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Abstract—We consider the problem of storing information on
synthetic DNA media and associated coding paradigms. The fo-
cal question of our analysis it how to construct and enumerate
sequences that may be discriminated based on their collection of
substrings observed through two types of noisy sequencing channels.
In particular, we consider DNA sequences with balanced GC content,
needed for chemical stability and desirable hybridization properties.
We show that restricted de Bruijn graphs and Ehrhart theory for
rational polytopes provide a suitable framework for studying such
combinatorial questions.

1. INTRODUCTION

Reconstructing sequences based on partial information about
their subsequences, substrings, or composition is an important
problem arising in channel synchronization systems, phyloge-
nomics, genomics, and proteomic sequencing [1]–[3]. With the
recent development of archival DNA-based storage devices [4],
[5] and rewritable, random-access storage media [6], a new family
of reconstruction questions has emerged regarding how to design
sequences which can be easily and accurately reconstructed based
on their substrings, in the presence of read and write errors. The
write process reduces to DNA synthesis, while the read process
involves both DNA sequencing and assembly. The assembly
procedure is NP-hard under most formulations [7]. Nevertheless,
practical approximation algorithms based on Eulerian paths in de
Bruijn graphs have shown to offer good reconstruction perfor-
mance under the high-coverage model [8].

In our setting, we assume that a sequence x ∈ {A, T,G,C}n
is first designed according to some combinatorial rules, syn-
thesized1, and then fragmented into a collection of substrings
of approximately the same length `. The latter process models
the sequencing strategy used by most modern high-throughput
sequencers. The resulting substrings are usually referred to as
reads. Ideally, one would like to synthesize x and sequence all
`-substrings without errors, which is not possible in practice. In
addition to symbol substitution errors occurring both during syn-
thesis and sequencing, a number of substrings may be unavailable
for sequencing, leaving coverage gaps in the original message.

To model this read-write phenomena, we introduced in our
companion paper [10] the notion of a DNA storage channel that
takes as its input a sequence x of length n, introduces substitution
errors in x, with the resulting sequence denoted by x̃. The channel
proceeds to output all or a subset of substrings of the sequence
x̃ of length `, ` < n. Each of the substrings is allowed to
have additional substitution errors, due to sequencing, and some
substrings may be missing. The substrings at the output of the
DNA storage channel are collectively enumerated by a vector x̂,
termed the channel output (see Fig. 1 for an illustration). In [10],
we also introduced a new family of codes capable of correcting
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1gBlocks for example is able to synthesize strings up to 2000bp [9].

synthesis, lack of coverage and sequencing errors arising in the
DNA storage channel, all of which may be characterized by
asymmetric errors studied in classical coding theory. In addition,
we design codebooks whose codewords have different substring
counts or substring counts at a “sufficiently large” distance from
each other.

We continue our study of this new coding paradigm by mod-
eling the read process (sequencing) through the use of profile
vectors. A profile vector of a sequence enumerates all substrings
of the sequence, and we enumerate the equivalence classes
under the channel mapping. In addition, we design new coding
techniques that make use of codewords with `-substrings of high
biochemical stability which are also resilient to errors. For this
purpose, we consider a number of codeword constraints known to
influence the performance of both the synthesis and sequencing
systems, one of which we termed the balanced content constraint.

For the case when one is allowed to have arbitrary `-substrings,
the problem of enumerating profile vectors was independently
addressed by Jacquet et al. [11] in the context of “Markov types”.
However, the method of Jacquet et al. does not extend to the case
of enumeration of profiles with specific `-substring constraints. To
address this, we cast our more general enumeration question as
a problem of enumerating integer points in a rational polytope
and use Ehrhart theory to provide estimates of these values.

The paper is organized as follows. Section 2 introduces the no-
tion of a sequence profile and the underlying balanced constraints
and forbidden substring constraint. To enumerate constrained
sequence profiles, we introduce the notion of a constrained de
Bruijn graph in Section 3. Section 4 is devoted to the proof
of the main enumeration results using Ehrhart theory. Numerical
results for the balanced constraint enumeration problem are given
in Section 5. Due to space constraints, certain proofs are omitted
and the full proofs are found in the our preprint [12].

2. PROFILE VECTORS

Let JqK denote the set of integers {0, 1, 2, . . . , q − 1} and
consider a word x of length n over JqK. Suppose that ` < n.
An `-gram is a substring of x of length `.

Let p(x; q, `) denote the (`-gram) profile vector, i.e., a vector of
length q` indexed by all vectors of JqK` ordered lexicographically.
In the profile vector, an entry indexed by z contains the number of
occurrences of z as an `-gram of x. For example, p(0000; 2, 2) =
(3, 0, 0, 0), while p(0101; 2, 2) = (0, 2, 1, 0). Observe that for any
x ∈ JqK`, the sum of entries in p(x; q, `) equals (n− `+ 1).

Consider further a subset S ⊆ JqK`. For x ∈ JqKn, we define the
S-restricted profile p(x;S) as a vector indexed by elements of S,
whose entry corresponding to a sequence z gives the number of
occurrences of z as an `-gram of x. Although arbitrary sequences
may have substrings that lie outside S, for reasons to be apparent
from our subsequent discussion, we focus only on vectors x
whose `-grams belong to S. As for the unrestricted case, the
sum of the entries in p(x;S) equals n− `+ 1.

The choice of S is governed by certain reliability considerations
in DNA storage sequence designs, including
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Fig. 1. The DNA Storage Channel. Information is encoded in a DNA sequence x which is synthesized with potential errors. The output of the synthesis process is
x̃. During readout, the sequence x̃ is read through the sequencing channel, which fragments the sequence and possibly perturbs the fragments via substitution error.
The output of the channel is a set of DNA fragments, along with their frequency count.

(i) Weight profiles of `-grams. For the application at hand,
one may want to choose S to consist of `-grams with
a fixed proportion of C and G bases, as this proportion
– known as the GC-content of the sequence – influences
the thermostability, folding processes and overall coverage
of the `-grams. From the perspective of sequencing, GC
contents of roughly 50% are desired.
To make this modeling assumption more precise and gen-
eral, we assume sets S of the form described below. Suppose
that 0 ≤ w1 < w2 ≤ ` and 1 ≤ q1 ≤ q − 1. Let [w1, w2]
and [q1] denote the set of integers {w1, w1 +1, . . . , w2} and
{1, 2, . . . , q1}, respectively. For each x ∈ JqK`, let the [q1]
weight of x be the number of symbols in x that belong to
[q1], and denote it by wt(x; q1). Let

S(q, `; q1, [w1, w2]) ,
{
x ∈ JqK` : wt(x; q1) ∈ [w1, w2]

}
be the set of all sequences with `-gram weights restricted
to [w1, w2]. For example, by representing G,C,A, T by
1, 2, 3, 4, respectively, by choosing q = 4 and q1 = 2, the
choice w1 = b`/2c, w2 = w1 + 1 ensures the balanced GC
constraint. Also, note that S(q, `; q − 1, [0, `]) equals JqK`.

(ii) Forbidden `-grams. Studies have indicated that certain
substrings in DNA sequences – such as GCG, CGC – are
likely to cause sequencing errors (see [13]). Hence, one may
also choose S so as to avoid certain `-grams. Treatment of
specialized sets of forbidden `-grams is beyond the scope
of this paper and is deferred to future work.

An appropriate choice of S may lower the probability of errors
due to synthesis, lack of coverage and sequencing. For generality,
we present all our subsequent results for the weight constraints
of (i), rather than the special case of GC balanced sequences.

A. Problem Statement

Fix S ⊆ JqK` and let (JqKn ;S) denote all q-ary words of
length n whose `-grams belong to S. We define an equivalence
relation on (JqKn ;S) as follows: let x ∼ y if and only if
p(x;S) = p(y;S). Denote the set of equivalence classes under
this relation by Q(n;S). We choose a representative word for
each class and henceforth refer to elements in Q(n;S) through
their representative words. Let pQ(n;S) denote the set of profile
vectors of words in Q(n;S), so that |pQ(n;S)| = |Q(n;S)|.

Remark 1. In the case where S = JqK`, given a word x, Ukkonen
made certain observations on the words in the equivalence class

of x, but was unable to completely characterize all words in the
class [14]. In this work, we focus on computing the number of
equivalence classes for a general subset S.

3. DE BRUIJN GRAPHS AND ENUMERATION RESULTS

We use standard terminology from graph theory, following
Bollobás [15]. A directed graph (digraph) D is a pair of sets
(V,E), where V is the set of nodes and E is a set of ordered
pairs of V , called arcs. If e = (v, v′) is an arc, we call v the
initial node and v′ the terminal node. We allows loops in our
digraphs: in other words, we allow v = v′.

The incidence matrix of a digraph D is a matrix B(D) in
{−1, 0, 1}V×E , where

B(D)v,e =

1 if e is not a loop and v is its terminal node,
−1 if e is not a loop and v is its source node,
0 otherwise.

Observe that when a digraph D has loops, its incidence matrix
B(D) has 0-columns indexed by these loops. When D is con-
nected, then the rank of B(D) equals |V | − 1 [15].

A walk of length n in a digraph is a sequence of nodes
v0v1 · · · vn such that (vi, vi+1) ∈ E for all i ∈ JnK. A walk
is closed if v0 = vn and a cycle is a closed walk with distinct
arcs and nodes, i.e. (vi, vi+1) 6= (vj , vj+1) and vi 6= vj , for
0 ≤ i < j ≤ n. A loop corresponds to a cycle of length one. A
closed walk is Eulerian if it includes all arcs in E.

Given a subset C of the arc set, let χ(C) ∈ {0, 1}E be
its incidence vector, where χ(C)e is one if e ∈ C and zero
otherwise. In general, for any closed walk C in D, we have
B(D)χ(C) = 0. Note that if for all z, z′ ∈ V (S), there exists a
directed path from z to z′ and vice versa, the digraph is termed
strongly connected.

We are concerned with a generalization of the well known de
Bruijn graphs [16]. Given q and `, the standard de Bruijn graph
is defined on the set JqK`. Here, we instead define the graph
on a subset S ⊆ JqK` and refer to the corresponding graph as
a restricted de Bruijn graph, denoted by D(S). The nodes of
D(S) are the (` − 1)-prefixes and -suffixes of words in S. The
pair (v,v′) belongs to the arc set if and only if vi = v′i−1 for
2 ≤ i ≤ ` and v1v2 · · · v`−1v

′
`−1 ∈ S. We identify the arc set

with S and denote the node set as V (S).
The notion of restricted de Bruijn graphs was introduced by

Ruskey et al. [17] for the case of a binary alphabet. In their
work, Ruskey et al. showed that D(S) is Eulerian when S =



S(2, `; 1, [w − 1, w]), for w ∈ [`]. Their results may be extended
to general values of q, q1, and more general range of weights. For
simplicity, we abbreviate D(S(q, `; q1, [w1, w2])) and D(JqK`) to
D(q, `; q1, [w1, w2]) and D(q, `), respectively.

Proposition 3.1. Fix q and `. Let 1 ≤ q1 ≤ q− 1 and 1 ≤ w1 <
w2 ≤ `. Then D(q, `; q1, [w1, w2]) is Eulerian.

Observe that when q1 = q − 1, w1 = 0, w2 = `, we recover
the classical result that the de Bruijn graph D(q, `) is Eulerian
and Hamiltonian.

A. Enumerating Q(n;S)

We provide the main enumeration results for Q(n;S), or
equivalently, for pQ(n;S). We first assume that D(S) is strongly
connected. In addition, we consider closed walks in D(S), or
equivalently, closed words that start and end with the same (`−1)-
gram. We denote the set of closed words in Q(n;S) by Q̄(n;S),
and the corresponding set of profile vectors by pQ̄(n;S).

Suppose that u belongs to pQ̄(n;S). Then the following
system of linear equations that we refer to as the flow conservation
equations, hold true: B(D(S))u = 0. Let 1 denote the all-ones
vector. Since the number of `-grams in a word of length n is
n− `+ 1, we also have 1Tu = n− `+ 1.

Let A(S) be B(D(S)) augmented with a top row 1T ; let b
be a vector of length |V (S)|+ 1 with a one as its first entry, and
zeros elsewhere. Then the constraint equations may be written as

A(S)u = (n− `+ 1)b.

Consider the following two sets of integer points,
F(n;S) , {u ∈ Z|S| : A(S)u = (n− `+ 1)b, u ≥ 0}, (1)

E(n;S) , {u ∈ Z|S| : A(S)u = (n− `+ 1)b, u > 0}. (2)

The preceding discussion asserts that any profile vector must
lie in F(n;S). Conversely, the next lemma shows that any vector
in E(n;S) is a profile vector of some word in Q̄(n;S).

Lemma 3.2. Suppose that D(S) is strongly connected. If u ∈
E(n;S), then there exists a word x ∈ Q̄(n;S) such that
p(x;S) = u or u ∈ pQ̄(n;S).

Therefore, we have the following relation,

E(n;S) ⊆ pQ̄(n;S) ⊆ F(n;S). (3)

We first state our main enumeration result and defer its proof
to Section 4. Specifically, under the assumption that D(S) is
strongly connected, we show that both |E(n;S)| and |F(n;S)|
are quasipolynomials in n whose coefficients are periodic in
n. Formally, we define a quasipolynomial f as a function in
t of the form cD(t)tD + cD−1(t)tD−1 + · · · + c0(t), where
cD, cD−1, . . . , c0 are periodic functions of t. If cD is not iden-
tically equal to zero, f is said to be of degree D. The period
of f is given by the lowest common multiple of the periods of
cD, cD−1, . . . , c0.

In the theorem, we used standard asymptotic notation. How-
ever, we adapt the Ω and Θ symbols in order to succinctly
present our results. We use f(n) = Ω′(g(n)) to state that for
a fixed value of `, there exists an integer λ and a positive
constant c so that f(n) ≥ cg(n) for sufficiently large n with
λ|(n− `+ 1). Furthermore, f(n) = Θ′(g(n)) if f(n) = O(g(n))
and f(n) = Ω′(g(n)).

Theorem 3.3. Suppose D(S) is strongly connected and let λ be
the lowest common multiple of the lengths of all cycles in D(S).
Then |E(n;S)| and |F(n;S)| are both quasipolynomials in n of
the same degree |S| − |V (S)| and share the same period that
divides λ. In particular, |pQ̄(n;S)| = Θ′

(
n|S|−|V (S)|).

Before we end this section, we look at certain implications
of Theorem 3.3. We also provide estimates for |pQ(n;S)| when
D(S) is strongly connected, and for |pQ(n;S)| and |pQ̄(n;S)|,
when D(S) is not necessarily strongly connected.

Corollary 3.4. Suppose D(S) is strongly connected. For any
z, z′ ∈ V (S), consider the set of words in Q(n;S) that begin
with z and end with z′, and let pQ(n;S, z → z′) be the corre-
sponding set of profile vectors. Similarly, let pQ(n;S, z → ∗)
and pQ(n;S, ∗ → z′) denote the set of profile vectors of words
beginning with z and words ending with z′, respectively. Then

|pQ(n;S)| = Θ′(|pQ(n;S, z→ z′)|) = Θ′(|pQ(n;S, ∗ → z′)|)

= Θ′(|pQ(n;S, z→ ∗)|) = Θ′
(
n|S|−|V (S)|

)
.

In the special case where S = JqK`, Jacquet et al. demonstrated
a stronger version of Theorem 3.3 using analytic combinatorics. In
addition, using a careful analysis similar to the proof of Corollary
3.4, Jacquet et al. also provided a tighter bound for |pQ(n; q, `)|
for one choice of the parameters, ` = 2. Note that f(n) ∼ g(n)
stands for limn→∞ f(n)/g(n) = 1.

Theorem 3.5 (Jacquet et al. [11]). Fix q, `. Let E(n; JqK`),
F(n; JqK`), pQ(n; q, `) and pQ̄(n; q, `) be defined as above. Then

|E(n; JqK`)| ∼ |F(n; JqK`)| ∼ |pQ̄(n, q, `)| ∼ c(q, `)nq`−q`−1

, (4)

where c(q, `) is a constant. Furthermore, when ` = 2, we have
|pQ(n; q, 2)| = (q2 − q + 1)|pQ̄(n; q, 2)|(1−O(n−2q)).

Next, we extend Theorem 3.3 to provide estimates on Q̄(n;S)
and Q(n;S) for general digraphs.

Corollary 3.6. Given D(S), let V1, V2, . . . , VI be a partition
of V (S), such that the induced subgraph (Vi, Si) is a maximal
strongly connected component for all i ∈ I . Define ∆̄ ,
max{|Si| − |Vi| : i ∈ I}. Then |Q̄(n;S)| = Θ′(n∆̄).

Example 3.1. Let S = {00, 01, 10, 12, 23, 32, 33} with q = 4
and ` = 2. Then D(S) is as shown below.
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We have two strongly connected components, namely, V1 =
{0, 1} and V2 = {2, 3}. So, (V1, S1 = {00, 01, 10}) and
(V2, S2 = {23, 32, 33}) are both strongly connected digraphs
with |pQ̄(n;S1)| = |pQ̄(n;S2)| = dn/2e = Θ′(n). Hence,
|pQ̄(n;S)| = |pQ̄(n;S1)|+ |pQ̄(n;S2)| = Θ′(n), in agreement
with Corollary 3.6.

On the other hand, let us enumerate the elements of Q(n;S)
or pQ(n;S). Let u ∈ pQ(n;S). If u12 = 0, then u belongs
to pQ(n;S1) or pQ(n;S2). Otherwise, u12 = 1 and we have
u = u1 + χ(12) + u2 with u1 ∈ pQ(n1 + 1;S1, ∗ → 1),
u2 ∈ pQ(n2 + 1;S2, 2 → ∗) and n1 + n2 + 1 = n − 1. Now,
|pQ(n;S1)| = |pQ(n;S2)| = n + bn/2c and |pQ̄(n;S1, ∗ →
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Fig. 2. Constructing a weighted digraph from the strongly connected components
of D(S).

1)| = |pQ̄(n;S2, 2→ ∗)| = n− 1 for n ≥ 2. Hence,

|pQ(n;S)| = 2
(
n+

⌊n
2

⌋)
+2(n−2)+

n−3∑
n1=1

n1(n−2−n1) = Θ′(n3).

Therefore, when D(S) is not strongly connected, it is not
necessarily true that |pQ̄(n;S)| and |pQ(n;S)| differ only by
a constant factor. Furthermore, we can extend the methods in this
example to obtain |pQ(n;S)| for general digraphs.

To determine |pQ(n;S)|, we construct an auxiliary weighted
digraph with nodes v1, v2, . . . , vI , vsource and vsink. If there exists
an arc from the component Vi to component Vj , i, j ∈ [I], we
add an arc from vi to vj . Furthermore, we add an arc from vsource

to vi and from vi to vsink for all i ∈ [I]. The arcs leaving vsource

have zero weight. For all i ∈ [I], the arcs leaving vi have weight
δi = |Si| − |Vi| if their terminal node is vsink, and weight δi + 1
otherwise (see Fig. 2 for the transformation).

Let D′ be the resulting digraph and observe that D′ is acyclic.
Hence, we can find the longest weighted path from vsource to
vsink in linear time. Suppose that ∆ is the weight of the longest
path. Then the next corollary states that |pQ(n;S)| = Θ′(n∆).

Corollary 3.7. Given D(S), let V1, V2, . . . , VI be a partition
of V (S) such that the induced subgraphs (Vi, Si) are strongly
connected for all i ∈ I . Construct D′ as above (see Fig. 2) and
let ∆ be the weight of the longest weighted path from vsource to
vsink. Then, |pQ(n;S)| = Θ′(n∆).

4. EHRHART THEORY AND PROOF OF THEOREM 3.3

We assume D(S) to be strongly connected and provide a
detailed proof of Theorem 3.3. For this purpose, we introduce
some fundamental results from Ehrhart theory. Ehrhart theory
is a natural framework for enumerating profile vectors and one
may simplify the proof of [11] significantly and generalize the
corresponding results to a bigger family of digraphs. Furthermore,
Ehrhart theory also allows us to extend the enumeration procedure
to profiles at a prescribed distance (see [10]).

As hinted by (1) and (2), to enumerate codewords of interest,
we need to enumerate certain sets of lattice points in polytopes.

The first general treatment of the theory of enumerating lattice
points in polytopes was described by Ehrhart [18]. Here, we
follow the combinatorial treatment of Beck and Robins [19].

Consider any rational polytope P given by P , {u ∈ Rn :
Au ≤ b}, for some integer matrix A and some integer vector
b. A rational polytope is integer if all its vertices are integral.
The lattice point enumerator LP(t) of P is given by LP(t) ,
#(Zn ∩ tP) for all t ∈ Z>0.

Ehrhart [18] introduced the lattice point enumerator for rational
polytopes and showed that LP(t) is a quasipolynomial of degree
D, where D is given by the dimension of the polytope P . Here,
we define the dimension of a polytope to be the dimension of
the affine space spanned by points in P . A formal statement of
Ehrhart’s theorem is provided below.

Theorem 4.1 (Ehrhart’s theorem for polytopes [19, Thm 3.8 and
3.23]). If P is a rational convex polytope of dimension D, then
LP(t) is a quasipolynomial of degree D. Its period divides the
least common multiple of the denominators of the coordinates of
the vertices of P . Furthermore, if P is integer, then LP(t) is a
polynomial of degree D.

Motivated by (2), we consider the relative interior of P . For
the case when P is convex, the relative interior, or interior, is
given by P◦ , {u ∈ P : for all u′ ∈ P , there exists an ε > 0
such that u + ε(u− u′) ∈ P}.

For a positive integer t, we consider the quantity LP◦(t) =
#(Zn∩ tP◦). Ehrhart conjectured the following relation between
LP(t) and LP◦(t), which was proved by Macdonald [20].

Theorem 4.2 (Ehrhart-Macdonald reciprocity [19, Thm 4.1]).
If P is a rational convex polytope of dimension D, then the
evaluation of LP(t) at negative integers satisfies LP(−t) =
(−1)DLP◦(t).

Recall the definitions of A(S) and b in (1), and consider the
polytope

P(S) , {u ∈ R|S| : A(S)u = b,u ≥ 0}. (5)

Using lattice point enumerators, we may write |F(n;S)| =
LP(S)(n − ` + 1). Therefore, in view of Ehrhart’s theorem, we
determine the dimension of the polytope P(S) and characterize
its interior and its vertices in the following technical lemma.

Lemma 4.3. Suppose that D(S) is strongly connected. Then the
following properties of P(S) hold.
(P1) The dimension of P(S) is |S| − |V (S)|.
(P2) P◦(S) = {u ∈ R|S| : A(S)u = b,u > 0} and therefore,

|E(n;S)| = LP◦(S)(n− `+ 1).
(P3) The vertex set of P(S) is given by {χ(C)/|C| :

C is a cycle in D(S)}.

Therefore, using Ehrhart’s theorem and Ehrhart-Macdonald
reciprocity along with (P1) and (P2), we arrive at the fact
that |E(n;S)| and |F(n;S)| are quasipolynomials in n whose
coefficients are periodic in n.

Let λS be the lowest common multiple of the lengths of
all cycles in D(S). Then the period of the quasipolynomial
LP(S)(n− `+ 1) divides λS by Ehrhart’s theorem and (P3).

Let us dilate the polytope P(S) by λS and consider the
enumerator LλSP(S)(t). Since λSP is integer, both LλSP(S)(t)
and LλSP◦(S)(t) are polynomials of degree |S|− |V (S)|. Hence,



whenever n − ` + 1 = λSt or λS |(n − ` + 1), |Q̄(n;S)| ≥
LλSP◦(S)(t) = Ω

(
t|S|−|V (S)|), and therefore, |Q̄(n;S)| =

Θ′
(
n|S|−|V (S)|). This completes the proof of Theorem 3.3.

Finally, when D(S) contains loops, we can further show that
the leading coefficients of the quasipolynomials |E(n; JqK`)| and
|F(n; JqK`)| are the same and constant (i.e. aperiodic). This result
is a direct consequence of Ehrhart-Macdonald reciprocity and the
fact that |E(n; JqK`)| is monotonically increasing. When S = JqK`,
Corollary 4.4 yields (4), a result of Jacquet et al. [11].

Corollary 4.4. Suppose D(S) is strongly connected. If D(S) has
loops, then for some constant c(S).

|E(n;S)| ∼ |Q̄(n;S)| ∼ |F(n;S)| ∼ c(S)n|S|−|V (S)|+O(n|S|−|V (S)|−1).

5. NUMERICAL COMPUTATIONS FOR S(q, `; q1, [w1, w2])

We summarize numerical results for code sizes pertaining to
the special case when S = S(q, `; q1, [w1, w2]).

By Proposition 3.1, D(q, `; q1, [w1, w2]) is Eulerian and there-
fore strongly connected. In other words, Theorem 3.3 applies
and we have |Q(n;S)| = Θ′(n|S|−|V (S)|), where |S| =∑w2

w=w1

(
`
w

)
qw1 (q − q1)`−w, while |V (S)| is given by |S(q, ` −

1; q1, [w1 − 1, w2])| =
∑w2

w=w1−1

(
`−1
w

)
qw1 (q − q1)`−1−w.

Let D = |S| − |V (S)|. We determine next the coefficient of
nD in |Q(n;S)|. When w2 = `, the digraph D(q, `; q1, [w1, `])
contains the loop that correspond to the `-gram profile 1T . Hence,
by Corollary 4.4, the desired coefficient is aperiodic and we
denote it by c(q, `; q1, [w1, `]). When S = JqK`, we denote this
coefficient by c(q, `) and remark that this value corresponds to
the constant defined in Theorem 3.5.

When w2 < `, the digraph D(q, `; q1, [w1, w2]) does not
contain any loops. Recall from Section 4 the definitions of P(S),
λS and LP(S)(n−`+1). In particular, recall that the lattice point
enumerator LP(S)(n− `+ 1) is a quasipolynomial of degree D
whose period divides λS and that consequently, the coefficient of
nD in |Q(n;S)| is periodic. For ease of presentation, we only
determine the coefficient of nD for those parameter values for
which λS divides (n − ` + 1), i.e., for which n − ` + 1 = λSt,
for some integer t. Then, the desired coefficient is given by
c(q, `; q1, [w1, w2]) , c/λDS , where c is the leading coefficient of
the polynomial LλSP(S)(t). Hence, we have the following result.

Corollary 5.1. Consider S = S(q, `; q1, [w1, w2]) and define
D =

∑w2

w=w1

(
`
w

)
qw1 (q − q1)`−w −

∑w2

w=w1−1

(
`−1
w

)
qw1 (q −

q1)`−1−w. Suppose that λS = lcm{|C| : C is a cycle in D(S)}.
Then for some constant c(q, `; q1, [w1, w2]),

(i) if w2 = `, |Q(n;S)| = c(q, `; q1, [w1, `])n
D +O(nD−1) for

all n;
(ii) otherwise, |Q(n;S)| = c(q, `; q1, [w1, w2])nD + O(nD−1)

for all n such that λS |(n− `+ 1).

We determine c(q, `; q1, [w1, w2]) via numerical computations.
Computing the lattice point enumerator is a fundamental problem
in discrete optimization and many algorithms and software imple-
mentations have been developed for such purposes. We make use
of the software LattE, developed by Baldoni et al. [21], which
is based on an algorithm of Barvinok [22].

Using LattE, we computed the desired coefficients for various
values of (q, `; q1, [w1, w2]). As an illustrative example, LattE
determined c(2, 4) = 283/9754214400 with computational time
less than a minute. This shows that although the exact evaluation

TABLE I
COMPUTATION OF c(q, `; q1, [w1, w2]). WE FIXED q = 2 AND q1 = 1.

` w1 w2 D λS c(2, `; 1, [w1, w2])
4 2 3 3 60 1/360
4 2 4 4 – 1/1440
5 2 3 6 120 1/5184000
5 2 4 10 27720 40337/34566497280000000
5 2 5 11 – 3667/34566497280000000
5 3 4 4 420 23/302400
5 3 5 5 – 23/1512000
6 3 4 10 65520 43919/754932300595200000
6 4 5 5 840 1/518400

of c(q, `) is prohibitively complex (as pointed by Jacquet et al.
[11]), numerical computations of c(q, `) and c(q, `; q1, [w1, w2])
are feasible for certain moderate values of parameters. We tabulate
c(q, `; q1, [w1, w2]) in Table I.
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