.

As a consequence of Lemma 12 and Proposition 9, we have

4n

n+ 2
6 A1(n, 3) 6

2n(2n+1 − 1)

n+ 1
.

We now turn our attention to the problem of constructing
codes with minimum ALD equal to d. We first describe the code
construction, and then proceed to provide a proof of its correct-
ness. Let H ′d ∈ Fs×2n2 be a parity check matrix for a code C with
Hamming distance d. Write H ′d = (h′1, . . . ,h

′
2n), where, as be-

fore, h′i denotes the i-th column of H ′d. Let C(n, d) ⊆ Zn2 ×Zn2
be defined as

C(n, d) :=
{

(a, b) = ((a1, b1), . . . , (an, bn)) ∈ Fn2 × Fn2 :

n∑
i=1

ai · h′i +

n∑
i=1

bi · (h′i + h′n+i) = 0
}
.

Lemma 13. For a positive integer n, d1(C(n, d)) > d.
Proof: Since the code C(n, d) is linear, we only need to

show that for any (c,d) ∈ Fn2 × Fn2 , we have s =
∑n
i=1 ci ·

h′i +
∑n
i=1 di · (h

′
i + h′n+i) 6= 0 when d1((0,0); (c,d)) < d.

Suppose, in particular, that (c,d) is the result of m Class 1
errors, ` Class 2 errors, and k Class 3 errors, where m+ 2`+
4k < d. Then, s is the sum of at most m+ 2`+ k columns of
H ′d. Since m + 2` + 4k < d, then m + 2` + k < d, and since
H ′d is a parity-check matrix of a code with Hamming distance
d, we conclude that s 6= 0.

We now comment on the size of the code C(n, d) for the case
when r = 2 or d = 5. We compare the ALD code C(n, 5) with

codes constructed directly for the Hamming distance, assumed
to be large enough. In particular, we consider (a) binary codes
of length 2n; and (b) the binary image of quaternary codes of
length n.

For (a), since a code with minimum ALD equal to five must
be able to correct four errors (resulting from two Class 1 er-
rors), we require a binary code C2 that has minimum Hamming
distance at least nine. By definition, |C(n, 5)| is strictly larger
than |C2|, and the direct method offers worse code rates than
our construction. As an example, for 2n = 2v−2, where v > 2
is a positive integer, |C(n, 5)| > 4n

(2n+2)2 , if shortened binary
BCH codes are used as defining codes. Proposition 10 for the
case λ = 1 and r = 2, and the lower bound on |C(n, 5)|, imply
that for 2n = 2v − 2, and integer v > 2,

4n

(2n+ 2)2
6 A1(n, 5) 6

3 · 2n

(n+ 1)(n+ 2)

(
2n+2 − n− 3

)
.

Next, consider the case (b). For a quaternary code C4 to have
minimum ALD distance five, the code should have Hamming
distance at least five. Writing the sphere packing bound for
quaternary codes with Hamming distance five, we have that
|C4| 6 4n∑2

j=0 (nj)3j
. This value is strictly smaller than 4n

(2n+2)2 ,

which is a lower bound for the value of |C(n, 5)|, i.e.,

|C4| 6
4n∑2

j=0

(
n
j

)
3j

<
4n

(2n+ 2)2
6 |C(n, 5)|,

where v > 5. Hence, our construction outperformes the direct
approach for the case of a quaternary alphabet as well.
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