
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 6, JUNE 2016 3125

Codes for DNA Sequence Profiles
Han Mao Kiah, Gregory J. Puleo, and Olgica Milenkovic, Senior Member, IEEE

Abstract— We consider the problem of storing and retrieving
information from synthetic DNA media. We introduce the DNA
storage channel and model the read process through the use
of profile vectors. We provide an asymptotic analysis of the
number of profile vectors and propose new asymmetric coding
techniques to combat the effects of synthesis and sequencing
noise. Furthermore, we construct two families of codes for this
new channel model.

Index Terms— DNA information storage; DNA synthesis;
DNA sequencing; profile vectors; Ehrhart theory; asymmetric
error correcting codes.

I. INTRODUCTION

RECONSTRUCTING sequences based on partial
information about their subsequences, substrings, or

composition is an important problem arising in channel
synchronization systems, phylogenomics, genomics, and
proteomic sequencing [3]–[5]. With the recent development
of archival DNA-based storage devices [6], [7] and rewritable,
random-access DNA storage media [8], a new family of
reconstruction questions has emerged regarding how to design
sequences which can be easily and accurately reconstructed
based on their substrings, in the presence of write and read
errors. The write process in DNA-based storage systems
is DNA synthesis, a biochemical process that allows for
creating moderately long DNA strings via the use of columns
or microarrays [9]. Synthesis involves sequential inclusion of
bases into a growing string, and is accompanied by chemical
error correction. The read process in DNA-based storage
is DNA sequencing, while classical decoding is replaced
by a combination of assembly and error-control decoding.
DNA sequencing operates by creating many copies of the
same string and then fragmenting them into a collection
of substrings (reads) of approximately the same length, �,
so as to produce a large number of overlapping “reads”. The
larger the number of sequence replicas and reads, the larger
the coverage of the sequence – the average number of times
a symbol in the sequence is contained in a read. Assembly
aims to reconstruct the original sequence by stitching the

Manuscript received January 29, 2015; revised April 1, 2016; accepted
April 4, 2016. Date of publication April 20, 2016; date of current version
May 18, 2016. This work was supported in part by the National Science
Foundation under Grant STC Class 2010 CCF 0939370 and Grant CCF
1526875 and in part by the University of Illinois at Urbana–Champaign
through the Strategic Research Initiative. The work of G. J. Puleo was
supported by the IC Post-Doctoral Research Fellowship. This paper was
presented at the 2015 Proceedings of the ITW [1] and the 2015 Proceedings
of the ISIT [2]. (Corresponding author: Han Mao Kiah.)

H. M. Kiah is with the School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 637371 (e-mail:
hmkiah@ntu.edu.sg).

G. J. Puleo and O. Milenkovic are with the Coordinated Science Laboratory,
University of Illinois at Urbana–Champaign, Champaign, IL 61801 USA
(e-mail: puleo@illinois.edu; milenkov@illinois.edu).

Communicated by M. Schwartz, Associate Editor for Coding Techniques.
Digital Object Identifier 10.1109/TIT.2016.2555321

overlapping fragments together; the assembly procedure
is NP-hard under most formulations [10]. Nevertheless,
practical approximation algorithms based on Eulerian paths
in de Bruijn graphs have shown to offer good reconstruction
performance under high-coverage [11]. Due to the high
cost of synthesis, most current DNA storage systems do
not use sequence lengths n exceeding several thousands
nucleotides (nts). Synthesis error rates range between
0.1 and 3% depending on the cost of the technology [9], [12],
and the errors are predominantly substitution errors. The
read length � typically ranges anywhere between 100 to
1500 nts, although some technologies even produce reads
of lengths exceeding 10, 000 nts. Substrings of short length
may be sequenced with an error-rate not exceeding 1%;
long substrings exhibit much higher sequencing error-rates,
often as high as 15% [13]. In the former case, the dominant
error events are substitution errors [14]. Furthermore, due to
non-uniform fragmentation, some proper substrings are not
available during the reading stage, leaving what is known as
coverage gaps in the original message.

More formally, to store and retrieve information in DNA
one starts with a desired information sequence encoded
into a sequence x ∈ D = {A, T,G,C}n , where D denotes
the nucleotide alphabet. The DNA storage channel, shown
in Fig. 1 and formally defined in Section II, models a
physical process which takes as its input the sequence x
of length n, and synthesizes (writes) it physically into a
macromolecule string, denoted by x̃. Hence, DNA both
encodes information and serves as a storage media. Ideally,
one would like to synthesize x without errors, which is
not possible in practice. As a result, the sequence x̃ is a
distorted version of x in so far as it contains ssyn substitution
errors, where ssyn is an integer value governed by the
synthesis technology. When a user desires to retrieve the
information, the process proceeds to amplify the string x̃
and then fragments all copies of the string, resulting in a
highly redundant mix of reads. This mix may contain multiple
copies of the same substring, say x̃1 = x̃1 · · · x̃� as well as
multiple copies of another substring x̃k = x̃k · · · x̃k+�−1, with
k �= 1 identical to x̃1 (i.e., such that x̃1 = x̃k). Since the
concentration of all (not necessarily) distinct substrings within
the mix is usually assumed to be uniform, one may normalize
the concentration of all subsequences by the concentration
of the least abundant substring. As a result, one actually
observes substring concentrations reflecting the frequency of
the substrings in one copy of x̃. Hence, in the DNA storage
channel we model the output of the fragmentation block as an
unordered subset of substrings (reads) of the sequence x̃ of
length �, with � < n, denoted by ˜L(x) = {̃xi1 , . . . , x̃i f }, where
i1 < i2 < . . . < i f , and where f ≤ n − � + 1 is the number
of reads. As an example, both x̃1 and x̃k may be observed

0018-9448 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

3126 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 6, JUNE 2016

Fig. 1. The DNA Storage Channel. Information is encoded in a DNA sequence x which is synthesized with potential errors. The output of the synthesis
process is x̃. During readout, the sequence x̃ is passed through the sequencing channel, which fragments the sequence and possibly perturbs the fragments
via substitution errors. The output of the channel is a set of DNA fragments, along with their frequency count, the multiplicity vector of ̂L(x).

and hence included in the unordered set of substrings, or
only one or neither. In the latter two cases, we say that the
substring(s) were not covered during fragmentation.

Some of the observed substrings will contain additional
substitution errors, due to the next step of sequencing or
reading of the substrings. For simplicity, we assume that
the total number of sequencing errors equals sseq. The set
of substrings at the output of the DNA storage channel is
denoted by the multiset ̂L(x) = {̂xi1 , . . . , x̂i f }, and each x̂i

may be a substitution-distorted version of x̃i . The information
contained in ̂L(x) may be summarized by its multiplicity
vector, also called output profile vector p̂(x), which is also our
channel output. The profile vector is of length 4�, and each
entry in the vector corresponds to exactly one of the �-length
strings over D. The ordering of the �-strings is assumed to
be lexicographical. Furthermore, the j th entry in p̂(x) equals
the number of times the j -th string in the lexicographical
order was observed in ̂L(x) = {̂xi1 , . . . , x̂i f }. Hence, for
each 1 ≤ j ≤ 4�, the j th entry in p̂(x) is a value between
0 and n − �+ 1.

The main contributions of the paper are as follows. The
first contribution is to introduce the DNA storage channel
and model the read process (sequencing) through the use of
profile vectors. A profile vector of a sequence enumerates
all substrings of the sequence, and profile vectors form a
pseudometric space amenable for coding theoretic analysis.1

The second contribution of the paper is to introduce a
new family of codes for three classes of errors arising in
the DNA storage channel due to synthesis, lack of coverage
and sequencing, and show that they may be characterized by
asymmetric errors studied in classical coding theory. Our third
contribution is a code design technique which makes use of
(a) codewords with different profile vectors or profile vectors at
sufficiently large distance from each other; and (b) codewords
with �-substrings of high biochemical stability which are also
resilient to errors. For this purpose, we consider a number of
codeword constraints known to influence the performance of
both the synthesis and sequencing systems, one of which we
termed the balanced content constraint.

1A pseudometric space is a generalization of a metric space in which one
allows the distance between two distinct points to be zero.

For the case when we allow arbitrary �-substrings,
the problem of enumerating all valid profile vectors was
previously addressed by Jacquet et al. [15] in the context
of “Markov types”. However, the method of Jacquet et al.
addressed Markov types which lead to substrings of length
� = 2 only. Furthermore, the Markov type approach does not
extend to the case of enumeration of profiles with specific
�-substring constraints or profiles at sufficiently large distance
from each other, and hence the proof techniques used by the
authors of [15] and those pursued in this work are substantially
different.

We cast our more general enumeration and code design
question as a problem of enumerating integer points in a
rational polytope and use tools from Ehrhart theory to provide
estimates of the sizes of the underlying codes. We also describe
two decoding procedures for sequence profiles that combine
graph theoretical principles and sequencing by hybridization
methods.

As our analysis involves tools from coding, graph theory
and bioinformatics alike, many definitions and terms used may
not be readily available in the standard information theory
literature. To aid the reader, we have included a table of
relevant definitions in Appendix A.

II. PROFILE VECTORS AND THE DNA STORAGE CHANNEL

We start this section by defining the relevant terminology
and the DNA storage channel.

Let �q� denote the set of integers {0, 1, 2, . . . , q − 1} and
consider a word x of length n over �q�. Suppose that � < n.
An �-gram or a substring of x of length � is a subsequence
of x with � consecutive indices. Let p(x; q, �) denote the
(�-gram) profile vector of length q�, indexed by all words
of �q�� ordered lexicographically. We refer to the j -th word
in this lexicographic order by z(j). In the profile vector, an
entry indexed by z gives the number of occurrences of z as an
�-gram of x. For example, p(0000; 2, 2) = (3, 0, 0, 0), while
p(0101; 2, 2) = (0, 2, 1, 0). Observe that for any x ∈ �q�n ,
the sum of entries in p(x; q, �), equals (n − �+ 1).

For x, y ∈ �q�n , define the usual Hamming distance between
a pair of words to be the number of coordinates where the
two words differ. For u, v ∈ Z

N , we define the L1-distance
between u and v to be the sum

∑N
i=1 |ui − vi | and the

KIAH et al.: CODES FOR DNA SEQUENCE PROFILES 3127

L1-weight of u to be the L1-distance between u and 0. For
brevity, the weight of a word stands for its L1-weight.

Before we proceed with a formal definition of the
DNA storage channel, we introduce the system errors that
characterize such a channel. To this end, suppose that the data
of interest is encoded by a vector x ∈ �q�n and let p̂(x) be
the output profile of the DNA channel, as indicated in Fig. 1.
The profile error vector, e � p(x; q, �) − p̂(x) arises due to
the following error events.

(i) Substitution errors due to synthesis. Here, certain
symbols in the word x may be changed as a result of
erroneous synthesis. If one symbol is changed, in the
perfect coverage case, � �-grams will decrease their
counts by one and � �-grams will increase their counts
by one. Hence, the error vector resulting from ssyn
substitutions equals e = e− − e+, where e+, e− are
vectors of weight ssyn � with e+, e− ≥ 0.

(ii) Coverage errors. Such errors occur when not
all �-grams are observed during fragmentation and
subsequently sequenced. For example, suppose that
x = 00000, and that p̂(x) is the channel output 3-gram
profile vector. The coverage loss of one 3-gram results
in the count of 000 in p̂(x) to be two instead of three.
Note that imperfect coverage of t �-grams results in an
asymmetric error e ≥ 0 of weight t .

(iii) �-gram substitution errors due to sequencing. Here,
certain symbols in each fragment x̃i may be changed
during the sequencing process. Suppose the �-gram x̃i is
altered to x̂i , x̂i �= x̃i . Then the count for x̃i will decrease
by one while the count for x̂i will increase by one.
Hence, the error resulting from sseq �-gram substitutions
equals e = e− − e+, where e+, e− ≥ 0, and e+ and e−
each has weight sseq.

Definition 1: The DNA storage channel with parameters
(n, q, �; t, ssyn, sseq) is a channel which takes as its input a
vector x ∈ �q�n and outputs a vector p̂(x) ∈ Z

q� such that
there exists a x̃ ∈ �q�n and a vector p̃(x) ∈ Z

q� with the
following properties:

(i) the Hamming distance between x̃ and x is at most ssyn;
(ii) all entries of p(̃x; q, �)− p̃(x) are nonnegative and the

L1-weight of p(̃x; q, �)− p̃(x) is at most t;
(iii) there exist vectors e−, e+ ≥ 0, each of weight at

most sseq, such that p̃(x) = p̂(x)+ e+ − e−.
Here, properties (i)–(iii) correspond to the error types (i)–(iii)
discussed before the definition.

Example 2: For simplicity, let q = 2, � = 2, t = 1,
ssyn = 1, sseq = 2, and assume that one wants to store the
sequence x = 0110100. One synthesis error, the maximum
allowed under the given parameter constraints, will render x
into a sequence x̃, say x̃ = 1110100. The multiset of �-grams
belonging to x̃ is given by {11, 11, 10, 01, 10, 00}, and some
of these �-grams may be subjected to sequencing errors and
possibly not observed due to coverage errors. Suppose that
one copy of 10 is lost due to coverage errors, so that ˜L(x) =
{11, 11, 10, 01, 00}, and that the second and third �-grams are
sequenced incorrectly, resulting in {11, 01, 11, 01, 00}. Hence,
the DNA storage channel output would be the unordered

set ̂L(x) = {11, 01, 11, 01, 00} which we summarize with
the profile vector p̂(x) = (1, 2, 0, 2). Note that none of the
entries of p̂(x) exceeds n − � + 1 = 6, and that the sum of
the entries equals five rather than six due to one coverage
error.

Consider further a subset S ⊆ �q��. For x ∈ �q�n , we
similarly define p(x; S) to be the vector indexed by S, whose
entry indexed by z ∈ S gives the number of occurrences of z as
an �-gram of x. We are interested in vectors x whose �-grams
belong to S. Once again, the sum of entries in p(x; S)
equals n − �+ 1.

The choice of S is governed by certain considerations in
DNA sequence design, including:

(i) Weight profiles of �-grams. For the application at hand,
one may want to choose S to consist of �-grams with a
fixed proportion of C and G bases, as this proportion –
known as the GC-content of the sequence – influences
the thermostability and overall coverage of the �-grams.
From the perspective of sequencing, GC contents of
roughly 50% are desired.2

To make this modeling assumption more precise and
general, we assume sets S of the form described below.
Suppose that 0 ≤ w1 < w2 ≤ � and 1 ≤ q∗ ≤ q −1. Let
[w1, w2] denote the set of integers {w1, w1+1, . . . , w2}.
For each x ∈ �q��, let the q∗-weight of x be the number
of symbols in x that belong to [q−q∗, q−1], and denote
the weight by wt(x; q∗). Let

S(q, �; q∗, [w1, w2])�
{

x ∈ �q�� :wt(x; q∗) ∈ [w1, w2]
}

be the set of all sequences with q∗ weights restricted to
[w1, w2]. For example,

S(2, 4; 1, [2, 3])) = {0011, 0101, 0110, 0111, 1001,

1010, 1011, 1100, 1101, 1110}.
We remark that if we represent A, T,G,C by 0, 1, 2, 3,
respectively, and set q = 4 and q∗ = 2, the choice
w1 = w2 = �/2 for even � and the choices w1 = ��/2	
and w2 = w1 + 1 for odd � enforce the balanced GC
constraint. Also, note that S(q, �; q∗, [0, �]) = �q��, for
any choice of q∗.

(ii) Forbidden �-grams. Studies have indicated that certain
substrings in DNA sequences – such as GCG, CGC –
are likely to cause sequencing errors (see [17]). Hence,
one may also choose S so as to avoid certain �-grams.
Treatment of specialized sets of forbidden �-grams is
beyond the scope of this paper and is deferred to future
work.

Therefore, with an appropriate choice of S, we may lower
the probability of substitution errors due to synthesis, lack

2The reason behind the GC constraint is based on the observation that in
Watson-Crick pairings, G and C bond with three, while A and T bond with
two hydrogen bonds. Hence, the bonds between G and C are stronger, and
having many stacked GC pairs or large GC content would make the DNA
sequence more stable, but at the same time harder to fragment. It is known
that GC rich substrings of DNA suffer most of the coverage errors during
sequencing. On the other hand, a large AT content makes the DNA strand less
stable and may cause occasional protrusions in DNA double helices. Hence,
it is desirable to have a balance of GC bases in the string [16].

3128 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 6, JUNE 2016

of coverage and sequencing. Furthermore, as we show in our
subsequent derivations, a carefully chosen set S may improve
the error-correcting capability of a DNA-based storage system.
This is achieved by designing codewords at a sufficiently large
“distance” from each other and ensuring that the codewords
avoid error-causing GC biases and substrings. Next,
we formally define the notion of sequence and profile distance
as well as error-correcting codes for the corresponding DNA
channel.

III. ERROR-CORRECTING CODES FOR THE

DNA STORAGE CHANNEL

Fix S ⊆ �q��. Let N be an integer which usually denotes
the number of �-grams in the profile vector, i.e. N = |S|.
Let Z

N≥0 denote the set of vectors of length N whose entries
are nonnegative integers. For u ∈ Z

N≥0, we sometimes write
u ≥ 0. For any pair of words u, v ∈ Z

N≥0, let �(u, v) �
∑N

i=1 max(ui − vi , 0) and define the asymmetric distance as
dasym(u, v) = max (�(u, v),�(v,u)) [18]. A set C is called an
(N, d)-asymmetric error correcting code (AECC) if C ⊆ Z

N≥0
and d = min{dasym(x, y) : x, y ∈ C, x �= y}. For any x ∈ C, let
e ∈ Z

N≥0 be such that x − e ≥ 0. We say that an asymmetric
error e occurred if the received word is x − e. We have the
following theorem characterizing asymmetric error-correction
codes (see [18, Th. 9.1]).

Theorem 3: An (N, d + 1)-AECC corrects any asymmetric
error of L1-weight at most d .

Next, we let (�q�n ; S) denote all q-ary words of length n
whose �-grams belong to S and define the �-gram distance
between two words x, y ∈ (�q�n ; S) as

dgram(x, y; S) � dasym(p(x; S),p(y; S)).

Note that dgram is not a metric, as dgram(x, y; S) = 0
does not imply that x = y. For example, we have
dgram(0010, 1001; �2�2) = 0. Nevertheless, ((�q�n; S), dgram)
forms a pseudometric space. We convert this space into
a metric space via an equivalence relation called metric

identification. Specifically, we say that x
dgram∼ y if and

only if dgram(x, y; S) = 0. Then, by defining Q(n; S) �
(�q�n; S)/

dgram∼ , we can make (Q(n; S), dgram) into a metric
space. An element X in Q(n; S) is an equivalence class, where
x, x′ ∈ X implies that p(x; S) = p(x′; S). We specify the
choice of representative for X in Section VIII and henceforth
refer to elements in Q(n; S) by their representative words.

Let pQ(n; S) denote the set of profile vectors of words
in Q(n; S). Then, |pQ(n; S)| = |Q(n; S)|.

Furthermore, let C ⊆ Q(n; S). If d = min{dgram(x, y; S) :
x, y ∈ C, x �= y}, then C is called an (n, d; S)-�-gram
reconstruction code (GRC), or, (n, d; S)-GRC, for short.
The following proposition demonstrates that an �-gram
reconstruction code is able to correct synthesis and sequencing
errors provided that its �-gram distance is sufficiently large.
We observe that synthesis errors have effects that are � times
“stronger” since the error “propagates” through multiple
�-grams.

Example 4: Let S = �2�2 and n = 4. Then Q(n; S)
comprises:

• two equivalence classes of size three, {0110, 1011, 1101}
and {0010, 0100, 1001)}, corresponding to the profile
vectors, (0, 1, 1, 1) and (1, 1, 1, 0), respectively;

• ten equivalence classes of size one, {0000}, {0001},
{0011}, {0101}, {0111}, {1000}, {1010}, {1100}, {1110}
and {1111}.

Therefore, the profile vectors corresponding to words in
Q(n; S) are given by the set

pQ(n; S) = {(0, 0, 0, 3), (0, 0, 1, 2), (0, 1, 0, 2), (0, 1, 1, 1),

(0, 1, 2, 0), (0, 2, 1, 0), (1, 0, 1, 1), (1, 1, 0, 1),

(1, 1, 1, 0), (2, 0, 1, 0), (2, 1, 0, 0), (3, 0, 0, 0)},
and |Q(n; S)| = |pQ(n; S)| = 12.

Proposition 5: An (n, d; S)-GRC can correct ssyn
substitution errors due to synthesis, sseq substitution
errors due to sequencing and t coverage errors provided that
d > 2ssyn�+ 2sseq + t .

Proof: Consider an (n, d; S)-GRC C and the set p(C) =
{p(x; S) : x ∈ C}. By construction, p(C) is an (N, d)-AECC
with N = |S| that corrects all asymmetric errors of L1-weight
≤ 2ssyn�+ 2sseq + t .

Suppose that, on the contrary, C cannot correct ssyn
substitution errors due to synthesis, sseq substitution errors due
to sequencing and t coverage errors. Then, there exist two
distinct codewords x, x′ ∈ C and error vectors esyn,+, esyn,−,
eseq,+, eseq,−, et , e′

syn,+, e′
syn,−, e′

seq,+, e′
seq,−, e′

t , such that
p̂(x) = p̂(x′), that is, such that

p(x; S)+ esyn,+ − esyn,− + eseq,+ − eseq,− − et

= p(x′; S)+ e′
syn,+ − e′

syn,− + e′
seq,+ − e′

seq,− − et .

Here, esyn,− − esyn,+ and e′
syn,− − e′

syn,+ are the error vectors
due to substitutions during synthesis in x and x′, respectively;
each of the vectors esyn,−, esyn,+, e′

syn,−, e′
syn,+ has L1-weight

ssyn�; the vectors eseq,− − eseq,+ and e′
seq,− − e′

seq,+ model
substitution errors during sequencing in x and x′, respectively;
each of the vectors eseq,−, eseq,+, e′

seq,−, e′
seq,+ has L1-weight

sseq; and et and e′
t are the coverage error vectors of x and x′,

respectively, and both et , e′
t have L1-weight t . Therefore,

p(x; S)− (esyn,− + eseq,− + et + e′
syn,+ + e′

seq,+)
= p(x′; S)− (e′

syn,− + e′
seq,− + e′

t + esyn,+ + eseq,+),

where esyn,−+eseq,−+et +e′
syn,++e′

seq,+ and e′
syn,−+e′

seq ,−+
e′

t + esyn,+ + eseq,+ are nonnegative vectors of L1-weight at
most 2ssyn�+ 2sseq + t . This contradicts the fact that p(x; S)
and p(x′; S) belong to a code that corrects asymmetric errors
with L1-weight at most 2ssyn�+ 2sseq + t . �

Throughout the remainder of the paper, we consider the
problem of enumerating the profile vectors in pQ(n; S)
and constructing (n, d; S)-�-gram reconstruction codes for a
general subset S ⊆ �q��. Our solutions are characterized
by properties associated with a class of graphs defined on S,
which we introduce in Section IV. In the same section,
we collect enumeration results for Q(n; S). Section V is
devoted to the proof of the main enumeration result using

KIAH et al.: CODES FOR DNA SEQUENCE PROFILES 3129

Ehrhart theory. We further exploit Ehrhart theory and certain
graph theoretic concepts to construct codes in Section VI
and summarize numerical results for the special case where
S = S(q, �; q∗, [w1, w2]) in Section VII. Finally, we describe
practical decoding procedures in Section VIII.

Remark 6:

(i) For the case S = �q��, given a word x ∈ �q�n ,
Ukkonen observed certain properties of words belonging
to the equivalence class of x [19]. Pevzner, based on
Ukkonen’s conjectures, then completely characterized
all words within the equivalence class [19], [20]. In this
paper, we focus on computing the number of equivalence
classes for a general subset S, and to the best of our
knowledge, this is the first work in this direction.

(ii) For ease of exposition, we abuse notation by identifying
words in Q(n; S) with their corresponding profile
vectors in pQ(n; S) and refer to GRCs as being subsets
of Q(n; S) or pQ(n; S) interchangeably.

(iii) Given (n, d; S)-GRC C and the set p(C) = {p(x; S) :
x ∈ C}, observe that all profile vectors in p(C) have
L1-weight n−�+1. In this case, the asymmetric distance
between two profile vectors u and v in p(C) is given
by half of the L1-weight of (u − v). Therefore, with
appropriate modifications, we may use codes constructed
over L1-distance to seed the constructions given
in Section VI.

IV. RESTRICTED DE BRUIJN GRAPHS AND

ENUMERATION OF PROFILE VECTORS

We use standard concepts and terminology from graph
theory, following Bollobás [21].

A directed graph (digraph) D is a pair of sets (V , E), where
V is the set of nodes and E is a set of ordered pairs of V ,
called arcs. If e = (v, v ′) is an arc, we call v the initial node
and v ′ the terminal node. We allow loops in our digraphs:
in other words, we allow v = v ′. In some instances, we allow
multiple arcs between nodes and we term these digraphs as
multigraphs.

The incidence matrix of a digraph D is a matrix B(D)
in {−1, 0, 1}V×E , where

B(D)v,e =

⎧

⎪

⎨

⎪

⎩

1 if e is not a loop and v is its terminal node,

−1 if e is not a loop and v is its initial node,

0 otherwise.

Observe that when a digraph D has loops, its incidence matrix
B(D) has 0-columns indexed by these loops. When D is
connected, it is known that the rank of B(D) equals |V | − 1
(see [21, Sec. II, Th. 9 and Example 38]).

A walk of length n in a digraph is a sequence of nodes
v0v1 · · · vn such that (vi , vi+1) ∈ E for all i ∈ �n�. A walk is
closed if v0 = vn and a cycle is a closed walk with distinct
nodes, i.e., vi �= v j , for 0 ≤ i < j < n. We consider a loop to
be a cycle of length one. Given a subset C of the arc set, let
χ(C) ∈ {0, 1}E be its incidence vector, where χ(C)e is one
if e ∈ C and zero otherwise. In general, for any closed walk
C in D, we have B(D)χ (C) = 0.

A closed walk is Eulerian if it includes all arcs in E . A cycle
is Hamiltonian if it includes all nodes in V . A digraph is
strongly connected if for all v, v ′ ∈ V , there exists a walk from
v to v ′ and vice versa. A necessary and sufficient condition
for a strongly connected graph to have a closed Eulerian walk
is that the number of incoming arcs is equal to the number
of outgoing arcs for each node. Furthermore, we have the
following lemma. Here u > 0 means that ue > 0 for each
edge e.

Lemma 7: If D is strongly connected, then there exists a
vector u > 0 such that B(D)u = 0.

Proof: Let D = (V , E). Since D is strongly connected,
for each arc vv ′ ∈ E there is a walk W from v ′ to v. Let
Wvv ′ = W ∪ {vv ′}. Now Wvv ′ is a closed walk containing
the arc vv ′, so B(D)χ (W ∪ {vv ′}) = 0. Therefore, the vector
u = ∑

vv ′∈E χ(Cvv ′) satisfies B(D)u = 0. It is easy to verify
that u > 0 since, for every arc vv ′, the entry corresponding to
the arc vv ′ is at least 1. �

We are concerned with a special family of digraphs, namely,
the de Bruijn graphs [22]. Given q and �, the standard de
Bruijn graph is defined on the node set �q��−1. For v, v′ ∈
�q��−1 , the ordered pair (v, v′) belongs to the arc set if and
only if vi = v ′

i−1 for 2 ≤ i ≤ � − 1. We label the arc (v, v′)
with the length-� word vv ′

�−1, and refer to arcs by these labels.
(Note that vv ′

�−1 = v1v′ if and only if (v, v′) is an arc.)
Example 8: Let q = 2, � = 4. Then the nodes v = 101 and

v′ = 010 are connected by the arc 1010 which originates from
v and terminates in v′ as the suffix of v of length � − 2 = 2
equals 01, which is also the prefix of length �− 2 of v′.

The notion of restricted de Bruijn graphs was introduced
by Ruskey [23] for the case of a binary alphabet. For a fixed
subset S ⊆ �q��, we define the corresponding restricted de
Bruijn graph, denoted by D(S) as follows. The nodes of
D(S), denoted by V (S), are the (� − 1)-grams appearing in
the set S. The pair (v, v′) belongs to the arc set if and only
if vi = v ′

i−1 for 2 ≤ i ≤ � and v1v2 · · · v�−1v
′
�−1 ∈ S. Note

that the standard de Bruijn graph is simply D(�q��). We refer
the readers to Fig. 2 for an illustration of a de Bruijn and
restricted de Bruijn graph with sets �2�3 and S(2, 4; 1, [2, 3]),
respectively.

Example 9: Continuing Example 8, let q = 2, � = 4 and
S = S(2, 4; 1, [2, 3]). Since the word 1010 belongs to S, the
arc from v = 101 and v′ = 010 belongs to D(S). We also
observe that 1010 is word of length n = 4 and it can be
represented by the walk of length n − �+ 1 = 1 from v to v′.

In general, a word of length n whose �-grams belong
to S can be represented by a walk of length n − � + 1
in D(S). For example, the word 011001101011 of length
twelve corresponds to the walk

of length nine. Conversely, given the above walk of length
nine, it is not difficult to obtain the binary word of length
twelve. For each arc z in S, we observe that the number of

3130 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 6, JUNE 2016

Fig. 2. Examples of two de Bruijn and restricted de Bruijn graphs. The upper left corner shows a classical de Bruijn graph with q = 2 and � = 3. Note that
the nodes of the graph are all binary tuples of length �− 1 = 2, and arcs in the graph connect any pair of nodes for which the last symbol of the origin node
equals the first symbol of the terminal node. The arcs are labeled by the “overlap” sequence of the node labels. In the right hand corner, the same graph is
depicted with respect to a input sequence x which induces weights on the arcs, indicating how many times the �-gram corresponding to the arc appeared in x.
For example, in x = 0001000, the � = 3-gram appears twice, leading to the label 2 for the self-loop around the node 00. This example is extended for the case
of a restricted de Bruijn graph defined on the set S(2, 4; 1, [2, 3]) as depicted in the second row. Note that the graph in the lower left corner contains only
arcs labeled by � = 4-tuples of weight 2 and 3, as required by the definition of S(2, 4; 1, [2, 3]). The corresponding 4-gram profile vector for 011001101011
on the aforementioned restricted de Bruijn graph is shown in the lower right corner. As an example, observe that the sequence x = 011001101011 has two
substrings 0110, and hence the arc from the node labeled by 011 to the node labeled by 110 has weight 2.

times z is traversed by the walk gives the number of times of z
appears as a 4-gram of the word. Hence, if we label each arc z
by this number, we obtain a representation of the profile vector
on D(S). We refer the readers to Fig. 2 for an illustration.

In their paper, Ruskey et al. showed that D(S) is Eulerian
when S = S(2, �; 1, [w − 1, w]) for w ∈ [�]. Nevertheless,
the results of [23] can be extended for general q , q∗ and
more general range of weights. As these extensions
are needed for our subsequent derivation, we provide
their technical proofs in Appendix B. For purposes of
brevity, we write D(S(q, �; q∗, [w1, w2])) and D(�q��) as
D(q, �; q∗, [w1, w2]) and D(q, �), respectively.

Proposition 10: Fix q and �. Let 1 ≤ q∗ ≤ q − 1 and
1 ≤ w1 < w2 ≤ �. Then D(q, �; q∗, [w1, w2]) is Eulerian.
In addition, D(q, �) is Hamiltonian.

Observe that when q∗ = q −1, w1 = 0, w2 = �, we recover
the classical result that the de Bruijn graph D(q, �) is Eulerian
and Hamiltonian.

We provide next the main enumeration results for Q(n; S),
or equivalently, for pQ(n; S). We first assume that D(S) is
strongly connected. In addition, we consider closed walks
in D(S). Observe from Example 9 that a walk from node
v to node v′ in D(S) is equivalent to a word whose �-grams
belong to S that starts with v and ends with v′. Therefore, we
define closed words to be words that start and end with the
same (�− 1)-gram to correspond with closed walks in D(S).
We denote the set of closed words in Q(n; S) by Q̄(n; S),

and the corresponding set of profile vectors by pQ̄(n; S).
Clearly, Q̄(n; S) ⊆ Q(n; S) and as illustrated in the next
example, Q̄(n; S) is properly contained in Q(n; S) for most
cases.

Example 11: Consider again the setting where S = �2�2

and n = 4. The set of closed words is

{0000, 0010, 0100, 0110, 1001, 1011, 1101, 1111},
while the equivalence classes in Q̄(n; S) equal

{0000}, {0010, 0100, 1001}, {0110, 1011, 1101}, {1111}.
The profile vectors corresponding to words in pQ̄(n; S) are
(3, 0, 0, 0), (1, 1, 1, 0), (0, 1, 1, 1) and (0, 0, 0, 3).

We observe that words not in Q̄(n; S), such as 0111, have
profile vectors that do not belong to pQ̄(n; S).

Suppose that u belongs to pQ̄(n; S). Then the following
system of linear equations that we refer to as the flow
conservation equations, hold true:

B(D(S))u = 0. (1)

Let 1 denote the all-ones vector. Since the number of
�-grams in a word of length n is n − �+ 1, we also have

1T u = n − �+ 1. (2)

Let A(S) be B(D(S)) augmented with a top row 1T ; let b be
a vector of length |V (S)| + 1 with a one as its first entry, and

KIAH et al.: CODES FOR DNA SEQUENCE PROFILES 3131

zeros elsewhere. Equations (1) and (2) may then be rewritten
as A(S)u = (n − �+ 1)b.

Consider the following two sets of integer points

LP≥0(n; S) � {u ∈ Z
|S| : A(S)u = (n − �+ 1)b, u ≥ 0},

(3)

LP>0(n; S) � {u ∈ Z
|S| : A(S)u = (n − �+ 1)b, u > 0}.

(4)

The preceding discussion asserts that the profile vector of
any closed word must lie in LP≥0(n; S). Conversely, the next
lemma shows that any vector in LP>0(n; S) is a profile vector
of some word in Q̄(n; S).

Lemma 12: Suppose that D(S) is strongly connected. If u ∈
LP>0(n; S), then there exists a word x ∈ Q̄(n; S) such that
p(x; S) = u. That is, LP>0(n; S) ⊆ pQ̄(n; S).

Proof: Construct a multidigraph Du on the node set V (S)
such that there are uz copies of the arc z for all z ∈ S. Since
each uz is positive and D(S) is strongly connected, Du is also
strongly connected. Since u ∈ LP>0(n; S), u also satisfies the
flow conservation equations and Du is consequently Eulerian.
Also, as Du has n −�+1 arcs, an Eulerian walk on Du yields
one such desired word x. �

Therefore, we have the following relation:

LP>0(n; S) ⊆ pQ̄(n; S) ⊆ LP≥0(n; S). (5)

Example 13: We illustrate next through two examples
how given S one may determine the sets pQ(n; S),
pQ̄(n; S), LP>0(n; S), and LP≥0(n; S), as well as enumerate
LP≥0(n; S).

(a) Let S = �2�2. Then, D(S) is given by

For n = 5, we have

pQ(5; S) = {(0, 0, 0, 4), (0, 0, 1, 3), (0, 1, 0, 3),

(0, 1, 1, 2), (0, 1, 2, 1), (0, 2, 1, 1),

(0, 2, 2, 0), (1, 0, 1, 2), (1, 1, 0, 2),

(1, 1, 1, 1), (1, 1, 2, 0), (1, 2, 1, 0),

(2, 0, 1, 1), (2, 1, 0, 1), (2, 1, 1, 0),

(3, 0, 1, 0), (3, 1, 0, 0), (4, 0, 0, 0)},
pQ̄(5; S) = {(0, 0, 0, 4), (0, 1, 1, 2), (0, 2, 2, 0),

(1, 1, 1, 1), (2, 1, 1, 0), (4, 0, 0, 0)},
and

LP≥0(5; S) = {(0, 0, 0, 4), (0, 1, 1, 2), (0, 2, 2, 0),

(1, 0, 0, 3), (1, 1, 1, 1), (2, 0, 0, 2),

(2, 1, 1, 0), (3, 0, 0, 1), (4, 0, 0, 0)},
LP>0(5; S) = {(1, 1, 1, 1)}.
It is straightforward to verify that, indeed,

LP>0(5; S) ⊆ pQ̄(5; S) ⊆ LP≥0(5; S). Furthermore,
a simple calculation shows that

LP≥0(n; �2�2) =
{

n2

4 + n
2 , if n is even,

n2

4 + n
2 + 1

4 , otherwise.

(b) Let q = 3, � = 2, and S = {01, 10, 12, 21}. Then D(S)
is given by

For n = 5, we have that

pQ(5; S) = {(0, 0, 2, 2), (0, 1, 1, 2), (1, 0, 2, 1),

(1, 1, 1, 1), (1, 2, 0, 1),

(2, 1, 1, 0), (2, 2, 0, 0)}
pQ̄(5; S) = {(0, 0, 2, 2), (1, 1, 1, 1), (2, 2, 0, 0)},

and

LP≥0(5; S) = {(0, 0, 2, 2), (1, 1, 1, 1), (2, 2, 0, 0)},
LP>0(5; S) = {(1, 1, 1, 1)}.

We again verify that LP>0(5; S) ⊆ pQ̄(5; S) ⊆
LP≥0(5; S). In addition,

LP≥0(n; {01, 10, 12, 21}) =
{

0, if n is even,
n
2 + 1

2 , otherwise.
We first state our main enumeration result and defer its proof

to Section V. Specifically, under the assumption that D(S)
is strongly connected, we show that both |LP>0(n; S)| and
|LP≥0(n; S)| are quasipolynomials in n whose coefficients
are periodic in n. Following Bruijn [24], we define a
quasipolynomial f as a function in n of the form cD(n)nD +
cD−1(n)nD−1 + · · · + c0(n), where cD, cD−1, . . . , c0 are
periodic functions in n. If cD is not identically equal to zero,
f is said to be of degree D. The period of f is given by the
lowest common multiple of the periods of cD, cD−1, . . . , c0.

Example 14: From above, we see that LP≥0(n; �2�2)
and LP≥0(n; {01, 10, 12, 21}) are quasipolynomials of
degrees two and one, respectively. The periods of both
quasipolynomials are two. We note that even though
LP≥0(n; {01, 10, 12, 21}) is a quasipolynomial of degree
one, LP≥0(n; {01, 10, 12, 21}) �= �(n) as the function
evaluates to zero when n is even. Hence, we adapt the usual
�-notation to capture the periodic behaviour of LP≥0(n; S).

We use f (n) = �′(g(n)) to state that for a fixed value
of �, there exists an integer λ and a positive constant c so
that f (n) ≥ cg(n) for sufficiently large n with λ|(n − �+ 1).
In other words, f (n) ≥ cg(n) whenever n is sufficiently large
and is congruent to �−1 modulo λ. We write f (n) = �′(g(n))
if f (n) = O(g(n)) and f (n) = �′(g(n)).

Theorem 15: Suppose D(S) is strongly connected and
let λ be the least common multiple of the lengths of all
cycles in D(S). Then |LP>0(n; S)| = �′ (n|S|−|V (S)|)

and |LP≥0(n; S)| = �′ (n|S|−|V (S)|). In particular,
|pQ̄(n; S)| = �′ (n|S|−|V (S)|).

As illustrated by Examples 13 and 14, the size of pQ̄(n; S)
can possibly evaluate to zero for infinitely many values of
n. However, Theorem 15 guarantees the existence of some
period λ, whereby the size of pQ̄(n; S) is proportional to
n|S|−|V (S)| whenever n is congruent to �− 1 modulo λ.

Before we end this section, we look at certain implications
of Theorem 15. First, we show that the estimate on |pQ̄(n; S)|
extends to |pQ(n; S)| when D(S) is strongly connected.

3132 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 6, JUNE 2016

Corollary 16: Suppose D(S) is strongly connected. For any
z, z′ ∈ V (S), consider the set of words in Q(n; S) that
begin with z and end with z′ and let pQ(n; S, z → z′)
be the corresponding set of profile vectors. Similarly, let
pQ(n; S, z → ∗) and pQ(n; S, ∗ → z′) denote the set of
profile vectors of words beginning with z and words ending
with z′, respectively. Then

|pQ(n; S)| =�′(|pQ(n; S, z→z′)|) = �′(|pQ(n; S, ∗→z′)|)
=�′(|pQ(n; S, z→∗)|) = �′ (n|S|−|V (S)|) .

Proof: Let z, z′ ∈ V (S). Since D(S) is strongly connected,
we consider the shortest path from z to z′ in D(S). Let w =
zw′ be the corresponding q-ary word and L(z, z′) be the length
of the path, or equivalently, the length of the word w′. Consider
u(z → z′) = p(w; S) the profile vector of w and observe
that both the length L(z, z′) and the vector u(z → z′) are
independent of n.

We demonstrate the following inequality:

|LP>0(n − L(z, z′); S)| ≤ |pQ(n; S, z → z′)|
≤ |pQ̄(n + L(z′, z); S)|. (6)

To demonstrate the first inequality, we construct an injective
map φ1 : LP>0(n − L(z, z′); S) → pQ(n; S, z → z′) defined
by φ1(u) = u + u(z → z′). Now, since u ∈ LP>0(n −
L(z, z′); S), we obtain from Lemma 12 a word of length n −
L(z, z′) whose profile vector is u. Without loss of generality,
we let this word be x and assume that it starts and ends
with z. Then xw′ is a word of length n whose profile vector
is u + u(z → z′). Therefore, φ1(u) lies in pQ(n; S, z → z′)
and φ1 is a well-defined map. Suppose u and u′ are vectors in
LP>0(n − L(z, z′); S) such that φ1(u) = φ1(u′). Since u =
φ1(u)− u(z → z′) = φ1(u′)− u(z → z′) = u′, we conclude
φ1 is injective and hence, the first inequality follows.

Similarly, for the other inequality, we consider another map
φ2 : pQ(n; S, z → z′) → pQ̄(n + L(z′, z); S) where φ2(u) =
u+u(z′ → z). As before, let u be the profile vector of a word
x of length n that starts with z and ends with z′. Let w = z′w′
be the q-ary word corresponding to the shortest path from z′
to z in D(S). Concatenating x with w′ yields xw′, which is a
word of length n + L(z′, z) and starts and ends with z. Hence,
its profile vector u + u(z′ → z) lies in pQ̄(n + L(z′, z); S).
As with φ1, the map φ2 is well-defined and can be shown to
be injective.

Combining (6) with Theorem 15 yields the result
|pQ(n; S, z, z′)| = �′ (n|S|−|V (S)|).

Next, we demonstrate that |pQ(n; S)| = �′ (n|S|−|V (S)|),
and observe that the other asymptotic equalities may be
derived similarly.

Let P � max{L(z, z′) : z, z′ ∈ V (S)} be the diameter of the
digraph D(S). Then,

|pQ(n; S)| =
∑

z,z′∈V (S)

|Q(n; S, z, z′)|

≤
∑

z,z′∈V (S)

|Q̄(n + L(z′, z); S)|

≤ |V (S)|2|Q̄(n + P; S)| = O
(

n|S|−|V (S)|) .

Since |Q(n; S)| ≥ |Q̄(n; S)| = �′ (n|S|−|V (S)|), the corollary
follows. �

In the special case where S = �q��, Jacquet et al.
demonstrated a stronger version of Theorem 15 for the special
case � = 2 using analytic combinatorics. In addition, using
a careful analysis similar to the proof of Corollary 16,
Jacquet et al. also provided a tighter bound for |pQ(n; �q��)|
for the case � = 2. Note that f (n) ∼ g(n) stands for
limn→∞ f (n)/g(n) = 1.

Theorem 17 (Jacquet et al. [15]): Fix q, �. Let LP>0
(n; �q��), LP≥0(n; �q��), pQ(n; �q��) and pQ̄(n; �q��) be
defined as above. Then

|LP>0(n; �q��)| ∼ |LP≥0(n; �q��)|
∼ |pQ̄(n; �q��)| ∼ c(q, �)nq�−q�−1

, (7)

where c(q, �) is a constant. Furthermore, when � = 2, we have
|pQ(n; �q��)| = (q2 − q + 1)|pQ̄(n; q, 2)|(1 − O(n−2q)).

Next, we extend Theorem 15 to provide estimates on
Q̄(n; S) and Q(n; S) for general S, where D(S) is not
necessarily strongly connected.

Given D(S), let V1, V2, . . . , VI be a partition of V (S)
such that the induced subgraph (Vi , Si) is a maximal strongly
connected component for all 1 ≤ i ≤ I . Define δi � |Si |−|Vi |.
By Theorem 15, if Si is nonempty then there are �′(nδi)
closed words belonging to Q̄(n; Si); these words also belong
to Q̄(n; S). On the other hand, if Si = ∅ then clearly
Q̄(n; Si) = ∅ as well. Suppose �̄ = max{δi : 1 ≤ i ≤ I }.
Then |Q̄(n; S)| = �′(n�̄) unless �̄ = −1, in which case
D(S) is acyclic so that |Q̄(n; S)| = 0.

On the other hand, any closed word x in Q̄(n; S)
corresponds to a closed walk in D(S) and a closed
walk in D(S) must belong to some strongly connected
component (Vi , Si). In other words, x must belong to Q̄(n; Si)

for some 1 ≤ i ≤ I . Hence, we have |Q̄(n; S)| = O(n�̄).
Corollary 18: Given D(S), let V1, V2, . . . , VI be a partition

of V (S) such that the induced subgraph (Vi , Si) is strongly
connected for all 1 ≤ i ≤ I . Define �̄ � max{|Si | − |Vi | :
1 ≤ i ≤ I }. If �̄ ≥ 0, then |Q̄(n; S)| = �′(n�̄). If �̄ = −1,
then |Q̄(n; S)| = 0.

Example 19: Let S = {00, 01, 10, 12, 23, 32, 33} with
q = 4 and � = 2. Then D(S) is as shown below.

We have two strongly connected components, namely,
V1 = {0, 1} and V2 = {2, 3}. So, (V1, S1 = {00, 01, 10})
and (V2, S2 = {23, 32, 33}) are both strongly connected
digraphs with |pQ̄(n; S1)| = |pQ̄(n; S2)| = �n/2� = �′(n).
Hence, |pQ̄(n; S)| = |pQ̄(n; S1)| + |pQ̄(n; S2)| = �′(n),
in agreement with Corollary 18.

On the other hand, let us enumerate the elements of Q(n; S)
or pQ(n; S). Let u ∈ pQ(n; S). If u12 = 0, then u belongs
to pQ(n; S1) or pQ(n; S2). Otherwise, u12 = 1 and we have
u = u1 + χ(12) + u2 with u1 ∈ pQ(n1 + 1; S1, ∗ → 1),
u2 ∈ pQ(n2 + 1; S2, 2 → ∗) and n1 + n2 + 1 = n − 1.
Now, |pQ(n; S1)| = |pQ(n; S2)| = n + �n/2	 and
|pQ̄(n; S1, ∗ → 1)| = |pQ̄(n; S2, 2 → ∗)| = n − 1 for n ≥ 2.

KIAH et al.: CODES FOR DNA SEQUENCE PROFILES 3133

Hence,

|pQ(n; S)|

= 2
(

n +
⌊n

2

⌋)

+ 2(n − 2)+
n−3
∑

n1=1

n1(n − 2 − n1)

= �′(n3).

Therefore, when D(S) is not strongly connected, it is not
necessarily true that |pQ̄(n; S)| and |pQ(n; S)| differ only by
a constant factor. Furthermore, we can extend the methods in
this example to obtain |pQ(n; S)| for general digraphs.

To determine |pQ(n; S)|, we construct an auxiliary
weighted digraph with nodes v1, v2, . . . , v I , vsource and vsink.
If there exists an arc from the component Vi to component
Vj for 1 ≤ i, j ≤ I , we add an arc from vi to v j . Further,
we add an arc from vsource to vi and from vi to vsink for all
1 ≤ i ≤ I . The arcs leaving vsource have zero weight. For all
1 ≤ i ≤ I , the arcs leaving vi have weight δi = |Si | − |Vi | if
their terminal node is vsink, and weight δi + 1 otherwise. (see
Fig. 3 for the transformation).

Let D′ be the resulting digraph and observe that D′ is
acyclic. Hence, we can find the longest weighted path from
vsource to vsink in linear time (see Ruskey et al. [25, Ch. 4]).
Furthermore, suppose that � is the weight of the longest path.
Then the next corollary states that |pQ(n; S)| = �′(n�).

Corollary 20: Given D(S), let V1, V2, . . . , VI be a partition
of V (S) such that the induced subgraph (Vi , Si) is strongly
connected for all 1 ≤ i ≤ I . Construct D′ as above (see Fig. 3)
and let � be the weight of the longest weighted path from
vsource to vsink. Then |pQ(n; S)| = �′(n�).

Proof: Let K ⊂ {1, . . . , I } be the set of indices k such
that Sk = ∅. In other words, the induced subgraph (Vk, Sk) is
an isolated node. Define ε j to be 0 if j ∈ K and δ j otherwise.

For each u ∈ pQ(n; S), we have a set of indices
{i1, i2, . . . , it } ⊆ {1, 2, . . . , I }, a set of vectors u1,u2, . . . ,ut ,
e1, e2, . . . , et−1, and integers n1, n2, . . . , nt such that the
following hold:

(i) u = u1 + e1 + u2 + e2 + · · · + et−1 + ut ;
(ii) for 1 ≤ j ≤ t −1, ei is the incidence vector of some arc

(z j , z′
j+1) in D(S) such that z j ∈ Vi j and z′

j+1 ∈ Vi j+1 ;
(iii) for 1 ≤ j ≤ t , the vector u j belongs3 to pQ(n j + �−

1; Si j);
(iv) (t − 1)+∑t

j=1 n j = n − �+ 1;
(v) vsourcevi1vi2 · · · vit vsink is a path in D′.

Note that Condition (iii) implies that n j = 0 whenever i j ∈ K .
Note that if u,u′ are vectors in pQ(n; S) having the same set
of indices {i1, . . . , it } and the same vectors u1, . . . ,ut , then
u = u′. Thus, we may obtain an upper bound on |pQ(n; s)|
by bounding the number of ways to produce such index sets
and vectors.

For a fixed subset {i1, i2, . . . , it } ⊆ {1, 2, . . . , I }, let k =
|{i1, . . . , it } ∩ K |. Let T be the set of nonnegative integer
tuples (n1, . . . , nt) such that

∑t
j=1 n j = (n − �+ 1)− (t − 1)

3For ease of notation, we regard vectors in pQ(n j + �− 1; Si j) as vectors
in pQ(n j + � − 1; S) since Si j ⊆ S. If u belongs pQ(n j + � − 1; Si j),
we consider u′ ∈ pQ(n j + �− 1; S) where u′

z = u′
z if z ∈ Si j , and u′

z = 0,
otherwise.

and such that n j = 0 whenever i j ∈ K . If k < t , then
|T | ≤ nt−1−k , so we have

∑

(n1,...,nt)∈T

t
∏

j=1

∣

∣pQ(n j + �− 1; Si j)
∣

∣

= |T | O(nεi1 +···+εit)

= O(nt−1−k)O(nδi1 +···+δit +k)

= O(nδi1 +···+δit +(t−1)) = O(n�).

Here, the first inequality follows from Corollary 16, while
the last inequality follows from the fact that (t −1)+∑t

j=1 δi j

measures the weight of vsourcevi1vi2 · · · vit vsink and this value
is upper bounded by �. On the other hand, if k = t , that
is, if {i1, . . . , it } ⊆ K , then |T | = 0 if t − 1 < n − �+ 1
and |T | = 1 otherwise. Hence in this case we also have
∑

(n1,...,nt)∈T
∏t

j=1

∣

∣pQ(n j ; Si j)
∣

∣ = O(n�). Since the number
of subsets of {1, 2 , . . . I } is independent of n, and since each
subset corresponds to at most O(n�) vectors in pQ(n; S),
we have |pQ(n; S)| = O(n�).

Conversely, suppose vsourcevi1vi2 · · · vit vsink is a path in D′
of maximum weight �. With T defined as before relative to
{i1, . . . , it }, we then have

|pQ(n; S)| ≥
∑

(n1,...,nt)∈T

t
∏

j=1

|pQ(n j + �− 1; Si j)|

≥ C1

∑

(n1,...,nt)∈T

n
εi1
1 n

εi1
2 · · · n

εit
t

for some positive constant C1, by Corollary 16. (Note that
we have adopted the convention that 00 = 1.) Let k =
|K ∩ {i1, . . . , it }| as before, and let T ′ ⊂ T be the set
defined by

T ′ =
{

(n1, . . . , nt) ∈ T : n j ≥ n

2t
whenever i j /∈ K

}

.

Observe that there is a positive constant C2 such that
for n sufficiently large,

∣

∣T ′∣
∣ ≥ C2n(t−1)−k. Now we

have
∑

(n1,...,nt)∈T ′
n
εi1
1 · · · n

εit
t ≥ (2t)−t

∑

(n1,...,nt)∈T ′
nεi1 +···+εit

≥ (2t)−t C2nδi1 +···+δit +(t−1)

= C3n�. �

V. EHRHART THEORY AND PROOF OF THEOREM 15

We assume D(S) to be strongly connected and provide
a detailed proof of Theorem 15. For this purpose, in the
next subsection, we introduce some fundamental results
from Ehrhart theory. Ehrhart theory is a natural framework
for enumerating profile vectors and one may simplify the
techniques of [15] significantly and obtain similar results for a
more general family of digraphs. Furthermore, Ehrhart theory
also allows us to extend the enumeration procedure to profiles
at a prescribed distance.

3134 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 6, JUNE 2016

Fig. 3. Constructing a weighted digraph from the connected components of D(S).

A. Ehrhart Theory

As suggested by (3) and (4), in order to enumerate
codewords of interest, we need to enumerate certain sets
of integer points or lattice points in polytopes. The first
general treatment of the theory of enumerating lattice points in
polytopes was described by Ehrhart [26], and later developed
by Stanley from a commutative-algebraic point of view (see
[27, Ch. 4]). Here, we follow the combinatorial treatment of
Beck and Robins [24]. Recall that v ≥ 0 means that all entries
in v are nonnegative. We extend the notation so that v ≥ u
denotes v − u ≥ 0.

Consider the set P of points given by

P � {u ∈ R
n : Au ≤ b},

for some integer matrix A and some integer vector b. We then
call this set P a rational polytope. A rational polytope is
integer if all of its vertices (see Definition 25) have integer
coordinates. For all positive integers t , let tP be the set
{tu : u ∈ P}. The lattice point enumerator LP (t) of P is
given by

LP (t) � |Zn ∩ tP |, for all postive integers t .

Ehrhart [26] introduced the lattice point enumerator for
rational polytopes and showed that LP (t) is a quasipolynomial
of degree D, where D is given by the dimension of the
polytope P . Here, we define the dimension of a polytope to
be the dimension of the affine space spanned by points in P .
A formal statement of Ehrhart’s theorem is provided below.

Theorem 21 (Ehrhart’s Theorem for Polytopes [24, Th. 3.8
and 3.23]): If P is a rational convex polytope of dimension D,
then LP (t) is a quasipolynomial of degree D. Its period
divides the least common multiple of the denominators of the
coordinates of the vertices of P . Furthermore, if P is integer,
then LP (t) is a polynomial of degree D.

Motivated by (4), we consider the relative interior of P . For
the case where P is convex, the relative interior, or interior,
is given by

P◦ � {u ∈ P : for all u′ ∈ P , there exists an ε > 0

such that u + ε(u − u′) ∈ P}.

For a positive integer t , we consider the quantity

LP◦(t) = |Zn ∩ tP◦|.
Ehrhart conjectured the following relation between LP (t) and
LP◦(t), proved by Ehrhart [28].

Theorem 22 (Ehrhart-Macdonald Reciprocity [24, Th.
4.1]): If P is a rational convex polytope of dimension D,
then the evaluation of LP (t) at negative integers satisfies

LP (−t) = (−1)D LP◦(t).

B. Proof of Theorem 15

Recall the definitions of A(S) and b in (3), and consider
the polytope

P(S) � {u ∈ R
|S| : A(S)u = b,u ≥ 0}, (8)

Using lattice point enumerators, we may write
|LP≥0(n; S)| = LP(S)(n − � + 1). Therefore, in view
of Ehrhart’s theorem, we need to determine the dimension
of the polytope P(S) and characterize the interior and the
vertices of this polytope.

Lemma 23: Suppose that D(S) is strongly connected. Then
the dimension of P(S) is |S| − |V (S)|.

Proof: We first establish that the rank of A(S) is |V (S)|.
Since D(S) is connected, the rank of B(D(S)) is |V (S)| − 1.
We next show that 1T does not belong to the row space of
B(D(S)). As D(S) is strongly connected, D(S) contains a
cycle, say C . Since B(D(S))χ (C) = 0 but 1χ(C) = |C| �= 0,
1 does not belong to the row space of B(D(S)), so augmenting
the matrix with the all-one row increases its rank by one.
Therefore, the nullity of A(S) is |S| − |V (S)|. Hence, the
dimension of P(S) is at most |S| − |V (S)|.

Next, we show that there exists a u > 0 such that
A(S)u = b. Since the nullity of B(D(S)) is positive, there
exists a u′ such that A(S)u′ = b. Since D(S) is strongly
connected, we apply Lemma 7 to find a vector v > 0 such
that A(S)v = μb for some positive μ. Choose μ′ sufficiently
large so that u′ + μ′v > 0 and set u = (u′ + μ′v)/(1 + μ′μ).
One can easily verify that A(S)u = b.

To complete the proof, we exhibit a set of |S| − |V (S)| + 1
affinely independent points in P(S). Let u1,u2, . . ., u|S|−|V (S)|

KIAH et al.: CODES FOR DNA SEQUENCE PROFILES 3135

be linearly independent vectors that span the null space
of A(S). Since u has strictly positive entries, we can find
ε small enough so that u + εui belongs to P(S) for all
1 ≤ i ≤ |S|− |V (S)|. Therefore {u,u + εu1,u + εu2, . . . ,u +
εu|S|−|V (S)|} is the desired set of |S| − |V (S)| + 1 affinely
independent points in P(S). �

Lemma 24: Suppose D(S) is strongly connected. Then
P◦(S) = {u ∈ R

|S| : A(S)u = b,u > 0}. Therefore,
|LP>0(n; S)| = LP◦(S)(n − �+ 1).

Proof: Let u > 0 be such that A(S)u = b. For any
u′ ∈ P(S), we have A(S)u′ = b and hence, A(S)(u−u′) = 0.
Since u has strictly positive entries, we choose ε small enough
so that u + ε(u − u′) ≥ 0. Therefore, u + ε(u − u′) belongs
to P(S) and u belongs to the interior of P(S).

Conversely, let u ∈ P(S), with uz = 0 for some z ∈ S. Since
D(S) is strongly connected, from the proof of Lemma 23,
there exists a u′ ∈ P(S) with u′ > 0. Hence, for all
ε > 0, the z-coordinate of u + ε(u − u′) is given by −εu′

z,
which is always negative. In other words, u does not belong
to P◦(S). �

Therefore, using Ehrhart’s theorem and Ehrhart-Macdonald
reciprocity along with Lemmas 23 and 24, we arrive at the fact
that |LP>0(n; S)| and |LP≥0(n; S)| are quasipolynomials in n
whose coefficients are periodic in n.

In order to determine the period of the quasipolynomials,
we characterize the vertex set of P(S).

Definition 25: A point v in a polytope is a vertex if v cannot
be expressed as a convex combination of the other points.

Lemma 26: The vertex set of P(S) is given by {χ(C)/|C| :
C is a cycle in D(S)}.

Proof: First, observe that χ(C)/|C| belongs to P(S) for
any cycle C in D(S).

Let v ∈ P(S) and suppose that v is a vertex. Since P(S) is
rational, its vertex v has rational coordinates (see [24, Sec. 2.8,
Appendix A]). Let μ be a positive integer such that μv has
integer entries. Construct the multigraph D′ on V (S) by adding
μvz copies of the arc z for all z ∈ S. Since v ∈ P(S),
we have B(S)μv = 0 and hence, each of the strongly
connected components of D′ are Eulerian. Therefore, the arc
set of D′ can be decomposed into disjoint cycles. In other
words, for some cycles C1,C2, . . . ,Ct , we have

μv =
∑

t=1

χ(Ct), that is, v =
∑

t=1

|Ct |
μ

χ(Ct)

|Ct | .

Since v is a vertex, v cannot be expressed as a convex
combination of the other points. So, t = 1 and hence, v =
χ(C)/|C| for some cycle C .

Conversely, we show that for any cycle C in D(S),
χ(C)/|C| cannot be expressed as a convex combination of
other points in P(S). Suppose otherwise. Then there exist
cycles C1,C2, . . . ,Ct distinct from C and nonnegative scalars
α1, α2, . . . , αt such that χ(C) = ∑t

i=1 αiχ(Ci). For each j ,
let e j be an arc that belongs to C j but not C . Then

0 = χ(C)e j =
∑

1≤i≤t

αiχ(Ci)e j ≥ α jχ(C j)e j = α j .

Hence, we have that α j = 0 for all j . Therefore, χ(C) = 0,
a contradiction. �

Let λS = lcm{|C| : C is a cycle in D(S)}, where lcm
denotes the lowest common multiple. Then the period of the
quasipolynomial LP(S)(n − � + 1) divides λS by Ehrhart’s
theorem.

Let us dilate the polytope P(S) by λS and consider the
polytope λSP(S) and LλSP(S)(t). Since λSP is integer, both
LλSP(S)(t) and LλSP◦(S)(t) are polynomials of degree |S| −
|V (S)|. Hence,

|Q̄(n; S)| ≥ LλSP◦(S)(t) = �
(

t |S|−|V (S)|) ,

whenever n − � + 1 = λSt or λS |(n − � + 1), and
therefore, |Q̄(n; S)| = �′ (n|S|−|V (S)|). This completes the
proof of Theorem 15.

In the special case where D(S) contains a loop, we can show
further that the leading coefficients of the quasipolynomials
|LP>0(n; S)| and |LP≥0(n; S)| are the same and constant.
This result is a direct consequence of Ehrhart-Macdonald
reciprocity and the fact that |LP>0(n; �q��)| is monotonically
increasing. We demonstrate the latter claim in Appendix C.

Note that when S = �q��, Corollary 27 yields (7), a result
of Jacquet et al. [15].

Corollary 27: Suppose D(S) is strongly connected. If D(S)
contains a loop, then

|LP>0(n; S)| ∼ |Q̄(n; S)| ∼ |LP≥0(n; S)|
∼ c(S)n|S|−|V (S)| + O(n|S|−|V (S)|−1), (9)

for some constant c(S).

VI. CONSTRUCTIVE LOWER BOUNDS

Fix S ⊆ �q�� and recall that pQ(n; S) denotes the set of
all �-gram profile vectors of words in Q(n; S). For ease of
exposition, we henceforth identify words in Q(n; S) with their
corresponding profile vectors in pQ(n; S). In Section VIII,
we provide an efficient method to map a profile vector
in pQ(n; S) back to a q-ary codeword in Q(n; S), Therefore,
in this section, we construct GRCs as sets of profile vectors
pQ(n; S) which we may map back to corresponding q-ary
codewords in Q(n; S).

Suppose that C is an (N, d)-AECC. We construct GRCs
from C via the following methods:

(i) When N = |S|, we intersect C with pQ(n; S) to obtain
an �-gram reconstruction code. In other words, we pick
out the codewords in C that are also profile vectors.
Specifically, C∩pQ(n; S) is an (n, d; S)-GRC. However,
the size |C ∩ pQ(n; S)| is usually smaller than |C| and
so, we provide estimates to |C∩pQ(n; S)| for a classical
family of AECCs in Section VI-A.

(ii) When N < |S|, we extend each codeword in C to a
profile vector of length |S| in pQ(n; S). In contrast to
the previous construction, we may in principle obtain an
(n, d; S)-GRC with the same cardinality as C. However,
one may not always be able to extend an arbitrary word
to a profile vector. Section VI-B describes one method
of mapping words in �m�N to pQ(n; q, �) that preserves
the code size for a suitable choice of the parameters
m and N . In addition, this mapping also preserves the
distance of the original code C.

3136 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 6, JUNE 2016

A. Intersection With pQ(n; S)

In this section, we assume N = |S| and we estimate
|C ∩ pQ(n; S)| when C belongs to a classical family of
AECCs proposed by Stanley [29]. Fix d and let p be a
prime such that p > d and p > N . Choose N distinct
nonzero elements α1, α2, . . . , αN in Z/pZ and consider the
matrix.

H �

⎛

⎜

⎜

⎜

⎝

α1 α2 · · · αN

α2
1 α2

2 · · · α2
N

...
...

. . .
...

αd
1 αd

2 · · · αd
N

⎞

⎟

⎟

⎟

⎠

.

Pick any vector β ∈ (Z/pZ)d and define the code

C(H,β) � {u : Hu ≡ β mod p}. (10)

Then, C(H,β) is an (N, d +1)-AECC [29]. Hence, C(H,β)∩
pQ(n; S) is an (n, d + 1; S)-GRC for all β ∈ (Z/pZ)d .
Therefore, by the pigeonhole principle, there exists a β such
that |C(H,β)∩pQ(n; S)| is at least |pQ(n; S)|/pd . However,
the choice of β that guarantees this lower bound is not known.

In the rest of this section, we fix a certain choice
of H and β and provide lower bounds on the size of
C(H,β) ∩ pQ(n; S) as a function of n. As before, instead
of looking at pQ(n; S) directly, we consider the set of closed
words Q̄(n; S) and the corresponding set of profile vectors
pQ̄(n; S).

Let β = 0 and choose H and p based on the restricted de
Bruijn digraph D(S). For an arbitrary matrix M, let Null>0M
denote the set of vectors in the null space of M that have
positive entries. We assume D(S) to be strongly connected
so that Null>0B(D(S)) is nonempty from Lemma 7. Hence,
we choose H and p such that C(H, 0) ∩ Null>0B(D(S)) is
nonempty.

Define the (|V (S)| + 1 + d)× (|S| + d)-matrix

A(H, S) �
(

A(S) 0
H −pId

)

,

where A(S) is as described in Section IV. Let b be a vector
of length |V (S)|+ 1 + d that has 1 as the first entry and zeros
elsewhere, and define the polytope

PGRC(H, S) � {u ∈ R
|S|+d : A(H, S)u = b,u ≥ 0} (11)

Since LP>0(n; S) ⊆ pQ̄(n; S) ⊆ pQ(n; S), |C(H, 0) ∩
LP>0(n; S)| is a lower bound for |C(H, 0) ∩ pQ(n; S)|.
The following proposition demonstrates that |C(H, 0) ∩
LP>0(n; S)| is given by the number of lattice points in the
interior of a dilation of PGRC(H, S).

Proposition 28: Let C(H, 0) and PGRC(H, S) be defined
as above. If D(S) is strongly connected and C(H, 0) ∩
Null>0B(D(S)) is nonempty, then |C(H, 0) ∩ LP>0(n; S)| =
∣

∣Z
N+d ∩ (n − �+ 1)P◦

GRC(H, S)
∣

∣.
Proof: Similar to Lemma 24, we have that P◦

GRC(H, S) =
{u ∈ R

|S|+d : A(H, S)u = b,u > 0}, and we defer the proof
of this claim to Appendix D.

To prove the desired sets have the same cardinality, we
construct a bijection between the two maps. Let u > 0 be
such that A(H, S)u = (n − � + 1)b. Let u = (u0,β

′),

where the vector u0 is the vector u restricted to the first
N coordinates and β ′ is the vector u restricted to the last
d coordinates. Then A(S)u0 = (n − � + 1)b0, where b0 is
a vector of length |V (S)| + 1 with one in its first coordinate
and zeros elsewhere. Hence, u0 ∈ LP>0(n; S). On the other
hand, Hu0 = pβ ′ and so, Hu0 ≡ 0 mod p, implying that
u0 ∈ C(H, 0). Therefore, φ(u) = u0 is well-defined map
from {u ∈ Z

N+d : A(H, S)u = (n − � + 1)b and u > 0}
to C(H, 0) ∩ LP>0(n; S).

Next, consider u0 ∈ C(H, 0)∩LP>0(n; S). Then A(S)u0 =
(n − � + 1)b0. Also, Hu0 ≡ 0 mod p and hence, 1

p Hu0

has integer coordinates. Then ψ(u0) = (u0,
1
p Hu0) is a

well-defined map from C(H, 0)∩LP>0(n; S) to {u ∈ Z
N+d :

A(H, S)u = (n − �+ 1)b and u > 0}.
Finally, to demonstrate that both φ and ψ are bijections,

we verify that ψ ◦ φ and φ ◦ ψ are both identity maps on
{u ∈ Z

N+d : A(H, S)u = (n − � + 1)b and u > 0} and
C(H, 0) ∩ LP>0(n; S), respectively. Indeed,

ψ ◦ φ((u0,β
′)) = ψ(u0) = (u0,

1

p
Hu0) = (u0,β

′),

φ ◦ ψ(u0) = ψ((u0,
1

p
Hu0)) = u0.

Hence, the two sets have the same cardinality. �
As before, we compute the dimension of PGRC(H, S) and

characterize its vertex set. Since the proofs are similar to the
ones in Section V, the reader is referred to Appendix D for a
detailed analysis.

Lemma 29: Let C(H, 0) and PGRC(H, S) be defined as
above. Suppose further that D(S) is strongly connected
and C(H, 0) ∩ Null>0B(D(S)) is nonempty. The dimension
of PGRC(H, S) is |S| − |V (S)|, while its vertex set is
given by

{(

χ(C)

|C| ,
Hχ(C)

p|C|
)

: C is a cycle in D(S)

}

.

Let λGRC = lcm{|C| : C is a cycle in D(S)} ∪ {p}.
Then Lemma 29, Ehrhart’s theorem and Ehrhart-Macdonald’s
reciprocity imply that LP◦

GRC(H,S)(t) is a quasipolynomial
of degree |S| − |V (S)| whose period divides λGRC.
As in Section V, we dilate the polytope PGRC(H, S)
by λGRC to obtain an integer polytope and assume that
the polynomial LλGRCPGRC(H,S)(t) has leading coefficient c.
Hence, whenever n − � + 1 = λGRCt , that is, whenever
λGRC|(n − �+ 1),

|C(H, 0) ∩ LP>0(n; S)|
= LλGRCP◦

GRC(H,S)(t)

= ct |S|−|V (S)| + O(t |S|−|V (S)|−1)

= c(n/λGRC)
|S|−|V (S)| + O(n|S|−|V (S)|−1).

We denote c/λ|S|−|V (S)|
GRC by c(H, S) and summarize the results

in the following theorem.
Theorem 30: Fix S ⊆ �q�� and d . Choose H and p

so that C(H, 0) is an (|S|, d + 1)-AECC and C(H, 0) ∩
Null>0B(D(S)) is nonempty. Suppose that λGRC =
lcm{{|C| : C is a cycle in D(S)} ∪ {p}}. Then there exists a

KIAH et al.: CODES FOR DNA SEQUENCE PROFILES 3137

constant c(H, S) such that whenever λGRC|(n − �+ 1),

|C(H, 0) ∩ pQ(n; S)| ≥ c(H, S)n|S|−|V (S)| + O(n|S|−|V (S)|−1).

Hence, it follows from Theorem 30, we have C(n, d; S) =
�′(n|S|−|V (S)|) when d is constant. Since C(n, d; S) ≤
|Q(n; S)| = O(n|S|−|V (S)|), we have C(n, d; S) =
�′(n|S|−|V (S)|).

In Example 37, we consider the case S = �2�3 and d = 2.
We then computed the number of codewords in C(H, 0) ∩
LP>0(n; 2, 3) to be 12168t4−1248t3+131t2−16t +1, where
n = 156t + 2. In other words, we have that C(n, 3; �2�3) =
�′(n4). Details are provided in Section VII.

Remark 31:

(i) We consider the complexity of determining p and H .
The value of p may be determined in time polynomial
in N since there always exists a prime number between
N and 2N by Bertrand’s postulate [30] and the running
time of a primality test is polynomial in log N [31]. The
construction H can be completed in time polynomial
in N , since multiplication in the field Fp has time
complexity polynomial in log N and there are d N entries
to fill in H.

(ii) When D(S) is Eulerian, the all-ones vector belongs to
Null>0B(D(S)). It then suffices to construct a check
matrix H such that the elements in each row sum to
zero. To this end, one may simply choose p such that
N divides p − 1 and then pick the N field elements
α1, α2, . . . , αN so that αN

j = 1 for all 1 ≤ j ≤ N . It is

easy to check that one has
∑N

j=1 α
i
j = 0 mod p for all

1 ≤ i ≤ d < N .
So, one can construct H efficiently whenever D(S) is
Eulerian. As observed from Proposition 10, we have that
D(q, �; q∗, [w1, w2]), the graphs that we work with, are
Eulerian.

(iii) For clarity of exposition, we considered the case where
β = 0. For general β, similar results hold with suitable
modifications to b and the polytope PGRC(H, S) defined
in (11). In particular, we can set the last d entries of b to
be β and then Proposition 28 can be modified to show
that |C(H, (n − �+ 1)β) ∩LP>0(n; S)| is given by the
number of lattice points in the interior of a dilation of
the new polytope PGRC(H, S). Observe that C(H, (n −
�+1)β)∩LP>0(n; S) remains an (|S|, d+1)-AECC and
corresponding versions of Lemma 29 and Theorem 30
follow using similar derivations.

B. Systematic Encoding of Profile Vectors

In this subsection, we look at efficient one-to-one mappings
from �m�N to pQ(n; S). As with usual constrained coding
problems, we are interested in maximizing the number of
messages, i.e. the size of mN , so that the number of messages
is close to |pQ(n; S)| = �′(n|S|−|V (S)|). We achieve this
goal by exhibiting a systematic encoder with m = �(n) and
N = |S|− |V (S)|− 1. More formally, we prove the following
theorem.

Theorem 32 (Systematic Encoder): Fix n and S ⊆ �q��.
Pick any m so that

m ≤ n − �+ 1
(|V (S)|

2

)

(q − 1)+ |S| − |V (S)| − 1
. (12)

Suppose further that D(S) is Hamiltonian and contains a
loop. Then, there exists a set I ⊆ S of coordinates of size
|S|−|V (S)|−1 with the following property: for any v ∈ �m�I ,
there exists an �-gram profile vector u ∈ pQ(n; S)
such that u|I = v. Furthermore, u can be found in
time O(|V (S)|).

In other words, given any word v of length N = |I | =
|S| − |V (S)| − 1, one can always extend it to obtain a profile
vector u ∈ pQ(n; S) of length |S|. As pointed out earlier,
this theorem provides a simple way of constructing �-gram
codes from AECCs and we sketch the construction in what
follows.

Let φsys(v) denote the profile vector resulting from
Theorem 32 given input v. Consider an m-ary (N, d)-AECC
C with N = |S| − |V (S)| − 1 and m satisfying (12). Let
φsys(C) � {φsys(v) : v ∈ C}. Then φsys(C) ⊆ pQ(n; S).
Furthermore, φsys(C) has asymmetric distance at least d since
restricting the code φsys(C) on the coordinates in I yields C.
Hence, we have the following corollary.

Corollary 33: Fix n and S ⊆ �q�� and pick m
satisfying (12). Suppose D(S) is Hamiltonian and contains
a loop. If C is an m-ary (|S| − |V (S)| − 1, d)-AECC, then
φsys(C) � {φsys(v) : v ∈ C} is a (n, d; S)-GRC.

For compactness, we write V , A and B, instead of V (S),
A(S) and B(D(S)). To prove Theorem 32, consider the
restricted de Bruijn digraph D(S). By the assumptions of the
theorem, denote the set of |V | arcs in a Hamiltonian cycle as
H and the arc corresponding to a loop by a0. We set I to
be S \ (H ∪ {a0}).

We reorder the coordinates so that the arcs in H are ordered
first, followed by the arc a0 and then the arcs in I . So, given
v = (v1, v2, . . . , v|I |) ∈ �m�|I |, the proof of Theorem 32
essentially reduces to finding integers x1, x2, . . . , x|V |, y such
that

A
(

x1, x2, . . . , x|V |, y, v1, v2, . . . , v|I |
)T = (n − �+ 1)b.

(13)

Considering the first row of A separately from the remaining
rows, we see that (13) is equivalent to the following system
of equations:
|V |
∑

i=1

xi +y = (n − �+ 1)−
|I |
∑

i=1

vi , (14)

0 = B

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1
...

x|V |
y
v1
...
v|I |

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= B

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1
...

x|V |
0
0
...
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+B

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
...
0
y
0
...
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+B

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
...
0
0
v1
...
v|I |

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(15)

3138 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 6, JUNE 2016

Since the first |V | columns of B correspond to the arcs in H ,
we have

B
(

x1, . . . , x|V |, 0, 0, . . . , 0
)T =

⎛

⎜

⎜

⎜

⎝

x2 − x1
x3 − x2
...

x1 − x|V |

⎞

⎟

⎟

⎟

⎠

.

Since the (|V | + 1)-th column of B is a 0-column, we have
B (0, . . . , 0, y, 0, . . . , 0)T = 0 for any y.

For the final summand, let B
(

0, . . . , 0, 0, v1, . . . , v|I |
)T =

(r1, r2, . . . , r|V |)T . We can then rewrite (15) as

xi − xi+1 = ri , for 1 ≤ i ≤ |V | − 1, and x|V | − x1 = r|V |.
(16)

Since 1T B = 0T , we have 1T (r1, r2, . . . , r|V |)T =
∑|V |

i=1 ri = 0. Furthermore, we assume without loss of
generality that

∑ j
i=1 ri ≥ 0, for all 1 ≤ j ≤ |V |. This can be

achieved by cyclically relabelling the nodes and we prove this
in Appendix E.

It suffices to show that an integer solution for (16) and (14)
exists, satisfying y ≥ 1 and xi ≥ 1 for i ∈ [|V |]. Consider the
following choices of xi and y:

xi = 1 +
i−1
∑

j=1

r j ,

y = (n − �+ 1)−
|I |
∑

i=1

vi −
|V |
∑

i=1

xi .

Clearly, xi and y satisfy (14) and (16). Since each vi

is an integer, all ri are integers, so xi and y are also
integers. Furthermore, each xi ≥ 1, since we chose
the labeling so that

∑i−1
j=1 r j ≥ 0. We still must show

that y ≥ 1.
First, we observe that ri < (q − 1)m for all i , since each

node has at most (q − 1) incoming arcs in I and by design,
each vi is strictly less than m. Thus, each xi satisfies

xi < 1 + (i − 1)(q − 1)m.

Summing over all i , we have

|V |
∑

i=1

xi ≤
|I |
∑

i=1

(i − 1)(q − 1)m = (q − 1)m

(|V |
2

)

.

Since also each vi ≤ m, we have

y ≥ (n − �+ 1)− m

[

|I | + (q − 1)

(|V |
2

)]

.

By the choice of m, it follows that y ≥ 0. This completes the
proof of Theorem 32.

Example 34: Let S = �2�3 and let n = 20. Then
Theorem 32 states that there is a systematic encoder that maps
words from �2�3 into pQ(20; 2, 3). Following the convention
in Fig. 2 and Example 9, we list all eight encoded profile
vectors (as edge labellings on D(�2�3)) with their systematic
components highlighted in boldface.

For instance, the codeword 000 ∈ �2�3 is mapped to
the profile vector (14, 1, 0, 1, 1, 0, 1, 0). Via the EULER map
described in Section VIII, this profile vector is mapped to
00 · · · 01100 ∈ Q(20, 2, 3).

Observe that we can systematically encode �2�3 into
pQ(n; 2, 3) even when n is smaller than 20. In fact,
in this example, we can systematically encode �2�3 into
pQ(10; 2, 3). In general, we can can systematically encode
�m�3 into pQ(4m + 2; 2, 3). In this case, the size of
the message set is approximately n3/64 while the number
of all possible closed profile vectors is approximately
n4/288 [15].

In Section VII and Example 37, we observe that the
construction given in Section VI-A yields a larger code size.
Nevertheless, the systematic encoder is conceptually simple
and furthermore, the systematic property of the construction
in Section VI-B can be exploited to integrate rank modulation
codes into our coding schemes for DNA storage, useful
for automatic decoding via hybridization. We describe this
procedure in detail in Section VIII.

VII. NUMERICAL COMPUTATIONS FOR

S = S(q, �; q∗, [w1, w2])
In what follows, we summarize numerical results for

code sizes pertaining to the special case when S =
S(q, �; q∗, [w1, w2]).

By Proposition 10, D(q, �; q∗, [w1, w2]) is Eulerian and
therefore strongly connected. In other words, Theorem 15

KIAH et al.: CODES FOR DNA SEQUENCE PROFILES 3139

applies and we have |Q(n; S)| = �′(n|S|−|V (S)|), where
|S| is given by |S(q, �; q∗, [w1, w2])| = ∑w2

w=w1

(�
w

)

(q∗)w
(q − q∗)�−w, while |V (S)| is given by |S(q, � − 1; q∗,
[w1 − 1, w2])| = ∑w2

w=w1−1

(�−1
w

)

(q∗)w(q − q∗)�−1−w.
Let D = |S| − |V (S)|. We determine next the

coefficient of nD in |Q(n; S)|. When w2 = �, the digraph
D(q, �; q∗, [w1, �]) contains the loop that corresponds to the
�-gram 1T . Hence, by Corollary 27, the desired coefficient
is constant and we denote it by c(q, �; q∗, [w1, �]). When
S = �q��, we denote this coefficient by c(q, �) and remark that
this value corresponds to the constant defined in Theorem 17.

When w2 < �, the digraph D(q, �; q∗, [w1, w2]) does not
contain any loops. Recall from Section V the definitions of
P(S), λS and LP(S)(n − � + 1). In particular, recall that the
lattice point enumerator LP(S)(n −�+1) is a quasipolynomial
of degree D whose period divides λS and that consequently,
the coefficient of nD in |Q(n; S)| is periodic. For ease of
presentation, we only determine the coefficient of nD for those
values for which λS divides (n − � + 1) or n − � + 1 = λS t
for some integer t . In this instance, the desired coefficient is
given by c(q, �; q∗, [w1, w2]) � c/λD

S , where c is the leading
coefficient of the polynomial LλSP(S)(t).

In summary, we have the following corollary.
Corollary 35: Consider S = S(q, �; q∗, [w1, w2]) and

define

D =
w2
∑

w=w1

(

�

w

)

(q∗)w(q − q∗)�−w

−
w2
∑

w=w1−1

(

�− 1

w

)

(q∗)w(q − q∗)�−1−w.

Suppose that λS = lcm{|C| : C is a cycle in D(S)}. Then
for some constant c(q, �; q∗, [w1, w2]),

(i) If w2 = �, |Q(n; S)| = c(q, �; q∗, [w1, �])nD +
O(nD−1) for all n;

(ii) Otherwise, if w2 < �, |Q(n; S)| =
c(q, �; q∗, [w1, w2])nD + O(nD−1) for all n such
that λS |(n − �+ 1).

When S = �q��, we write c(q, �) instead of c(q, �; 1, [0, �]).
We determine c(q, �; q∗, [w1, w2]) via numerical

computations. Computing the lattice point enumerator is
a fundamental problem in discrete optimization and many
algorithms and software implementations have been developed
for such purposes. We make use of the software LattE,
developed by Baldoni et al. [32], which is based on an
algorithm of Pevzner and Lipshutz [33]. Barvinok’s algorithm
essentially triangulates the supporting cones of the vertices of
a polytope to obtain simplicial cones and then decompose the
simplicial cones recursively into unimodular cones. As the
rational generating functions of the resulting unimodular
cones can be written down easily, adding and subtracting them
according to the inclusion-exclusion principle and Brion’s
theorem gives the desired rational generating function of the
polytope. The algorithm is shown to enumerate the number
of lattice points in polynomial time when the dimension of
the polytope is fixed.

TABLE I

COMPUTATION OF c(q, �)

Using LattE, we computed the desired coefficients for
various values of (q, �; q∗, [w1, w2]). As an illustrative
example, LattE determined c(2, 4) = 283/9754214400
with computational time less than a minute. This shows
that although the exact evaluation of c(q, �) is prohibitively
complex (as pointed by Quail et al. [15]), numerical
computations of c(q, �) and c(q, �; q∗, [w1, w2]) are feasible
for certain moderate values of parameters. We tabulate these
values in Table I and II.

Next, we provide numerical results for lower bounds on the
code sizes derived in Section VI-A.

When S = S(q, �; q∗, [w1, w2]), the digraph D(S)
is Eulerian by Proposition 10 and hence, 1 belongs to
Null>0B(D(S)). Therefore, if C(H, 0) contains the vector 1 as
well, C(H, 0)∩Null>0B(D(S)) is nonempty and the condition
of Theorem 30 is satisfied. Hence, we have the following
corollary.

Corollary 36: Let S = S(q, �; q∗, [w1, w2]). Fix d and
choose H and p such that C(H, 0) is an (|S|,
d + 1)-AECC containing 1. Suppose that λGRC =
lcm{{|C| : C is a cycle in D(S)} ∪ {p}}. Then there exists a
constant c(H, S) such that whenever λGRC|(n − �+ 1),

|C(H, 0) ∩ pQ(n; S)| ≥ c(H, S)nD + O(nD−1),

where D = |S| − |V (S)| = ∑w2
w=w1

(�
w

)

(q∗)w(q − q∗)�−w −
∑w2
w=w1−1

(�−1
w

)

(q∗)w(q − q∗)�−1−w.

Example 37: Let S = �2�3 and d = 2. Choose p = 13 and

H =
(

1 2 3 5 8 10 11 12
1 4 9 12 12 9 4 1

)

.

Then C(H, 0) is an (8, 3)-AECC containing 1. We have
λGRC = lcm{{1, 2, . . . , 8} ∪ {13}} = 156. Using LattE, we
compute the lattice point enumerator of λGRCP◦

GRC(H, S) to
be 12168t4−1248t3+131t2−16t+1. Hence, for n = 156t+2,
the number of codewords in C(H, 0)∩LP>0(n; 2, 3) is given
by 12168t4−1248t3+131t2−16t+1. When t = 1 or n = 158,
there exist a

(

158, 3; �2�3
)

-GRC of size at least 11036.
We compare this result with the one provided by the

construction using the systematic encoder described in
Section VI-B and in particular, Example 34. When n = 158,
we can systematically encode words in �39�3 into

pQ
(

158; �2�3
)

. Hence, we consider a 39-ary (3, 3)-AECC.
Using Varshamov’s construction with p1 = 5 and

3140 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 6, JUNE 2016

TABLE II

COMPUTATION OF c(q, �; q∗, [w1, w2]). WE FIXED q = 2 AND q∗ = 1

TABLE III

COMPUTATIONS OF c(H, S)

H1 =
(

1 2 3
1 4 4

)

, we obtain a 39-ary (3, 3)-AECC of

size 2368. Applying the systematic encoder in Theorem 32,
we construct a (158, 3; 2, 3)-GRC of size 2368.

Using LattE, we determined c(H, S) for moderate
parameter values and summarize the results in Table III.

We conclude this section with a conjecture on the relation
between c(q, �) and c(H, S).

Conjecture 38: Fix q, �, d . Choose H and p such that
C(H, 0) is an (N, d + 1)-AECC containing 1. Let c(q, �) and
c(H, S) be the constants defined in Corollaries 35 and 36,
respectively. Then c(H, S) ≥ c(q, �)/pd .

Roughly speaking, the conjecture states that asymptotically,
|C(H, 0)∩LP>0(n; q, �)| is at least |Q̄(n; q, �)|/pd . In other
words, for our particular choice of H and β, we asymptotically
achieve the code size guaranteed by the pigeonhole principle.

VIII. DECODING OF PROFILE VECTORS

Recall the DNA storage channel illustrated in Fig. 1. The
channel takes as its input a word x ∈ Q(n; S) and outputs a
profile vector p̂(x) ∈ Z

|S|. Assuming no errors, the vector p̂(x)
corresponds to the correct profile vector p(x; S) ∈ pQ(n; S).
In this channel model and the code constructions in Section VI,
we have implicitly assumed the existence of an efficient

algorithm that decodes p̂(x) ∈ Z
|S| back to the

message x. We now describe this two-step algorithm in more
detail.

The first step of decoding is to correct errors in p̂(x) ∈ Z
|S|

to arrive at a profile vector of the valid codeword p(x; S) ∈
pQ(n; S). For this purpose, one can use the conceptually
simple Varshamov’s decoding algorithm described in [18].
The algorithm reduces to recursive computations of residues
of the channel output profile vectors with respect to the rows
of the matrix H defining the code in (10) and solving a system
of equations over a finite field.

The second step of decoding consists of converting the
corrected profile vector into the corresponding codeword. For
the purpose of describing this process, let u be a profile vector
in pQ(n; S) so that u = p(x; S) for some x ∈ Q(n; S).
As it was done in the proof of Lemma 12, we construct
a multigraph on the node set V (S) by adding uz arcs for
each z ∈ V (S). We remove any isolated nodes to arrive at
a connected Eulerian multidigraph. We subsequently apply
any linear-time algorithm like Hierholzer’s algorithm [34] to
this multidigraph to obtain an Eulerian walk. Hierholzer’s
algorithm uses two straightforward search steps:

• One starts by choosing a starting node in the multidigraph
v and then proceeds by following a connected sequence
of edges until returning to v. Note that the multidigraph
is Eulerian so such a closed path will always exist. Note
that one closed path may not cover all edges (or nodes)
in the graph.

• If the path does not cover all edges, as long as there
exists a node u on the last identified closed path that has
emanating edges terminating in nodes not on the closed
path, initiate another closed walk from the node u that
does not share any edges with the current closed path.
Merge the current path with the path initiated from u.

Most implementations of the Hierholzer’s algorithm involve
an arbitrary choice for the starting node and the subsequent
nodes to visit. Hence, it is possible for the algorithm to produce
different walks based on the same multigraph. Nevertheless,
we may fix an order for the nodes and have the algorithm
always choose the ‘smallest’ available node. Under these
assumptions, EULER(u) is always well defined. Let EULER(u)
denote the word of �Q�n obtained from this restricted Eulerian
walk. It remains to verify that EULER(u) = x.

As mentioned in Section II, an element in Q(n; S) is an
equivalence class X ⊂ �q�n , where x, x′ ∈ X implies that

KIAH et al.: CODES FOR DNA SEQUENCE PROFILES 3141

p(x; S) = p(x′; S). Here, we fix the choice of representative
for X . As hinted by the previous discussion, we let this
representative be EULER (p(y; S)) for some y ∈ Y and
observe that this definition is independent of the choice of y.
Then with this choice of representatives, the function EULER

indeed decodes a profile vector back to its representative
codeword.

In summary, we identify the elements in Q(n; S) with the
set of representatives {EULER(u) : u ∈ pQ(n; S}. Then for
any x ∈ Q(n; S), the function EULER decodes p(x; S) to x in
linear-time.

A. Practical Methods for Counting �-Grams

An interesting feature of the described coding scheme is
that one can avoid common problems with DNA sequence
assembly by designing codewords that have distinct profile
vectors and profiles at sufficiently large distance. However,
there are computational challenges associated with counting
the number of �-grams and determining the profile vector of an
arbitrary word, given that modern high-throughput sequences
may produce hundreds of millions of reads. We examine next
a number of practical methods for profile counting which
represents a crucial step in decoding and address emerging
issues via known coding solutions.

In particular, we look at an older technology – sequencing
by hybridization (SBH), proposed in [35] – as a means
of automated decoding. The idea behind SBH is to build
an array of �-grams or probes; this array of probes is
commonly referred to as a sequencing chip. A sample of single
stranded DNA to be sequenced is fragmented, labelled with
a radioactive or fluorescent material, and then presented to
the chip. Each probe in the array hybridizes with its reverse
complement, provided the corresponding �-gram is present in
the sample. Then an optical detector measures the intensity
of hybridization of the labelled DNA and hence infers the
number of �-grams present in the sample. The advantage
of using SBH for counting �-grams is massive parallelism,
and hence increased speed of decoding. Furthermore, SBH
allows one to bypass the reading step in sequencing as this
is automatically accomplished via hybridization to a proper
target.

We first present an analysis of the simplest form of SBH, in
which hybridization results may only indicated the presence
or absence of certain �-grams. This simple and inexpensive
sequencing method may be used to significantly reduce the
space of possible profile vectors, and this information may
be used to design a more cost efficient and accurate SBH
sequencer having fewer probes and more precise probe binding
intensity – and hence �-gram counts.

In our discussion, we assume that S = �q��. Furthermore,
in our terminology, if x is the codeword, the channel
outputs a subset of �q�� given by supp(p(x; q, �)), where
supp(u) denotes the set of coordinates z with uz ≥ 1
(see Fig. 4(a)). Then, we can define d∗

gram(x, y; q, �) �
|supp(p(x; q, �))�supp(p(y; q, �))| for any pair of
x, y ∈ �q�n . Intuitively, d∗

gram measures how dissimilar
the sets of �-grams contained in two sequences are.

As before, (�q�n , d∗
gram) forms a pseudometric space and we

convert this space into a metric space via an equivalence

relation – we say x
�∗∼ y if and only if d∗

gram(x, y; q, �) = 0.

Then, by defining Q∗(n; q, �) � �q�n /
�∗∼, we obtain a metric

space.
Let C ⊆ Q∗(n; q, �). If d = min{d∗

gram(x, y; �) :
x, y ∈ C, x �= y}, then C is said to be (n, d; q, �)-�∗-gram
reconstruction code (∗-GRC). Intuitively, a ∗-GRC with
high distance allows for the reconstruction of any codeword
sequence via the measurement of a sufficiently large subset
of the �-grams. We have the following proposition that is an
analogue of Proposition 5.

Proposition 39: Given an (n, d; q, �)-∗-GRC, a set of n −
�+ 1 − �(d − 1)/2	 �-grams suffices to identify a codeword.

Proof: Let t = n−�+1−�(d − 1)/2	. Suppose otherwise
that there exists a pair of distinct codewords x and y that
contain a common set of t �-grams. Then

d∗
gram(x, y; �) = |supp(p(x; q, �))�supp(p(y; q, �))|

≤ (n − �+ 1 − t)+ (n − �+ 1 − t)

= 2 �(d − 1)/2) ≤ d − 1 < d,

resulting in a contradiction. �
Determining the maximum size of an (n, d; q, �)-∗-GRC

turns out to be related to certain well studied combinatorial
problems.

Case d = 1. The maximum size of an (n, 1; q, �)-∗-GRC
is given by |Q∗(n; q, �)|. Equivalently, this count corresponds
to the number of possible sets of �-grams that can be obtained
from words of length n. Observe that |Q∗(n; q, �)| ≤ 2q� and
hence |Q∗(n; q, �)| cannot be a quasipolynomial in n with
degree at least one. Therefore, it appears that Ehrhart theory
is not applicable in this context. Nevertheless, preliminary
investigations of this quantity for q = 2 have been performed
by Hierholzer [36]. In particular, Tan and Shallit proved the
following proposition for n < 2�.

Proposition 40 [36, Corollary 19]: For � ≤ n < 2�, we
have

Q(n; 2, �) = 2n −
n−�+1
∑

k=1

k − 1

k

∑

d |k
μ

(

k

d

)

2d ,

where μ(·) is the Möbius function defined as

μ(n) =
{

(−1)ω(n), if n is a square-free positive integer;
0, otherwise,

and ω(n) is the number of prime factors of n.
Case d = 2(n − � + 1). For the other extreme, we see

that the problem is related to edge-disjoint path packings and
decompositions of graphs (see [37], [38]). Formally, consider
a graph G. A set C of paths in G is said to be an edge-disjoint
path packing of G if each edge in G appears in at most
one path in C. An edge-disjoint path packing C of G is an
edge-disjoint path decomposition of G if each edge in G
appears in exactly one path in C. Edge-disjoint cycle packings
and decompositions are defined similarly.

Now, an (n, 2(n − � + 1); q, �)-∗-GRC is equivalent to
an edge-disjoint path packing of D(q, �), where each path

3142 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 6, JUNE 2016

Fig. 4. Sequencing by hybridization. Instead of obtaining the exact count of the �-grams, we obtain auxiliary information on the count: (a) we obtain the
set of 3-grams present in 00111011000000; (b) we obtain the relative order of the counts of 010, 101 and 111.

Fig. 5. Encoding messages for a DNA storage channel that outputs the relative order on the counts of particular �-grams.

is of length (n − � + 1). Furthermore, an edge-disjoint path
decomposition of D(q, �) into paths of length n − � + 1
yields an optimal (n, 2(n − � + 1); q, �)-∗-GRC of size
q�/(n − �+ 1).

Since an edge-disjoint cycle decomposition is also
an edge-disjoint path decomposition, we examine next
edge-disjoint cycle decomposition of de Bruijn graphs. These
combinatorial objects were studied by Cooper and Graham,
who proved the following theorem.

Theorem 41 [39, Proposition 2.3, Corollary 2.5]:

(i) There exists an edge-disjoint cycle decomposition
of D(q, �) into q cycles of length q�−1, for any
q and �.

(ii) There exists an edge-disjoint cycle decomposition of
D(r2k+1, 3) into 8k cycles of length 8r3, for any k ≥ 0
and r ≥ 1.

Therefore, Theorem 41 demonstrates the existence of an
optimal (q�−1 + � − 1, 2q�−1; q, �)-∗-GRC of size q and an
optimal (8r3 + 2, 16r3; r2k+1, 3)-∗-GRC of size 8k for any
k ≥ 0 and r ≥ 1.

B. Decoding Rank Modulation Encoded Profiles

As mentioned earlier, it is difficult to infer accurately the
number of �-grams present from the hybridization results.

However, we may significantly more accurately determine
whether the count of a certain �-gram is greater than the
count of another. In other words, we may view the sequencing
channel outputs as rankings or orderings on the q� �-grams
counts or a permutation of length q� reflecting the �-gram
counts.

This suggests that we consider codewords whose profile
vectors carry information about order. More precisely, let
Perm(N) denote the set of permutations over the set �N�.
We consider codewords whose profile vectors belong to
Perm(N) and consider a metric on Perm(N) that relates to
errors resulting from changes in order. The Kendall metric was
first proposed by Jiang et al. [40] in rank modulation schemes
for nonvolatile flash memories and codes in this metric have
been studied extensively since (see [41] and the references
therein). The Ulam metric was later proposed by Farnoud et al.
for permutations [42] and multipermutations [43].

Unfortunately, due to the flow conservation equations (1),
the profile vector of a q-ary word is unlikely to have distinct
entries and hence be a permutation. Nevertheless, we appeal
to the systematic encoder provided by Theorem 32. We set
m = q� − q�−1 − 1. Then, provided n is sufficiently large,
there exists a set I of m coordinates that allow us to extend any
word v in �m�m to a profile vector in φsys(v) ∈ pQ(n; q, �).
In particular, since Perm(m) ⊆ �m�m , any permutation v of

KIAH et al.: CODES FOR DNA SEQUENCE PROFILES 3143

length m may be extended to a profile vector in φsys(v) ∈
pQ(n; q, �).

This implies that for the design of the sequencing chip, we
do not need to have q� probes for all possible �-grams. Instead,
we require only m = q� − q�−1 − 1 probes that correspond to
the �-grams in I . Hence, the sequencing channel outputs an
ordering on this set of m �-grams (see Fig. 4(b)).

This setup allows us to integrate known rank modulation
codes (in any metric) into our coding schemes for DNA
storage. In particular, to encode information we perform
the following procedure. First, we encode a message into
a permutation using a rank modulation encoder. Then the
permutation is extended into a profile vector and then mapped
by EULER to the profile vector of a q-ary codeword (see Fig. 5
for an illustration).

Example 42: Suppose that S = �2�3. Hence, we set
m = 3 and recall the systematic encoder φsys described in
Example 34 that maps �3�3 into pQ(14; 2, 3). Suppose that
v = (0, 1, 2) ∈ Perm(3) belongs to some rank modulation
code. Then u = φsys(v) = (3, 1, 0, 2, 1, 1, 2, 2) belongs
to pQ(14; 2, 3). Finally, EULER maps u to a codeword
00000110111100 ∈ �2�14.

Now, if we were to detect the relative order of the 3-grams
010, 101 and 111, we obtain the permutation (0, 1, 2) as
desired (see also Fig. 4(b)).

IX. CONCLUSIONS AND OPEN PROBLEMS

We introduced a new coding method tailored for the need of
DNA-based storage systems that synthesize DNA strands with
potential substitution errors and sequence the strands using
shotgun sequencing methods. The synthesis and sequencing
methods introduce previously unknown code constraints, as
the input to the corresponding DNA storage channel is a
sequence, while the output of the DNA storage channel is a
collection of (possibly noisy) substrings of the original string,
all of predetermined fixed length. The investigated model
assumes that only a small bounded number of substrings are
in error, and that some substrings may not be observed due
to coverage errors. The gist of the approach is to implement
error-correction at the level of sequence profiles, where a
profile summarizes the number of substrings of each type
observed at the channel output. Given that sequence profiles
are related to flows in de Bruijn graphs, finding the size of
the largest profile code may be cast as a problem of counting
lattice points in a rational polytope. To obtain bounds on this
count, we used results from Erhart-Macdonald’s reciprocity
theory. This theory may be seen as broad generalization of
the simple result known as Pick’s theorem, which allows one
to determine the area of a polygon in terms of the number of
lattice points in its interior [44].

This work is the first in a line of recent papers on
coding for DNA-based storage [45]–[47]. The aforementioned
papers addressed the coding challenges associated with
different sequencing technologies (i.e., coding for nanopore
sequencers [45]), coding problems related to address design for
random access DNA-based storage (i.e., mutually uncorrelated
and weakly mutually uncorrelated sequences and codes [46].
Note that a special class of this sequences is known as

TABLE IV

TABLE OF DEFINITIONS AND NOTATION

cross-bifix free codes [48]), and codes capable of handling
DNA aging which manifests itself through sequence breakage
and rearrangement (i.e., codes in the Damerau distance [47]).
Nevertheless, many open problems remain, mainly due to
the fact that different synthesis and sequencing technologies
introduce different types of errors and tend to produce
widely different sequence outputs. As an illustrative example,
MinION nanopore sequencers produce readouts of current
changes corresponding to short consecutive substrings of the
sequenced DNA strand, where the current change reflects the
chemical structure and composition of the substring. Hence,
errors are highly context dependent, and in addition involve
deletions and insertions that arise due to undesired shifting of
the sequence within the nanopore. For more details on this and
other open coding problems for DNA-based storage, as well as
an overview of modern synthesis and sequencing technologies,
the interested reader is referred to the overview paper [9].

APPENDIX A

See Table IV.

3144 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 6, JUNE 2016

APPENDIX B
EULERIAN PROPERTY OF CERTAIN RESTRICTED

DE BRUIJN DIGRAPHS

In this section, we provide a detailed proof of
Proposition 10. Specifically, for q , �, 1 ≤ q∗ ≤ q − 1
and 1 ≤ w1 < w2 ≤ �, we demonstrate that the digraph
D(q, �; q∗, [w1, w2]) is Eulerian. Our analysis follows that
of Ruskey [23].

Recall that the arc set of D(q, �; q∗, [w1, w2]) is given by
S = S(q, �; q∗, [w1, w2]), while the node set is given by
V (S) = S(q, � − 1; q∗, [w1 − 1, w2]), which we denote
by V for short. In addition, we introduce the following
subsets of �q�. For a node z in V , let Pref(z) be the
set of symbols in �q� that when prepended to z results in
an arc in S. Similarly, let Suff(z) be the set of symbols
in �q� that when appended to z result in an arc in S. Hence,
{σz : σ ∈ Pref(z)} and {zσ : σ ∈ Suff(z)} are the respective
sets of incoming and outgoing arcs for the node z.

Lemma 43: Every node of D(q, �; q∗, [w1, w2]) has the
same number of incoming and outgoing arcs.

Proof: Let z belong to V . Observe that for all s ∈ �q�,
s z ∈ S if and only if z s ∈ S. Hence, Pref(z) = Suff(z) and
the lemma follows. �

It remains to show that D(q, �; q∗, [w1, w2]) is strongly
connected. We do it via the following sequence of lemmas.

Lemma 44: Let z, z′ belong to V and have the property that
they differ in exactly one coordinate. Then there exists a path
from z to z′.

Proof: Observe the following characterization of
Pref(z) = Suff(z):

Pref(z) = Suff(z)

=

⎧

⎪

⎨

⎪

⎩

[q − q∗, q − 1], if wt(z; q∗) = w1 − 1;
�q∗� , if wt(z; q∗) = w2;
�q� , otherwise.

Then Suff(z)∩Pref(z′) is empty only if wt(z; q∗) = w1 − 1
and wt(z′; q∗) = w2 or vice versa. Either way, z and z′
differ in at least two coordinates, which contradicts the starting
assumption.

Hence, Suff(z)∩ Pref(z′) is always nonempty. To complete
the proof, let s ∈ Suff(z) ∩ Pref(z′). Then, the path
corresponding to z s z′ is the desired path. (Note that each
�-gram appearing in z s z′ has weight equal to either wt(z s)
or wt(s z′); in particular, each such �-gram lies in S.) �

Therefore, to construct a path between any two given nodes
z and z′, it suffices to demonstrate a sequence of nodes such
that consecutive nodes differ in only one position.

Lemma 45: For any z, z′ ∈ V , there is a sequence of nodes
z = z0, z1, . . . , zt = z′ such that z j and z j+1 differ in exactly
one position for j ∈ �t�.

proof:
Let z′ = σ1σ2 · · · σ�−1. We construct the sequence

of nodes inductively. Suppose that for some j , z j =
σ1σ2 · · · σiτi+1 · · · τ�−1, with τi+1 �= σi+1. Our objective is to
construct a sequence of nodes with consecutive nodes differing
in one position, terminating at some node z j ′ with z j ′ =
σ1σ2 · · · σiσi+1τ

′
i+2 · · · τ ′

�−1 for some τ ′
i+1, τ

′
i+2, . . . , τ

′
�−1.

Hence, by repeating this procedure, we obtain the desired
sequence of nodes that terminates at z′.

Since z j ∈ V , we have wt(z j ; q∗) ∈ [w1 − 1, w2]. As such,
we consider three possibilities to extend the sequence:

(i) When w1−1 < wt(z j ; q∗) < w2, we may simply change
τi+1 to σi+1 and make no other changes, since the word
z j+1 produced this way still satisfies wt(z j+1) ∈
[w1 − 1, w2] and is therefore a node.

(ii) When wt(z j ; q∗) = w1 − 1, τi+1 ∈ [q − q∗, q − 1]
and σi+1 /∈ [q − q∗, q − 1], there exists some
τk in z j that does not belong to [q − q∗, q − 1].
Otherwise, wt(σ1 · · · σi ; q∗) = w1 − � + i and so
wt(σ1 · · · σi+1; q∗) = w1 − � + i . Then, wt(z′; q∗) ≤
w1 − 2, contradicting the fact that z′ ∈ V . Therefore,
we have the sequence of nodes

z j = σ1 · · · σiτi+1τi+2 · · · τk · · · τ�−1,

z j+1 = σ1 · · · σiτi+1τi+2 · · · (q − 1) · · · τ�−1,

z j+2 = σ1 · · · σiσi+1τi+2 · · · (q − 1) · · · τ�−1.

(iii) When wt(z j ; q∗) = w2, τi+1 /∈ [q − q∗, q − 1] and
σi+1 ∈ [q−q∗, q−1], then there exists some τk in z j that
belongs to [q−q∗, q−1]. Otherwise, wt(σ1 · · · σi ; q∗) =
w2 and so wt(z′; q∗) ≥ wt(σ1 · · ·σi+1; q∗) = w2 + 1,
contradicting the fact that z′ ∈ V . Therefore, we have
the sequence of nodes

z j = σ1 · · · σiτi+1τi+2 · · · τk · · · τ�−1,

z j+1 = σ1 · · · σiτi+1τi+2 · · · 0 · · · τ�−1,

z j+2 = σ1 · · · σiσi+1τi+2 · · · 0 · · · τ�−1. �

Consequently, D(q, �; q∗, [w1, w2]) is strongly connected.
Together with Lemma 43, this result establishes that
D(q, �; q∗, [w1, w2]) is Eulerian.

APPENDIX C
PROOF OF COROLLARY 27

We provide next a detailed proof of Corollary 27.
Specifically, we demonstrate Proposition 46 from which the
corollary follows directly. For the case that S = �q��,
Jacquet et al. established a similar result by analyzing a sum
of multinomial coefficients. This type of analysis appears to
be to complex for a general choice of S.

Proposition 46: Suppose that D(S) is strongly connected
and that it contains loops. Let t = n −�+1, D = |S|− |V (S)|
and let the lattice point enumerator of P(S) be LP(S)(t) =
cD(t)t D + O(t D−1). Then, cD(t) is constant.

To prove this proposition, we use the following
straightforward lemma.

Lemma 47: Suppose that D(S) is strongly connected and
that it contains loops. For all t , we have LP(S)(t + 1) ≥
LP(S)(t).

Proof: It suffices to show that there is an injection from
LP≥0(n; S) to LP≥0(n+1; S). Suppose that u ∈ LP≥0(n; S),
so that A(S)u = tb. Fix a loop in D(S) and consider the
vector χ(z), where z is the arc corresponding to the loop.
Then, A(S)χ(z) = b and A(S)(u + χ(z)) = (t + 1)b. So, the

KIAH et al.: CODES FOR DNA SEQUENCE PROFILES 3145

map u �→ u + χ(z) is an injection from LP≥0(n; S) to
LP≥0(n + 1; S). �

Proof of Proposition 46: Lemma 47 demonstrates that LP(S)
is a monotonically increasing function. Intuitively, this implies
that the coefficient of its dominating term cD(t) cannot be
periodic with period greater than 1. We prove this claim
formally in what follows.

Suppose that cD is not constant and that it has period τ .
Hence, there exists ta �≡ tb mod τ such that cD(ta) = aD,
cD(tb) = bD and aD < bD. Furthermore, define ai = ci (ta)
and bi = ci (tb) for 0 ≤ i ≤ D−1, and consider the polynomial
∑D

i=0 bi t i − ai (t + τ)i . By construction, this polynomial has
degree D and a positive leading coefficient. Hence, we can
choose t1 ≡ ta mod τ and t2 ≡ tb mod τ so that t1 ≤ t2 ≤
t1 + τ and

∑D
i=0 bi t i

2 − ai (t1 + τ)i > 0. Consequently,

LP(S)(t1 + τ) =
D
∑

i=0

ci (t1 + τ)(t1 + τ)i

=
D
∑

i=0

ai (t1 + τ)i

<

D
∑

i=0

bi t
i
2 = LP(S)(t2),

contradicting the monotonicity of LP(S). �

APPENDIX D
PROPERTIES OF THE POLYTOPE PGRC(H, S)

We derive properties of the polytope PGRC(H, S) described
in Section VI-A. In particular, under the assumption that
D(S) is strongly connected and C(H, 0) ∩ Null>0B(D(S)) is
nonempty, we demonstrate the following:

(C1) The dimension of the polytope PGRC(H, S) is |S| −
|V (S)|;

(C2) The interior of the polytope is given by {u ∈ R
|S|+d :

A(H, S)u = b,u > 0};
(C3) The vertex set of the polytope is given by

{(

χ(C)

|C| ,
Hχ(C)

p|C|
)

: C is a cycle in D(S)

}

.

Since C(H, 0)∩ Null>0B(D(S)) is nonempty, let u0 belong
to this intersection. Then Hu0 ≡ 0 mod p, that is, Hu0 = pβ

for some β > 0. Let μ = 1u0. If we set u = 1
μ(u0,β), then

A(H, S)u = b, with u > 0.
Observe that the block structure of A(H, S) implies that

it has rank |V (S)| + d . Hence, the nullity of A(H, S) is
|S| − |V (S)|. As before, let u1,u2, . . ., u|S|−|V (S)| be linearly
independent vectors that span the null space of A(H, S). Since
u has strictly positive entries, we can find ε small enough so
that u + εui belongs to PGRC(H, S) for all i ∈ [|S|− |V (S)|].
Therefore, {u,u + εu1,u + εu2, . . . ,u + εu|S|−|V (S)|} is a set
of |S|−|V (S)|+1 affinely independent points in PGRC(H, S).
This proves claim (C1).

For the interior of PGRC(H, S), first consider u′ > 0 such
that A(H, S)u′ = b. For any u′′ ∈ PGRC(H, S), we have
A(H, S)u′′ = b and hence, A(H, S)(u′ − u′′) = 0. Since u′
has strictly positive entries, we choose ε small enough so that

u′ + ε(u′ − u′′) ≥ 0. Therefore, u′ + ε(u′ − u′′) belongs to
PGRC(H, S) and u′ belongs to the interior of PGRC(H, S).

Conversely, let u′ ∈ PGRC(H, S) with u′
j = 0 for

some coordinate j . Let u be as defined earlier, where u ∈
PGRC(H, S) with u > 0. Hence, for all ε > 0, the
j th coordinate of u′ + ε(u′ − u) is given by −εu j , which is
always negative. In other words, u′ does not belong to interior
of PGRC(H, S). This characterizes the interior as described in
claim (C2).

For the vertex set, observe that
{(

χ(C)

|C| ,
Hχ(C)

p|C|
)

: C is a cycle in D(S)

}

⊆ PGRC(H, S).

Let v ∈ PGRC(H, S) and suppose that v = (v1, v2) is a
vertex. Since v ∈ PGRC(H, S), we have v2 = 1

p Hv1 and
B(D(S))v1 = 0. Proceeding as in the proof of Lemma 26,
we conclude that v1 = χ(C)/|C|, for some cycle in D(S) and
hence, v =

(

χ(C)
|C | ,

Hχ(C)
p|C |

)

.
Conversely, we show that for any cycle C in D(S),

(

χ(C)
|C | ,

Hχ(C)
p|C |

)

cannot be expressed as a convex combination

of other points in PGRC(H, S). Suppose otherwise. Then we
consider the first |S| coordinates and we proceed as in the
proof of Lemma 26 to yield a contradiction. This completes
the proof of claim (C3).

APPENDIX E
RELABELLING OF NODES IN PROOF OF THEOREM 32

In this section, we demonstrate the existence of a cyclic
relabelling of nodes that is necessary for the proof of
Theorem 32. In particular, we prove the following lemma.

Lemma 48: Let v be a positive integer, and r1, r2, . . . , rv
be v real values such that

∑v
i=1 ri = 0. For convenience, we

let rv+i = ri for 1 ≤ i ≤ v − 1. Then there exists 1 ≤ J ≤ v

such that
∑ j

i=0 rJ+i ≥ 0 for all 0 ≤ j ≤ v − 1.
Proof: For 1 ≤ j ≤ 2v − 1, let R j = ∑ j

i=0 ri and
observe that Rv = 0. Let J be such that RJ = min{R j :
1 ≤ j ≤ 2v − 1}. Since Rv = 0, we have Ri+v = Ri for all
1 ≤ i ≤ v − 1 and hence, we may assume 1 ≤ J ≤ v.

Next, we claim that J is the desired index. Indeed, for all
0 ≤ j ≤ v − 1, observe that

j
∑

i=0

rJ+i = RJ+ j − RJ ≥ 0,

where the inequality follows from the minimality of RJ . �

REFERENCES

[1] H. M. Kiah, G. J. Puleo, and O. Milenkovic, “Codes for DNA storage
channels,” in Proc. IEEE Inf. Theory Workshop, Jerusalem, Israel,
Apr./May 2015, pp. 1–5.

[2] H. M. Kiah, G. J. Puleo, and O. Milenkovic, “Codes for DNA sequence
profiles,” in Proc. IEEE Int. Symp. Inf. Theory, Hong Kong, Jun. 2015,
pp. 814–818.

[3] S. Kannan and A. McGregor, “More on reconstructing strings from
random traces: Insertions and deletions,” in Proc. IEEE Int. Inf. Theory,
Sep. 2005, pp. 297–301.

[4] J. Acharya, H. Das, O. Milenkovic, A. Orlitsky, and S. Pan, “On
reconstructing a string from its substring compositions,” in Proc. IEEE
Int. Symp. Inf. Theory, Jun. 2010, pp. 1238–1242.

3146 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 6, JUNE 2016

[5] J. Acharya, H. Das, O. Milenkovic, A. Orlitsky, and S. Pan,
“Quadratic-backtracking algorithm for string reconstruction from
substring compositions,” in Proc. IEEE Int. Symp. Inf. Theory,
Jun./Jul. 2014, pp. 1296–1300.

[6] G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital
information storage in DNA,” Science, vol. 337, no. 6102, p. 1628, 2012.

[7] N. Goldman et al., “Towards practical, high-capacity, low-maintenance
information storage in synthesized DNA,” Nature, vol. 494, pp. 77–80,
Feb. 2013.

[8] S. Yazdi, Y. Yuan, J. Ma, H. Zhao, and O. Milenkovic, “A rewritable,
random-access DNA-based storage system,” Sci. Rep., vol. 5, no. 14138,
2015, doi: 10.1038/srep14138.

[9] S. M. H. T. Yazdi, H. M. Kiah, E. R. Garcia, J. Ma, H. Zhao, and
O. Milenkovic, “DNA-based storage: Trends and methods,” IEEE Trans.
Molecular, Biol. Multi-Scale Commun., vol. 1, no. 3, pp. 230–248, 2015.s

[10] P. Medvedev, K. Georgiou, G. Myers, and M. Brudno, “Computability of
models for sequence assembly,” in Algorithms in Bioinformatics. Berlin,
Germany: Springer, 2007, pp. 289–301.

[11] P. E. C. Compeau, P. A. Pevzner, and G. Tesler, “How to apply
de Bruijn graphs to genome assembly,” Nature Biotechnol., vol. 29,
no. 11, pp. 987–991, 2011.

[12] W. Wan et al., “Error removal in microchip-synthesized DNA using
immobilized MutS,” Nucl. Acids Res., vol. 42, no. 12, p. e102, 2014.

[13] M. A. Quail et al., “A tale of three next generation sequencing platforms:
Comparison of ion torrent, pacific biosciences and Illumina MiSeq
sequencers,” BMC Genomics, vol. 13, no. 1, p. 341, 2012.

[14] M. G. Ross et al., “Characterizing and measuring bias in sequence data,”
Genome Biol, vol. 14, no. 5, p. R51, 2013.

[15] P. Jacquet, C. Knessl, and W. Szpankowski, “Counting Markov types,
balanced matrices, and Eulerian graphs,” IEEE Trans. Inf. Theory,
vol. 58, no. 7, pp. 4261–4272, Jul. 2012.

[16] P. Yakovchuk, E. Protozanova, and M. D. Frank-Kamenetskii,
“Base-stacking and base-pairing contributions into thermal stability of
the dna double helix,” Nucl. Acids Res., vol. 34, no. 2, pp. 564–574,
2006.

[17] K. Nakamura et al., “Sequence-specific error profile of Illumina
sequencers,” Nucl. Acids Res., vol. 39, no. 13, p. e90, 2011.

[18] T. Kløve, “Error correcting codes for the asymmetric channel,” Dept.
Pure Math., Univ. Bergen, Bergen, Norway, Tech. Rep., 1981.

[19] E. Ukkonen, “Approximate string-matching with q-grams and maximal
matches,” Theor. Comput. Sci., vol. 92, no. 1, pp. 191–211, 1992.

[20] P. A. Pevzner, “DNA physical mapping and alternating Eulerian cycles
in colored graphs,” Algorithmica, vol. 13, nos. 1–2, pp. 77–105, 1995.

[21] B. Bollobás, Modern Graph Theory, vol. 184. New York, NY, USA:
Springer-Verlag, 1998.

[22] N. G. de Bruijn, “A combinatorial problem,” Koninklijke Nederlandse
Akademie Wetenschappen, vol. 49, pp. 758–764, Jun. 1946.

[23] F. Ruskey, J. Sawada, and A. Williams, “De Bruijn sequences for
fixed-weight binary strings,” SIAM J. Discrete Math., vol. 26, no. 2,
pp. 605–617, 2012.

[24] M. Beck and S. Robins, Computing the Continuous Discretely:
Integer-Point Enumeration in Polyhedra. New York, NY, USA:
Springer-Verlag, 2007.

[25] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows:
Theory, Algorithms, and Applications. Englewood Cliffs, NJ, USA:
Prentice-Hall, 1993.

[26] E. Ehrhart, “Sur les polyédres rationnels homothétiques á n dimensions,”
C. R. Acad. Sci. Paris, vol. 254, pp. 616–618, 1962.

[27] R. P. Stanley, Enumerative Combinatorics, vol. 1. Cambridge, U.K.:
Cambridge Univ. Press, 2011.

[28] I. G. Macdonald, “Polynomials associated with finite cell-complexes,”
J. London Math. Soc., vol. 2, no. 1, pp. 181–192, 1971.

[29] R. Varshamov, “A class of codes for asymmetric channels and a problem
from the additive theory of numbers,” IEEE Trans. Inf. Theory, vol. 19,
no. 1, pp. 92–95, Jan. 1973.

[30] P. L. Chebyshev, “Mémoire sur les nombres premiers,” J. Math. Pures
Appl., vol. 17, pp. 366–390, 1852.

[31] M. Agrawal, N. Kayal, and N. Saxena, “Primes is in P,” Ann. Math.,
vol. 160, no. 2, pp. 781–793, 2004.

[32] V. Baldoni et al., “A user’s guide for LattE integrale
v1.7.2,” Optimization, vol. 22, p. 2, 2014. [Online]. Available:
http://www.math.ucdavis.edu/~latte/

[33] A. I. Barvinok, “A polynomial time algorithm for counting integral
points in polyhedra when the dimension is fixed,” Math. Oper. Res.,
vol. 19, no. 4, pp. 769–779, 1994.

[34] C. Hierholzer, “Über die Möglichkeit, einen Linienzug ohne
Wiederholung und ohne Unterbrechung zu umfahren,” Math. Ann.,
vol. 6, no. 1, pp. 30–32, 1873.

[35] P. A. Pevzner and R. J. Lipshutz, “Towards DNA sequencing chips,”
in Mathematical Foundations of Computer Science. Berlin, Germany:
Springer, 1994, pp. 143–158.

[36] S. Tan and J. Shallit, “Sets represented as the length-n factors of a word,”
in Combinatorics on Words. Springer, 2013, pp. 250–261.

[37] K. Heinrich, “Path decomposition,” Le Matematiche, vol. 47, no. 2,
pp. 241–258, 1993.

[38] D. Bryant and S. El-Zanati, Graph Decompositions, 2nd ed. London,
U.K.: Chapman & Hall, 2007, ch. VI.24, pp. 477–486.

[39] J. N. Cooper and R. L. Graham, “Generalized de Bruijn cycles,” Ann.
Combinat., vol. 8, no. 1, pp. 13–25, 2004.

[40] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation for
flash memories,” IEEE Trans. Inf. Theory, vol. 55, no. 6, pp. 2659–2673,
Jun. 2009.

[41] A. Barg and A. Mazumdar, “Codes in permutations and error correction
for rank modulation,” IEEE Trans. Inf. Theory, vol. 56, no. 7,
pp. 3158–3165, Jul. 2010.

[42] F. Farnoud, V. Skachek, and O. Milenkovic, “Error-correction in flash
memories via codes in the Ulam metric,” IEEE Trans. Inf. Theory,
vol. 59, no. 5, pp. 3003–3020, May 2013.

[43] F. F. Hassanzadeh and O. Milenkovic, “Multipermutation codes in the
Ulam metric for nonvolatile memories,” IEEE J. Sel. Areas Commun.,
vol. 32, no. 5, pp. 919–932, May 2014.

[44] G. Pick, “Geometrisches zur Zahlenlehre,” Sitzenber. Lotos (Prague),
vol. 19, pp. 311–319, 1899.

[45] R. Gabrys, H. M. Kiah, and O. Milenkovic, “Asymmetric Lee
distance codes for dna-based storage,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jun. 2015, pp. 909–913.

[46] S. Yazdi, H. M. Kiah, and O. Milenkovic, “Weakly mutually
uncorrelated codes,” in Proc. IEEE Int. Symp. Inf. Theory, Jul. 2016.

[47] R. Gabrys, E. Yaakobi, and O. Milenkovic, “Codes in the Damerau
distance for DNA storage,” in Proc. IEEE Int. Symp. Inf. Theory,
Jul. 2016.

[48] D. Bajic and T. Loncar-Turukalo, “A simple suboptimal construction of
cross-bifix-free codes,” Cryptogr. Commun., vol. 6, no. 1, pp. 27–37,
2014.

Han Mao Kiah received his Ph.D. degree in mathematics from the Nanyang
Technological University, Singapore in 2014. From 2014 to 2015, he was
a Postdoctoral Research Associate at the Coordinated Science Laboratory,
University of Illinois at Urbana-Champaign. Currently, he is a lecturer at
the School of Physical and Mathematical Sciences, Nanyang Technological
University, Singapore. His research interests include combinatorial design
theory, coding theory, and enumerative combinatorics.

Gregory J. Puleo received his Ph.D. in Mathematics from the University of
Illinois at Urbana-Champaign in 2014. He is currently a Postdoctoral Research
Associate at the Coordinated Science Lab at UIUC. His research interests
include extremal graph theory and combinatorial games.

Olgica Milenkovic (M’04–SM’12) received her Ph.D. in Electrical
Engineering from the University of Michigan, Ann Arbor and is currently
a professor in the Electrical Engineering Department of University of
Illinois. She is a recipient of the NSF Career Award, the DARPA Young
Faculty Award, and the Dean’s Excellence in Research Award. In 2012
she was named a Center for Advanced Studies (CAS) Associate, and in
2013 she became a Willet scholar. In 2015, she was named Distinguished
Lecturer of the IEEE Information Theory Society. She served on the editorial
board for the IEEE TRANSACTIONS ON COMMUNICATIONS, the IEEE
TRANSACTIONS ON SIGNAL PROCESSING and the IEEE TRANSACTIONS ON

INFORMATION THEORY. Her research interests are in bioinformatics, coding
theory, compressive sensing and social sciences.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

