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Abstract—The study of binary constant subblock-composition
codes (CSCCs) has recently gained attention due to their applica-
tion in diverse fields. These codes are a class of constrained codes
where each codeword is partitioned into equal sized subblocks,
and every subblock has the same fixed weight. We present novel
upper and lower bounds on the asymptotic rate for binary
CSCCs, using the sphere-packing and Gilbert-Varshamov (GV)
type bounds, respectively. For a fixed subblock length and small
code distance, we show that the asymptotic rate for CSCCs is
strictly lower than the corresponding rate for constant weight
codes (CWCs). We also provide a correction to an earlier result
by Chee et al. (2014) on the asymptotic CSCC rate.

I. INTRODUCTION

Binary constant subblock-composition codes (CSCCs) are a
class of constrained codes where each codeword is partitioned
into equal sized subblocks, and every subblock has the same
fixed weight. Chee et al. [1] proposed the use of binary CSCCs
in design of low cost authentication methods, and provided
rudimentary bounds on CSCC code size. Other constructions
of CSCCs have been proposed by various authors [2], [3].
Note that CSCCs were labeled as multiply constant weight
codes (MCWCs) in [1], [2], [3]. CSCCs were shown to be
suitable candidates for simultaneous energy and information
transfer in [4], where bounds on CSCC capacity and CSCC
error exponent over discrete memoryless channels were pre-
sented.

In this paper, we study bounds on the optimal code size and
asymptotic rate for binary CSCCs with a given error correction
capability. We present upper and lower bounds on the asymp-
totic rate for binary CSCCs, using the sphere-packing and
Gilbert-Varshamov (GV) type bounds, respectively. Moreover,
for fixed subblock length and small code distance, we show
that the asymptotic rate for CSCCs is strictly lower than the
corresponding rate for constant weight codes (CWCs).

The notation used is as follows. An n-length, binary code C
is a subset of {0, 1}n. The elements of C are called codewords
and C is said to have distance d if the Hamming distance
between any two distinct codewords is at least d. A binary
code of length n and distance d is called an (n, d)-code, and
the largest size of an (n, d)-code is denoted by A(n, d). A
constant weight code (CWC) with parameter w is a code
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where each codeword has weight exactly w. We denote a
CWC with weight parameter w, block-length n, and distance d
by (n, d, w)-CWC, and denote its optimal size by A(n, d, w).

A subblock-constrained code is a code where each code-
word of length n is partitioned into subblocks of length
L, and each subblock satisfies a fixed set of constraints.
A binary CSCC is characterized by the property that each
subblock in every codeword has the same weight, i.e. each
subblock has the same number of ones. A binary CSCC with
codeword length n = mL, minimum distance d, subblock
length L, number of subblocks m, and weight ws per subblock
is called an (m,L, d, ws)-CSCC. We denote the maximum
possible size of (m,L, d, ws)-CSCC by C(m,L, d, ws). Since
an (m,L, d, ws)-CSCC is an (mL, d,mws)-CWC, we have
that C(m,L, d, ws) ≤ A(mL, d,mws).

We analyze bounds on CSCC rate in the asymptotic setting
where the number of subblocks m tends to infinity, but L and
ws are fixed. Formally, for fixed 0 < δ < 1, the asymptotic
CSCC rate with fixed subblock length L, weight per subblock
ws, number of subblocks in a codeword m→∞, and distance
d scaling as d = bmLδc is defined as

γ(L, δ, ws/L) , lim sup
m→∞

logC(m,L, bmLδc, ws)
mL

. (1)

This rate can be compared with related exponent for CWCs:

α(δ, ws/L) , lim sup
n→∞

logA (n, bnδc, bnws/Lc)
n

. (2)

The asymptotic CSCC rate was also studied in [1], in which
an inconsistent rate definition led to an erroneous statement
(see [1, Prop. 6.1]). Proposition 3 in Section III provides a
correct statement for the CSCC rate in the scenario where the
subblock length tends to infinity.

A. Our Contributions

The contributions of this paper are as follows:
• We provide both upper and lower bounds for
C(m,L, d, ws) in Section II.

• We derive bounds on the asymptotic rate for CSCCs in
Section III. Additionally, for given L and ws, in Section
IV we demonstrate the existence of an δ̃L such that
α(δ, ws/L) > γ(L, δ, ws/L) for all δ < δ̃L.

• We provide numerical lower bounds on the asymptotic
rate gap between CWCs and CSCCs in Section V.
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II. BOUNDS ON OPTIMAL CSCC CODE SIZE

We derive the GV and sphere-packing bounds on the
optimal CSCC code size, C(m,L, d, ws), in this section and
their respective asymptotic versions in Section III. We remark
that while other fundamental bounds for C(m,L, d, ws) were
discussed in [1], those bounds are insufficient to provide good
bounds on the asymptotic rates γ(L, δ, ws/L).

Let C(m,L,ws) denote the space of all binary CSCC words
composed of m subblocks, each subblock having length L,
with weight ws per subblock. For x ∈ C(m,L,ws), we define
a CSCC ball, centered at x and having radius t, as

BC(x, t;m,L,ws) , {y ∈ C(m,L,ws) : d(x,y) ≤ t}. (3)

Lemma 1. If x and x̃ are two distinct words in C(m,L,ws),
then the ball size |BC(x, t;m,L,ws)| = |BC(x̃, t;m,L,ws)|.

Proof: For 1 ≤ i ≤ m, let x[i] (resp. x̃[i]) denote the
ith subblock of x (resp. x̃). As x[i] and x̃[i] have constant
weight ws, there exists a permutation πi on L letters such that
x̃[i] = πi(x[i]). Now, if π denotes the permutation on mL let-
ter induced by πi, defined as π(x) , [π1(x[1]) · · ·πm(x[m])],
then x̃ = π(x). The proof is complete by observing that
BC(x̃, t;m,L,ws) = {π(y) : y ∈ BC(x, t;m,L,ws)}.

In view of the above lemma, the size of CSCC ball is
independent of the center word. In contrast, for a related space
where each subblock has weight at least ws, we demonstrate
in the full paper [5] that ball size for a fixed radius varies with
the center word.

The GV bound for C(m,L, d, ws) is presented next.

Proposition 1. If v , min{ws, L− ws}, then

C(m,L, d, ws) ≥
(
L
ws

)m
∑

2(u1+u2+···+um)≤d−1,
0≤ui≤v

m∏
i=1

(
ws
ui

)(
L− ws
ui

)
(4)

Proof: Using standard Gilbert construction [6] in the
space C(m,L,ws), we have the lower bound

C(m,L, d, ws) ≥
|C(m,L,ws)|

|BC(x, d− 1;m,L,ws)|
, (5)

where x is any word in C(m,L,ws), and |C(m,L,ws)| =(
L
ws

)m
. From Lemma 1 we note that |BC(x, d− 1;m,L,ws)|

is independent of the choice of x. The proposition then follows
if we show that the denominator in (4) is equal to |BC(x, d−
1;m,L,ws)|. Towards this, let x[i] be the ith subblock of x.
Then the number of length L binary vectors of weight ws at a
distance 2ui from x[i] is

(
ws

ui

)(
L−ws

ui

)
when 0 ≤ ui ≤ v (and 0

otherwise). Now, if y ∈ C(m,L,ws), and distance between ith
subblocks of x and y is 2ui, then y ∈ BC(x, d− 1;m,L,ws)
if and only if 2

∑m
i=1 ui ≤ d − 1. Hence, the size of CSCC

ball of radius d− 1 is given by the denominator in (4).
The following proposition presents the sphere-packing

bound for CSCCs.

Proposition 2. If t , b(d−1)/2c and v , min{ws, L−ws},
then we have

C(m,L, d, ws) ≤
(
L
ws

)m
∑

2(u1+u2+···+um)≤t,
0≤ui≤v

m∏
i=1

(
ws
ui

)(
L− ws
ui

)
(6)

Proof: The claim follows from the sphere-packing ar-
gument that balls of radius t = b(d − 1)/2c around
codewords should be non-intersecting in an (m,L, d, ws)-
CSCC, and the fact that the denominator in (6) is equal to
|BC(x, t;m,L,ws)|.

III. ASYMPTOTIC BOUND ON CSCC RATE

The asymptotic rate for CSCCs may be studied in scenarios
where the number of subblocks m, or the subblock length L,
or both, tend to infinity. The following proposition states that
the asymptotic rate of CSCC is equal to that of CWC when
the subblock length L tends to infinity. This is not surprising
as the subblock constraint fades asymptotically (i.e., L→∞),
and we refer the reader to [5] for the proof.

Proposition 3. For any positive integer m and 0 ≤ δ, ω ≤ 1,

lim
L→∞

logC(m,L, bδmLc , bωLc)
mL

= α(δ, ω). (7)

Asymptotic rate results were also presented in [1]. However,
there were some inconsistencies in the definition of the
asymptotic CSCC rate and the resulting claim in [1, Prop. 6.1]
was incorrect. Proposition 3 above provides a correction. The
inconsistency in the CSCC rate definition in [1] also renders
[1, Thm. 6.3] incorrect, whose proof also contained some
anomalies.

In the remainder of the paper, we fix the relative distance δ,
the subblock length L, the subblock weight ws, and provide
estimates of CSCC rates when number of subblocks m tend to
infinity. The motivation for fixing L to relatively small values
comes from the application of CSCCs to simultaneous energy
and information transfer [4]. Here, it is shown that CSCC with
appropriate weight will avoid energy outage at the receiver if
the subblock length is less than a certain threshold [4].

Using rate definitions for γ(L, δ, ws/L) and α(δ, ws/L),
given by (1) and (2), respectively, we have the trivial inequal-
ity

γ(L, δ, ws/L) ≤ α(δ, ws/L). (8)

The following proposition shows that for the case when L = 2
and ws = 1, the CSCC rate γ(L, δ, ws/L) is strictly less than
α(δ, ws/L) when 0 < δ < 1/2.

Proposition 4. We have

γ(2, δ, 1/2) =
1

2
α(δ, 1/2). (9)

Proof: It was shown in [1, Cor. 4.2] that C(m, 2, 2d, 1) =
A(m, d). Then (9) follows immediately from the definitions
of asymptotic rates.
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If α(δ) denotes the optimum rate using binary codes with
relative distance δ (with no weight constraint), then we have
α(δ, 1/2) = α(δ) [7], and the relation in (9) can alternately
be expressed as γ(2, δ, 1/2) = (1/2)α(δ). Now, from the GV
bound for general binary codes [7], we know that α(δ) > 0
for 0 < δ < 0.5, while from the asymptotic Plotkin bound [8]
for binary codes, we have α(δ) = 0 for δ ≥ 0.5. Thus, from
(9), it follows that the inequality in (8) is strict for the case
when L = 2, ws = 1, and 0 < δ < 0.5.

In general, for L ≥ 3, define

δ∗ , 2
(ws
L

)(
1− ws

L

)
. (10)

From the MRRW bound for constant weight codes [7,
Eq. (2.16)], we have

α(δ, ws/L) = 0, if δ ≥ δ∗. (11)

From (8) and (11), it follows that

γ(L, δ, ws/L) = 0, if δ ≥ δ∗. (12)

Theorem 1 presents a lower bound for γ(L, δ, ws/L) using the
GV bound for C(m,L, d, ws) when δ < δ∗. The following
lemmas will be used towards proving this theorem.

Lemma 2. For fixed positive integers m, n and z, let ki,
with 1 ≤ i ≤ m, be integers which satisfy 0 ≤ ki ≤ n,∑m
i=1 ki = z. Then we have the inequality

m∏
i=1

(
n

ki

)
≤
(

n

bz/mc

)m1
(

n

dz/me

)m−m1

, (13)

where m1 = mdz/me − z.

Proof: Follows from log-concavity of the binomial coef-
ficients [9].

Lemma 3. For 0 < k ≤ ws(L − ws)/L, we have the
inequality(

ws
k

)(
L− ws
k

)
>

(
ws
k − 1

)(
L− ws
k − 1

)
. (14)

Proof: We have(
ws

k

)(
L−ws

k

)(
ws

k−1
)(
L−ws

k−1
) =

(ws − (k − 1)) ((L− ws)− (k − 1))

k2

(a)

≥ Lk − L(k − 1) + (k − 1)2

k2
(b)
> 1,

where (a) follows because ws(L−ws) ≥ Lk, and (b) follows
from the fact that k ≤ min{ws, L− ws} ≤ L/2.

Theorem 1 (Asymptotic GV bound for CSCCs). For 0 <
δ < δ∗, we have γ(L, δ, ws/L) ≥ γGV (L, δ, ws/L), where
γGV (L, δ, ws/L) is defined as follows
a) For L = 2,

γGV (2, δ, 1/2) ,
1

2
(1− h(δ)), (15)

where h(x) , −x log2 x− (1− x) log2(1− x).

b) For L > 2, γGV (L, δ, ws/L) is defined equal to

1

L
log

(
L

ws

)
−min{θ(L,ws), φ(L, δ)}

−
(
1 + u− due

L

)
log

[(
ws
due

)(
L− ws
due

)]
−
(
due − u
L

)
log

[(
ws
buc

)(
L− ws
buc

)]
,

(16)

where θ(L,ws) , 1
L log (min{ws, L− ws}+ 1),

φ(L, δ) ,
(
1
L + δ

2

)
h
(

1
1+δL/2

)
, and u , δL/2.

Proof: The claim for L = 2 follows from (9) and the GV
bound for general binary codes.

For establishing the result for L > 2, we use Prop. 1. The
challenge is to provide an appropriate upper bound on the
CSCC ball size of radius d− 1, |BC(x, d− 1;m,L,ws)| (the
denominator in (4)). If we define v , min{ws, L− ws} and
t , b(d−1)/2c, then using Lemmas 2 and 3, we show in the
full paper [5] that this ball size is upper bounded as

|BC(x, d− 1;m,L,ws)| < Qt min

{
(v + 1)m,

(
t+m

m

)}
,

(17)
where Qt is defined as the expression below[(

ws
bt/mc

)(
L− ws
bt/mc

)]mt
[(

ws
dt/me

)(
L− ws
dt/me

)]m−mt

,

(18)
with mt , mdt/me − t. As d = bmLδc, the t/m
term in (18) tends to δL/2 =: u as m → ∞.
Using (1), (5), and (17), we observe that γ(L, δ, ws/L)
is lower bounded by 1

L log
(
L
ws

)
− limm→∞

1
mL logQt −

min
{

1
L log(v + 1), limm→∞

1
mL log

(
t+m
m

)}
. Further, we

have limm→∞
1
mL log

(
t+m
m

)
=
(
1
L + δ

2

)
h
(

1
1+δL/2

)
, and

hence the lower bound on γ(L, δ, ws/L) simplifies to the
expression on the right hand side of (16).

The following theorem presents the asymptotic sphere-
packing upper bound on γ(L, δ, ws/L) when δ < δ∗.

Theorem 2 (Asymptotic sphere-packing bound for CSCCs).
For 0 < δ < δ∗, we have γ(L, δ, ws/L) ≤ γSP (L, δ, ws/L),
where γSP (L, δ, ws/L) is defined as the expression below

1

L
log

(
L

ws

)
− 1

L
h(dũe − ũ)

−
(
1 + ũ− dũe

L

)
log

[(
ws
dũe

)(
L− ws
dũe

)]
−
(
dũe − ũ
L

)
log

[(
ws
bũc

)(
L− ws
bũc

)]
, (19)

with ũ , δL/4.

Proof: For proving the claim, we apply Prop. 2 and
provide an appropriate lower bound on |BC(x, t;m,L,ws)|
(the denominator in (6)), where t = b(d − 1)/2c. If v ,
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min{ws, L−ws}, t̃ , bt/2c, and ṽ , t̃/m, then we show in
the full paper [5] that |BC(x, t;m,L,ws)| is lower bounded by(

m

m̃

)[(
ws
bṽc

)(
L− ws
bṽc

)]m̃ [(
ws
dṽe

)(
L− ws
dṽe

)]m−m̃
,

(20)
where m̃ , mdt̃/me − t̃. Using (20), and the fact that

lim
m→∞

m̃

m
= lim
m→∞

(dṽe − ṽ) = dũe − ũ, (21)

we have that lim
m→∞

1

mL
log |BC(x, t;m,L,ws)| is lower

bounded by

1

L
h (dũe − ũ) +

(
dũe − ũ
L

)
log

(
ws
bũc

)
+

(
1 + ũ− dũe

L

)
log

(
ws
dũe

)
+

(
dũe − ũ
L

)
log

(
L− ws
bũc

)
+

(
1 + ũ− dũe

L

)
log

(
L− ws
dũe

)
. (22)

The theorem is proved by combining Prop. 2, (1), and (22).

For L = 2, ws = 1, we have γSP (2, δ, 0.5) = 0.5(1 −
h(δ/2)), which also follows from γ(2, δ, 1/2) = (1/2)α(δ)
and then applying the sphere-packing bound (Hamming
bound) [7] for unconstrained binary codes.

For 0 < δ < min
{
δ∗, 4

L

}
, the expression for

γSP (L, δ, ws/L) (19), simplifies to

1

L
log

(
L

ws

)
− δ

4
log (ws(L− ws))−

1

L
h

(
δL

4

)
(23)

IV. RATE GAP BETWEEN CWCS AND CSCCS

The rate penalty due to constant weight per subblock, rela-
tive to the constraint requiring constant weight per codeword,
is quantified by Gα−γ(L, δ, ws/L), defined as

Gα−γ(L, δ, ws/L) , α(δ, ws/L)− γ(L, δ, ws/L). (24)

A lower bound to this rate gap is given by

GLBα−γ(L, δ, ws/L) , [αGV (δ, ws/L)− γSP (L, δ, ws/L)]+ ,
(25)

where the notation [z]+ implies max{0, z}, the term
γSP (L, δ, ws/L) is given by (19), and

αGV (δ, ω) , h(ω)− ωh
(
δ

2ω

)
− (1− ω)h

(
δ

2(1− ω)

)
,

(26)
with αGV (δ, ws/L) denoting the asymptotic GV lower bound
for CWCs [10], [7]. The sphere-packing upper bound on the
asymptotic rate for CWCs is given by αSP (δ, ω), with

αSP (δ, ω) , h(ω)− ωh
(
δ

4ω

)
− (1− ω)h

(
δ

4(1− ω)

)
.

(27)
The following theorem uses above definitions to show that

rate penalty is strictly positive when δ is sufficiently small.

Theorem 3. For even L with L ≥ 4, we have the strict
inequality GLBα−γ(L, δ, 0.5) > 0 for 0 < δ < δ̃L, where δ̃L
is the smallest positive root of f̃L(δ) defined as

f̃L(δ) , 1− h(δ)− 1

L
log

(
L

L/2

)
+
δ

2
log

L

2
+

1

L
h

(
δL

4

)
.

(28)

Proof: Using (23), (25), and (26), we have
GLBα−γ(L, δ, 0.5) = f̃L(δ) when δ < 2/L. We show in
the full paper [5] that f̃L(0) > 0 and f̃L(1/L) < 0, and thus
the equation f̃L(δ) = 0 has a solution in (0, 1/L) as f̃L is a
continuous function of δ. The theorem follows by denoting
the smallest positive root of f̃L(δ) by δ̃L.

Remark: Although Thm. 3 only considers ws = L/2, a
similar argument shows that, in general for 0 < ws < L, the
rate gap Gα−γ(L, δ, ws/L) is strictly positive for small δ.

Proposition 5. The rate gap between CWCs and CSCCs,
Gα−γ(L, δ, ws/L), is identically zero when δ∗ ≤ δ ≤ 1.

Proof: Follows from (11) and (12).
In [4], the gap between CWC capacity and CSCC capacity

on noisy binary input channels was upper bounded by a rate
penalty term defined as

r(L, ω) , h(ω)− (1/L) log

(
L

Lω

)
> 0, (29)

where ω = ws/L. Further, it was shown in [4] that the actual
capacity gap is equal to r(L, ω) for a noiseless channel. The
following proposition shows that GLBα−γ(L, δ, ws/L) tends to
r(L,ws/L) as δ tends to 0.

Proposition 6. For 0 < ws < L, we have

lim
δ→0

GLBα−γ(L, δ, ws/L) = r(L,ws/L) > 0. (30)

Proof: Take the limit δ → 0 in (19) and (26).

Proposition 7. The lower bound on the rate gap between
CWCs and CSCCs, GLBα−γ(L, δ, ws/L), is tight when δ → 0.

Proof: Combine Prop. 6 with the observation that upper
bound on rate gap, given by αSP (δ, ws/L)− γGV (δ, ω), also
tends to r(L,ws/L) as δ tends to 0 (see (15), (16), and (27)).

V. NUMERICAL RESULTS

Fig. 1 plots GLBα−γ(L, δ, 0.5) as a function of the subblock
length. The upper bound on the gap between CWC capacity
and CSCC capacity on noisy binary channels for ws = L/2,
given by r(L, 0.5) (see (29)), is also plotted in red. As shown
in Proposition 6, the figure demonstrates that GLBα−γ(L, δ, 0.5)
tends to r(L, 0.5) as δ gets close to zero. For a fixed value of
ws/L, note that αGV (δ, ws/L) is independent of L. Thus, for
a given δ, the decrease in GLBα−γ(L, δ, 0.5) with increasing L is
due to an increase in CSCC rate. This is intuitively expected,
because an increase in L allows for greater flexibility in the
choice of bits within every subblock. Further, from Prop. 3,
it follows that GLBα−γ(L, δ, 0.5)→ 0 as L→∞.
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Fig. 1. GLBα−γ(L, δ, 0.5) versus subblock length, L.
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Fig. 2. GLBα−γ(16, δ, ws/16) as a function of subblock weight, ws.

4 8 12 16 20 24 28 32 36 40
0

0.02

0.04

0.06

0.08

0.1

0.12

Subblock length, L

δ

 

 

GLB
α−γ(L, δ, 0.5) > 0

ւ
δ̃L

δ < δ̃L

Fig. 3. Area where GLBα−γ(L, δ, 0.5) is strictly positive.

Fig. 2 plots GLBα−γ(L, δ, ws/L) when the subblock length is
fixed at L = 16, and ws varies from L/2 to L− 1. Note that
GLBα−γ(L, δ, (L − ws)/L) = GLBα−γ(L, δ, ws/L). As expected,
the lower bound on the rate gap is seen to decrease with δ.

Fig. 3 depicts the region where Gα−γ(L, δ, 0.5) is provably
strictly positive. Note that when L fixed and ws = L/2,
then δ̃L is the smallest value of δ for which the lower bound
GLBα−γ(L, δ, ws/L) is zero (see Thm. 3). The figure shows that
δ̃L decreases with L, and from Prop. 3 it follows that δ̃L → 0
when L → ∞. Moreover, using Prop. 5, it is seen that the
actual rate gap Gα−γ(L, δ, 0.5) is provably zero for δ ≥ 0.5.

VI. REFLECTIONS

We derived the GV and sphere-packing bounds for CSCCs.
These bounds were used to show that rate gap between CWCs
and CSCCs is strictly positive when relative distance δ is
small. In particular, for a fixed subblock length L and weight
ws, we demonstrated the existence of some δ̃L, such that
the gap Gα−γ(L, δ, ws/L) is strictly positive for δ < δ̃L.
Furthermore, we provided an estimate on δ̃L via Theorem 3.

The converse problem, on identifying an interval for δ
where Gα−γ(L, δ, ws/L) is provably zero was addressed via
Proposition 5. An open problem in this regard is to character-
ize the smallest δ beyond which the respective rate penalties
are zero. The results in [4] indicate a nonzero gap between
CWC and CSCC capacities on noisy channels, suggesting that
for a fixed subblock length L, the rate penalties are zero if and
only if the respective asymptotic rates themselves are zero.

In the full paper [5], we also study the subblock energy-
constrained codes (SECCs) where the constraint on each sub-
block having weight exactly ws, is replaced by the constraint
that subblock weight is at least ws. We show that for ws ≥
L/2 and small δ, the asymptotic SECC rate is sandwiched
strictly between CWC and CSCC asymptotic rates.
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