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“Double Helix Serves Double Duty”, NY Times, Jan 2013

Digital information storage in synthetic DNA:

▸ Goldman et al. (Nature, 2013) stored 739 KB of data on synthetic DNA,
shipped it from USA to Germany and recreated the original digital files
“without errors”.

▸ “a step towards digital archival storage medium of immense scale”.

▸ Goal: to store the equivalent of one million CDs in a gram of DNA for
10,000 years.

Neanderthal extinction:

35,000 years ago - DNA is

extremely durable!



DNA Synthesis and Sequencing

Central to a DNA information storage: DNA synthesis and sequencing.

▸ DNA synthesis refers to the “write” process.

▸ DNA sequencing refers to the “read” process.

▸ Both involve complex biochemical processes, with costs decreasing daily.

Figure: Cost of sequencing a genome



Sequence Assembly Problem

Sequencing is computationally demanding.

Need to stitch together many short reads to obtain original sequence.

Idea

Design a code that uses the information on short reads / substrings directly,
without the need to stitch them together.
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DNA Storage Channel: A (Slight) Abstraction
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Synthesis channel captures the “write” process.

The sequence synthesis process introduces errors (current technologies ≤ 1%).
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DNA sequencing represents the “read” process.
DNA sequencing is technologically more advanced and cheaper than synthesis,
but coupled with computational difficulties.
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Sequencing also introduces errors in fragments (reads) (current Illumina
platforms have error rate ≤ 1%).



DNA Storage Channel: Profiles
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Output profile vector

Given an input sequence 10011001, we obtain an output profile vector that
reflects the count of each substring at the channel output:

000 001 010 011 100 101 110 111
(0, 1, 0, 2, 0, 1, 1, 0).

Note: position of substring is not known!



Profile Vectors

DNA Storage
Channel

-
Codeword

x = 10011001
-

Output profile vector

x̂ = (0,1,0,2,0,1,1,0)
p(x; 2,3) = (0,2,0,1,2,0,1,0)

Profile vector is what the storage channel outputs when there is no error.
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Profile Vector

Fix q and ` < n. Let p(x; q, `) denote the profile vector indexed by [q]`, where
the entry for the `-gram z gives the number of occurrences of z in x.

Example

Given x = 10011001, then p(x; 2,3) =

000 001 010 011 100 101 110 111
(0, 2, 0, 1, 2, 0, 1, 0).



Code Design Criteria

Encoder
DNA Storage

Channel
-

Message

{
Yes
No

}

-
Codeword

{
x = 10011001
y = 10101010

}

-
Output profile vector

x̂ = (0,1,0,2,0,1,1,0)

000 001 010 011 100 101 110 111
p(x; 2,3) = (0, 2, 0, 1, 2, 0, 1, 0)
p(y; 2,3) = (0, 0, 3, 0, 0, 3, 0, 0)

Criterion 1: Error-control

Codewords whose profile vectors are “far from each other”.

We define the `-gram distance between x and y as the asymmetric distance
between p(x; 2,3) and p(y; 2,3).

Asymmetric distance: max(∆(u,v),∆(v,u)), where ∆(u,v) = ∑i max(ui − vi,0).
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Criterion 2: Constrained Coding

Codewords whose `-substrings are resilient to errors.

Certain reliability considerations in DNA storage sequence designs:

▸ Weight profiles of `-substrings. Number of C,G bases to be roughly fifty
percent.

▸ Forbidden `-substrings. Certain substrings like GCG and CGC are more
likely to cause sequencing errors.
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Criterion 2: Constrained Coding

Codewords whose `-substrings are resilient to errors.

Here, the `-substrings belong to S = {001,010,011,100,101,110}.



Fundamental Questions

Distinct `-gram Profile Vectors

Define Q(n;S) to be the set of q-ary words of length n whose `-grams belong
to S, up to “`-gram profile equivalence”.
Determine the size of Q(n;S).

Note: 00101100 and 11010011 have the same profile vector for ` = 3.

`-gram Reconstruction Code (GRC)

C ⊆ Q(n;S) is an (n, d;S)-`-GRC if the `-gram distance between any pair of
distinct words is at least d.
Construct “good” (n, d;S)-`-GRC.

n : length of codewords

q : alphabet size

` : length of substrings / grams

S : set of “constraint” substrings (note S is a set of q-ary strings of length `)

d : minimum `-gram distance of a code



De Bruijn Graphs

Here, q = 2, ` = 3.
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Restricted De Bruijn Graphs

Let S(`;w1,w2) denote the binary strings of length ` with weight between w1 and w2.

S = S(3; 1,2) S = S(4; 2,3)
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Restricted de Bruijn Graphs D(S) (Ruskey, Sawada, Williams, 2012)

Nodes V are ` − 1-prefixes and -suffixes of strings in S.
(v,v′) is an arc if

v2 v3 v`−1

= = . . . =

v′1 v′2 v′`−2
and v1v2⋯v`−1v

′
`−1 ∈ S.



Profile Vectors and Flow Vectors
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Representing profile vectors of words in Q(n;S) using the digraph D(S).



Profile Vectors and Flow Vectors
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A closed word is a word that begins and ends with the same (` − 1)-gram.
Profile vectors of closed words in Q(n;S) are flow vectors in D(S): at each
node, total incoming flow = total outgoing flow.

Idea: to count words (up to `-gram equivalence), count integer flow vectors
instead.
(Not all flow vectors correspond to closed words, but asymptotically this works.)



Necessary Conditions

Let u be a profile vector of a closed word. Then u satisfies the following
conditions.

Flow conservation:

Bu = 0,

where B is the incidence matrix of D(S).

Sum of flows:

1u = n − ` + 1.
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Let A = (
1
B

) and b = (1,0, . . . ,0)T . We rewrite the equations as

Au = (n − ` + 1)b and u ≥ 0.

Thus, flow vectors for D(S) correspond to integer points in the following
polytope:

Pn−`+1 = {u ∈ RS
∶ u ≥ 0, Au = (n − ` + 1)b}

We rephrase this in terms of dilating a fixed polytope P.
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Lattice Point Enumeration in Dilated Polytopes
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For a polytope P ⊂ Rn and t ∈ R, the dilation tP is given by

tP = {tx∶ x ∈ P}.

The lattice point enumerator for P is LP ∶ R→ Z defined by

LP(t) = ∣tP ∩ Zn
∣ .

Theorem (Ehrhart)

If P is a rational polytope, then LP is a “quasipolynomial” in t.
In particular, if P is k-dimensional, then LP(t) = Θ(tk).



Dilation and Word Length

Flow vectors for D(S) correspond to integer points in the following polytope:

Pn−`+1 = {u ∈ R∣S∣∶ u ≥ 0, Au = (n − ` + 1)b}

In particular, Pn−`+1 = (n − ` + 1)P1.
Thus, increasing the word length n corresponds to dilating P1, a fixed polytope.

Lemma

If D(S) is strongly connected, then dim(P1) = ∣S∣ − ∣V (S)∣.
In particular, if S is all q-ary words of length `, then dim(P1) = q

`
− q`−1.

Corollary

If D(S) is strongly connected, ∣Q(n;S)∣ = Θ(n∣S∣−∣V (S)∣).
That is, up to `-gram equivalence, there are Θ(n∣S∣−∣V (S)∣) words whose
`-grams all belong to S.

In the context of Markov types, Jacquet, Knessl, Szpankowski (2012) derived
similar results where S = [q]` using different techniques.
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Varshamov Codes

▸ All we’ve done so far is count words up to `-gram equivalence. (That is,
we’ve enforced an `-gram distance of 1).

▸ What if we want to force a higher `-gram distance of code words?

Fix d and let p be a prime such that p > d and p > N . Choose N distinct
nonzero elements α1, α2, . . . , αN in Z/pZ and consider the matrix

H =

⎛
⎜
⎜
⎜
⎝

α1 α2 ⋯ αN

α2
1 α2

2 ⋯ α2
N

⋮ ⋮ ⋱ ⋮

αd
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2 ⋯ αd
N

⎞
⎟
⎟
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.

Pick any vector β ∈ (Z/pZ)N and define the code

C(H,β) = {u ∈ ZN
∶Hu ≡ β mod p}.

Theorem (Varshamov, 1973)

C(H,β) is a code with minimum asymmetric distance d + 1.
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Codes

▸ Using Varshamov codes we obtain new A,b such that when

P = {u ∈ R∣S∣+k ∶ Au = b, u ≥ 0},

the integer points of (n − ` + 1)P correspond to flows in D(S) with sum
n − ` + 1 whose “profile vectors” are distance ≥ d from each other.

▸ If D(S) is strongly connected, still get the same dimension ∣S∣ − ∣V (S)∣ for
this polytope, yielding Θ(n∣S∣−∣V (S)∣).

▸ Thus, fixing a minimum distance d affects the leading coefficient of the
number of code words, but not the exponent.
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Concluding Remarks

Questions?

▸ Details and other results on arXiv.

▸ Codes for DNA Sequence Profiles
▸ http://arxiv.org/abs/1502.00517
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