
Optimal Codes in the Enomoto-Katona Space
Yeow Meng Chee, Han Mao Kiah, Hui Zhang and Xiande Zhang

School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

Abstract—Coding in a new metric space, the Enomoto-Katona
space, is considered recently in connection to the study of
implication structures of functional dependencies and their gener-
alizations in relational databases. The central problem here is the
determination of C(n, k, d), the size of an optimal code of length
n, weight k, and distance d in the Enomoto-Katona space. The
value of C(n, k, d) is known only for some congruence classes of
n when (k, d) ∈ {(2, 3), (3, 5)}. In this paper, we obtain new
infinite families of optimal codes in the Enomoto-Katona space. In
particular, C(n, k, 2k−1) is determined for all sufficiently large
n satisfying either n ≡ 1 mod k and n(n−1) ≡ 0 mod 2k2,
or n ≡ 0 mod k.

1. INTRODUCTION

The problem we consider is motivated by implication struc-
tures of functional dependencies in relational databases.

Let A be a set of n attributes. Each attribute x ∈ A is
associated a set Ωx, called its domain. A relation is a finite
set R of n-tuples (called data items) so that R ⊆ ×x∈AΩx. A
relation R of m data items may be visualized as an m×n array
(called a table), with columns indexed by A, such that each
row corresponds to a data item. Denote this table by R(A).
Formally, if R = {(di,x)x∈A : 1 ≤ i ≤ m}, then the cell in
R(A) with row index i and column index x has entry di,x.
A relational database is a set of tables, where tables may
be defined over different attribute sets. Relational database,
introduced by Codd [1], is the first database with a rigorous
mathematical foundation, and remains the predominant choice
for data storage and management today.

For a given table R(A) and X ⊆ A, the X-value of a data
item d = (dx)x∈A in R(A) is the |X|-tuple d |X= (dx)x∈X .
Let X ⊆ A and y ∈ A for a given table R(A). We say that y
(functionally) depends1 on X , written X → y, if no two rows
of R(A) agree in X but differ in y. In other words, if the
X-value of a data item is known, then its {y}-value can be
determined with certainty. Identifying functional dependencies
is important in relational database design [2]–[5].

Demetrovics, Katona, and Sali [6] generalized functional
dependencies as follows.

Definition 1.1. Let X ⊆ A and y ∈ A for a given table R(A).
Then for positive integers p ≤ q, we say that y (p, q)-depends
on X , written X

(p,q)
−→ y, if there do not exist q+1 data items

(rows) d1, d2, . . . , dq+1 of R(A) such that
(i) |{di |{x}: 1 ≤ i ≤ q + 1}| ≤ p for each x ∈ X , and

(ii) |{di |{y}: 1 ≤ i ≤ q + 1}| = q + 1.

Our usual concept of functional dependency is equivalent
to the special case of (1, 1)-dependency. When functional

1By definition, if y ∈ X , then X → y trivially.

dependencies are not known, (p, q)-dependencies identified
in a relational database can still be exploited for improving
storage efficiency [6]–[9].

Let p ≤ q be positive integers. For a table R(A), define the
operation J

(p,q)
R(A) : 2

A → 2A so that for X ⊆ A, we have

J
(p,q)
R(A)(X) =

�
y ∈ A : X

(p,q)
−→ y

�
.

We call J (p,q)
R(A) the (p, q)-implication structure of R(A), since

it specifies the subsets of attributes that are implied by some
(p, q)-dependency of R(A). A function J : 2A → 2A is said
to be (p, q)-representable if there exists a table R(A) such
that J (p,q)

R(A) = J .
The function J

(1,1)
R(A) is a closure operator on A. Armstrong

[2] showed that the converse is also true: any closure operator
J : 2A → 2A is (1, 1)-representable. This is, however, not
true for general p and q [6]. When a function J is (p, q)-
representable, there is interest in determining the table R(A)
with the least number of rows such that J (p,q)

R(A) = J [7]–[9].
Consideration of this problem, particularly when for fixed k,
the function J

k

n
: 2A → 2A takes the form

J
k

n
(X) =

�
X, if |X| < k

A, otherwise,

has led to coding-theoretic problems in a new metric space,
called the Enomoto-Katona space [10].

A. The Enomoto-Katona Space
If X is a finite set, the set of all k-subsets of X is denoted�

X

k

�
. Let n and k be positive integers such that 2k ≤ n and

let X be an n-set. Consider the set

E(X, k) =

�
{A,B} ⊆

�
X

k

�
: A ∩B = ∅

�

of all unordered pairs of disjoint k-subsets of X . Elements
of E(X, k) are called set-pairs. The function dE : E(X, k) ×
E(X, k) → {0, 1, . . . , 2k} given by

dE({A,B}, {S, T}) = min{|A\S|+ |B\T |, |A\T |+ |B\S|}

is a metric of E(X, k) and the finite metric space (E(X, k), dE)
is called the Enomoto-Katona space.

An Enomoto-Katona code (or EK code, in short), is a set
C ⊆ E(X, k). More specifically, C is an EK code of length n,
weight k, and distance d, or (n, k, d)-EK code, if dE(u, v) ≥ d

for all distinct u, v ∈ C.
The following example gives a construction of a table from

an EK-code (see [8], [11]).



Example 1.1. Consider the following (9, 2, 3)-EK code C,
where X = Z/9Z.
c1 = {{0, 1}, {2, 4}}, c2 = {{1, 2}, {3, 5}}, c3 = {{2, 3}, {4, 6}},
c4 = {{3, 4}, {5, 7}}, c5 = {{4, 5}, {6, 8}}, c6 = {{5, 6}, {7, 0}},
c7 = {{6, 7}, {8, 1}}, c8 = {{7, 8}, {0, 2}}, c9 = {{8, 0}, {1, 3}}.

Let A be a set of nine attributes, given by C. We construct a
table R(A) with nine rows indexed by X whose implication
structure J

(1,1)
R(A) is precisely J

2
9 . Each set-pair {A,B} con-

structs a column in the following manner: place 1 at rows
indexed by elements of A, place 2 at rows by elements of B
and place distinct elements from Z≥3 for the remaining rows.

c1 c2 c3 c4 c5 c6 c7 c8 c9
0 1 3 3 3 3 2 3 2 1
1 1 1 4 4 4 3 2 3 2
2 2 1 1 5 5 4 4 2 3
3 3 2 1 1 6 5 5 4 2
4 2 4 2 1 1 6 6 5 4
5 4 2 5 2 1 1 7 6 5
6 5 5 2 6 2 1 1 7 6
7 6 6 6 2 7 2 1 1 7
8 7 7 7 7 2 7 2 1 1

The maximum size of an (n, k, d)-EK code is denoted by
C(n, k, d). An (n, k, d)-EK code of size C(n, k, d) is said to
be optimal. The central problem is to determine C(n, k, d).

B. Problem Status
Trivially, C(n, k, 1) =

�
n

k

��
n−k

k

�
/2 , C(n, k, 2k) = �n/2k�,

so we assume 2 ≤ d ≤ 2k − 1 for the rest of this paper.
General upper and lower bounds on the size of codes in the

Enomoto-Katona space have been obtained by Brightwell and
Katona [12]. In particular, they showed for 1 ≤ d ≤ 2k ≤ n,

C(n, k, d) ≤

�
n

i=n−2k+d
i

2
��

k

i=�(d+1)/2� i
�
·

��
k

i=�(d+1)/2� i
� . (1)

Brightwell and Katona [12] also showed that C(n, k, d) =
Θ(n2k−d+1) for fixed k and d. Bollobás et al. [13] (see also
[11]) subsequently established that the upper bound in (1) is
asymptotically tight.

Theorem 1.1 (Bollobás et al. [13]).

lim
n→∞

C(n, k, d)

n2k−d+1
=

1

2 ·
��

k

i=�(d+1)/2� i
�
·

��
k

i=�(d+1)/2� i
� .

The best known upper bound is due to Quistorff [14].

Theorem 1.2 (Quistorff Bound [14]). Suppose k − d + 1 ≤

e ≤ min{k, 2k − d}. Then

C(n, k, d) ≤



�
n

e

�

2

�
k

e

�



�
n− e

2k − d− e+ 1

�

�
k

2k − d− e+ 1

�



 .

Only the following exact values of C(n, k, d) are known.

Theorem 1.3 (Bollobás et al. [13]).

C(n, 2, 3) =
n(n− 1)

8
, if n ≡ 1 or 9 mod 72,

C(n, 3, 5) =
n(n− 1)

18
, if n ≡ 1 or 19 mod 342.

C. Contributions

Our contributions in this paper are as follows.
Main Theorem. For any fixed k ≥ 2, we have

C(n, k, 2k − 1) =

�
n

2k

�
n− 1

k

��

for all sufficiently large n satisfying
(i) n ≡ 1 mod k and n(n− 1) ≡ 0 mod 2k2, or

(ii) n ≡ 0 mod k.

Previous asymptotic results are known only when k ∈ {2, 3}.
In addition,

(i) We determine the exact value of C(n, 2, d) completely.
Previously, the value of C(n, 2, 2) is unknown and
C(n, 2, 3) is determined only when n ≡ 1 or 9 mod 72.

(ii) The exact value of C(n, 3, 5) is determined for n belong-
ing to a set of density 4/9. Previously, the exact value
of C(n, 3, 5) is known only for n ≡ 1 or 19 mod 342, a
set of density 1/171.

These results are obtained by constructing EK codes (or
their equivalent combinatorial objects) whose sizes meet the
Quistorff bound. Owing to space constraints, we prove the
Main Theorem and determine C(n, 2, 2) in this paper, leaving
the proofs for the remaining results to the full paper.

2. EK PACKINGS AND DESIGNS

Our approach is based on combinatorial design theory. In
this section, we introduce necessary concepts and establish
connections to EK codes.

Throughout the rest of this paper, X denotes a set of size
n. For a positive integer k, [k] denotes the set of integers
{1, 2, . . . , k}, while Z≥k denotes the set of integers at least k.
The set of all (ordered) k-tuples of a finite set X with distinct
components is denoted

�
X

k

�
.

We use angled brackets � and � for multisets. We sometimes
use the exponential notation to describe multisets so that a
multiset where an element gi appears si times, i ∈ [t], is
denoted g

s1
1 g

s2
2 · · · g

st
t

.
A set system is a pair S = (X,A), where X is a finite set

of points and A ⊆ 2X . Elements of A are called blocks. The
order of S is the number of points in X , and the size of S
is the number of blocks in A. Let K ⊆ Z≥0. The set system
(X,A) is said to be K-uniform if |A| ∈ K for all A ∈ A.

Let 2 ≤ t < 2k and 0 ≤ e ≤ min{k, �t/2�}. We say
that the tuple (x1, x2, . . . , xt) ∈

�
X

t

�
is (e, t)-contained in

a set-pair {A,B} ∈ E(X, k) if either {x1, x2, . . . , xe} ⊆ A

and {xe+1, xe+2, . . . , xt} ⊆ B, or {x1, x2, . . . , xe} ⊆ B and
{xe+1, xe+2, . . . , xt} ⊆ A.

Let C ⊆ E(X, k). Then (X, C) is an EK packing of strength
t, or more precisely a t-(n, k) EK packing2, if for 0 ≤ e ≤

�t/2�, every t-tuple in
�
X

t

�
is (e, t)-contained in at most one

set-pair in C. A t-(n, k) EK design is a t-(n, k) EK packing
satisfying the condition that for e = �t/2�, every t-tuple in

2Note that C ⊆ E(X, k), while A ⊆ 2X .



�
X

t

�
is (e, t)-contained in exactly one set-pair in C. It is easy

to see that if (X, C) is a t-(n, k) EK design, then

|C| =

�
n

t

��
t

�t/2�

�

2

�
k

�t/2�

��
k

�t/2�

� .

EK packings of strength t are equivalent to EK codes of
distance 2k − t+ 1, while EK designs of strength t give rise
to optimal EK codes of distance 2k − t+ 1.

Proposition 2.1. Let C ⊆ E(X, k). Then (X, C) is a t-(n, k)
EK packing if and only if C is an (n, k, 2k− t+1)-EK code.
Furthermore, if (X, C) is a t-(n, k) EK design, then C is an
optimal (n, k, 2k − t+ 1)-EK code.

Proof: Suppose (X, C) is a t-(n, k) EK packing and
{A,B}, {S, T} ∈ C. We claim that dE({A,B}, {S, T}) ≥

2k−t+1. Suppose otherwise. Then without loss of generality,
|A \S|+ |B \T | ≤ 2k− t and there exists a nonnegative e ≤

�t/2�, I ∈
�
X

e

�
, J ∈

�
X

t−e

�
such that I ⊆ A∩S and J ⊆ B∩T .

If I = {x1, x2, . . . , xe} and J = {xe+1, xe+2, . . . , xt}, we see
that (x1, x2, . . . , xt) is (e, t)-contained in {A,B} and {S, T},
contradicting the fact that (X, C) is a t-(n, k) EK packing.

Conversely, suppose C is an (n, k, 2k − t + 1)-EK code.
If (X, C) is not a t-(n, k) EK packing, then there exists
a nonnegative e ≤ �t/2�, (x1, x2, . . . , xt) ∈

�
X

t

�
, and

{A,B}, {S, T} ∈ C such that (x1, x2, . . . , xt) is (e, t)-
contained in {A,B} and {S, T}. Without loss of generality,
{x1, x2, . . . , xe} ⊆ A∩S and {xe+1, xe+2, . . . , xt} ⊆ B ∩T .
Hence, |A \ S| + |B \ T | ≤ 2k − (e + t − e) = 2k − t, and
consequently dE({A,B}, {S, T}) ≤ 2k − t, contradicting the
fact that C is an (n, k, 2k − t+ 1)-EK code.

Finally, when (X, C) is a t-(n, k) EK design, C is an optimal
(n, k, 2k−t+1)-EK code, since |C| meets the Quistorff bound
with e = �t/2�.

In view of Proposition 2.1, our strategy in constructing
optimal EK codes (and hence determining C(n, k, d)) is to
construct equivalent EK packings and designs of sizes meeting
the Quistorff bound. We introduce next EK group divisible
designs and their connections to EK codes and EK packings.

A. EK Group Divisible Designs
Let G = {G1, G2, . . . , Gs} be a partition of an n-set X

and C ⊆ E(X, k). Then (X,G, C) is an EK group divisible
design (or EKGDD, in short) if for all (x, y) ∈

�
X

2

�
such that

{x, y} �⊆ Gi for all i ∈ [s], we have
(i) (x, y) is (1, 2)-contained in exactly one set-pair {A,B},

(ii) (x, y) is (0, 2)-contained in at most one set-pair {A,B}.
In addition, |Gi∩(A∪B)| ≤ 1 for all i ∈ [s] and {A,B} ∈ C.
Such an EKGDD is more precisely called a (k, T )-EKGDD,
where T = �|Gi| : i ∈ [s]�.

A 2-(n, k) EK design can be regarded as a (k, 1n)-EKGDD,
where each group contains just a single point. Furthermore, a
(k, g1g2 · · · gs)-EKGDD can be regarded as a 2-(k,

�
s

i=1 gi)
EK packing, and hence as a (

�
s

i=1 gi, k, 2k − 1)-EK code. In

addition, as the following shows, certain classes of EKGDD
give optimal EK codes.

Proposition 2.2. Suppose there exists a (k, ks)-EKGDD
(X,G, C). Then C is an optimal (ks, k, 2k − 1)-EK code.

Proof: Observe C is a (ks, k, 2k − 1)-EK code since
(X, C) is an 2-(ks, k) EK packing. There are (ks) · (ks− k)

ordered pairs (x, y) ∈
�
X

2

�
where {x, y} does not belong to

any group. In addition, we have 2k2 ordered pairs in
�
X

2

�
that

are (1, 2)-contained in each set-pair. Hence, the code C is of
size s(s− 1)/2, which meets the Quistorff bound.

3. C(n, k, 2k − 1) FOR SUFFICIENTLY LARGE n

We show that a 2-(n, k) EK design and a (k, kn)-EKGDD
exist when n belongs to certain congruence classes, provided
n is sufficiently large. Our proof is an application of decom-
positions of edge-colored directed graphs (digraphs).

An edge-colored directed graph is a triple G = (V,C,E),
where V is a finite set of vertices, C is a finite set of colors and
E is a subset of

�
V

2

�
×C. Members of E are called edges. The

complete edge-colored digraph on n vertices with r colors,
denoted by K

(r)
n , is the edge-colored digraph (V,C,E), where

|V | = n, |C| = r, and E =
�
V

2

�
× C.

A family F of edge-colored subgraphs of an edge-colored
digraph K is a decomposition of K if every edge of K belongs
to exactly one member of F . Given an edge-colored digraph
G, a decomposition F of K is a G-decomposition of K if
each edge-colored digraph in F is isomorphic to G.

Lamken and Wilson [15] studied the existence of G-
decompositions of K(r)

n and showed that for fixed G and r, a
G-decomposition exists for sufficiently large n under certain
conditions. To state the theorem, we require more concepts.

Consider an edge-colored digraph G = (V,C,E) with
|C| = r. Let ((u, v), c) ∈ E denote a directed edge from
u to v, colored by c. For any vertex u and color c, define the
indegree and outdegree of u with respect to c as follows:

inc(u) = |{v : ((v, u), c) ∈ E}| ,

outc(u) = |{v : ((u, v), c) ∈ E}| .

Then for vertex u, we define the degree vector of u, denoted
by δ(u), to be the vector of length 2r. That is, δ(u) =
(inc(u), outc(u))c∈C . Define α(G) to be the least positive
integer t such that (t, t, . . . , t) is an integral linear combination
of the vectors in {δ(u) : u ∈ V }. The following is due to
Lamken and Wilson [15].

Theorem 3.1 (Lamken and Wilson [15, Theorem 1.1]). Let
G be an edge-colored digraph with r colors and m edges of
each of r different colors. There exists a constant n0 such that
there is G-decomposition of K

(r)
n for all n ≥ n0 satisfying

both

n(n− 1) ≡ 0 mod m and n− 1 ≡ 0 mod α(G).



Now for fixed k ≥ 2 define the edge-colored digraph Gk =
(Vk, Ck, Ek), where

Vk = {ij : i ∈ [k], j ∈ [2]},

Ck = {•, •},

Ek = {((ir, js), •) : i, j ∈ [k], (r, s) ∈ {(1, 2), (2, 1)}}

∪ {((ir, is), •) : i ∈ [k], (r, s) ∈ {(1, 2), (2, 1)}}

∪

�
((ir, jr), •) : (i, j) ∈

�
[k]

2

�
, r ∈ [2]

�
.

Example 3.1. The edge-colored graph G2 is given by

11��

��

��

��

�� �� 21��

��

��

��

��

��
12
��

��

�� �� 22

where �� �� denotes two directed edges of color • (one in
each direction), and �� �� denotes two directed edges of
color • (one in each direction).

Proposition 3.1. If a Gk-decomposition of K
(2)
n exists, then

a 2-(n, k) EK design exists.

Proof: Let F be a Gk-decomposition of K
(2)
n . Then for

a subgraph G ∈ F , let φG : Gk → G be a graph isomorphism
and define

AG = {φG(i1) : i ∈ [k]}, BG = {φG(i2) : i ∈ [k]}.

Let X be the vertex set of K(2)
n and

C = {{AG, BG} : G ∈ F}.

We claim that (X, C) is a 2-(n, k) EK design. Since |C| =
n(n− 1)/(2k(k− 1)), it suffices to check that for e ∈ {0, 1},
each (x, y) ∈

�
X

2

�
is (e, 2)-contained in at most one set-pair

in C.
Suppose otherwise. Then there exist (x, y) ∈

�
X

2

�
, G,H ∈

F and e ∈ {0, 1} such that (x, y) is (e, 2)-contained in
{AG, BG} and {AH , BH}.

If e = 0, then assume that {x, y} ⊂ AG ∩ AH . Hence, the
edge ((x, y), •) belongs to both G and H , contradicting the
fact that F is a Gk-decomposition of K(2)

n .
If e = 1, then assume that x ∈ AG∩AH and y ∈ BG∩BH .

Hence, the edge ((x, y), •) belongs to G and H , contradicting
the fact that F is a Gk-decomposition of K(2)

n .
Observe there are 2k2 edges of each color in Gk and δ(v) =

(k, k, k, k) for all v ∈ Vk. Hence, α(Gk) = k. The following
is immediate from Propositions 2.1, 3.1, and Theorem 3.1.

Theorem 3.2. Fix k ≥ 2. Then

C(n, k, 2k − 1) =
n(n− 1)

2k2

for all sufficiently large n satisfying n ≡ 1 mod k and n(n−

1) ≡ 0 mod 2k2.

To determine C(n, k, 2k− 1) when n ≡ 0 mod k, consider
the following graph. Fix k ≥ 2 and define the edge-colored
digraph Hk = (Vk, Ck, Ek), where

Vk = {ij : i ∈ [k], j ∈ [2]},

Ck = ([k]× [k]× {•}) ∪

��
[k]

2

�
× {•}

�
,

Ek = {((ir, js), (i, j, •)) : i, j ∈ [k], (r, s) ∈ {(1, 2), (2, 1)}}

∪

�
((ir, jr), (i, j, •)) : (i, j) ∈

�
[k]

2

�
, r ∈ [2]

�
.

Example 3.2. The graph H2 is given by

11

(1,1,•)

��

(1,2,•)

��

(1,2,•) �� 21

(2,2,•)

��

(2,1,•)

��

(2,1,•)
��

12

(1,1,•)

��

(1,2,•)

��

(1,2,•) �� 22

(2,2,•)

��

(2,1,•)

��

(2,1,•)
��

Proposition 3.2. If an Hk-decomposition of K(2k2−k)
n exists,

then a (k, kn)-EKGDD exists.

Proof: Let H be an Hk-decomposition of K
(2k2−k)
n .

Then for a subgraph H ∈ H, let φH : Hk → H be a graph
isomorphism and define

AH = {φH(i1)i : i ∈ [k]}, BH = {φH(i2)i : i ∈ [k]}.

Let V be the vertex set of K(2k2−k)
n and

X = {vi : v ∈ V, i ∈ [k]},

G = {{vi : i ∈ [k]} : v ∈ V },

C = {{AH , BH} : H ∈ H}.

We claim that (X,G, C) is a (k, kn)-EKGDD. Suppose oth-
erwise. Since |C| = n(n − 1)/2, it suffices to consider the
following two cases.

(i) There exist v ∈ V and H ∈ H such that |{vi : i ∈

[k]}∩ (AH ∪BH)| ≥ 2. This contradicts the fact that H
is isomorphic to Hk.

(ii) There exist (x, y) ∈
�
X

2

�
, G,H ∈ H and e ∈ {0, 1}

such that (xi, yj) is (e, 2)-contained in {AG, BG} and
{AH , BH}.
If e = 0, then assume that {xi, yj} ⊂ AG ∩AH . Hence,
the edge ((x, y), (i, j, •)) belongs to both G and H ,
contradicting the fact that H is an Hk-decomposition.
Similarly, if e = 1, then assume that xi ∈ AG ∩ AH

and yj ∈ BG ∩ BH . Hence, the edge ((x, y), (i, j, •))
belongs to both G and H , contradicting the fact that H
is an Hk-decomposition of K(2k2−k)

n .



Observe there are two edges of each color in Hk and�
i∈[k] δ(i1) = (1, 1, . . . , 1). Hence, α(Hk) = 1. From

Propositions 2.2, 3.2, and Theorem 3.1, we have the following.

Theorem 3.3. Fix k ≥ 2. Then

C(n, k, 2k − 1) =
n(n− k)

2k2

for all sufficiently large n satisfying n ≡ 0 mod k.

Theorems 3.2 and 3.3 combine to give the Main Theorem.

4. THE VALUE OF C(n, 2, 2)

In this section, we give a complete solution for C(n, 2, 2).
Our proof makes use of t-wise balanced designs.

Definition 4.1. A t-wise balanced design, or a t-BD(v,K),
is a K-uniform set system (X,A) of order v such that every
t-subset of X is contained in exactly one block of A.

The following existence result for 3-BDs is known.

Theorem 4.1 (Hanani [16]). A 3-BD(v, {4, 6}) exists for all
even v ≥ 4.

The following proposition gives a recursive construction for
EK designs of strength t.

Proposition 4.1 (Filling in Blocks). Let K ⊆ Z≥1 and
suppose that a t-BD(v,K) exisits. If a t-(h, k) EK design
exists for all h ∈ K, then a t-(v, k) EK design exists.

Proof: Let (X,A) be a t-BD(v,K). For each A ∈ A, let
(A, CA) be a t-(|A|, k) EK design. Then (X,∪A∈ACA) is a
t-(v, k) EK design.

We first determine C(n, 2, 2) when n is even.

Proposition 4.2. A 3-(n, 2) EK design exists for even n ≥ 4.

Proof: When n = 4, the pair (X, C), where

X = Z/4Z,
C = {{{0, 1}, {2, 3}}, {{0, 2}, {1, 3}}, {{0, 3}, {1, 2}}},

is a 3-(4, 2) EK design.
When n = 6, let

X = Z/6Z,
C0 = {{{0, 1}, {2, 4}}, {{0, 1}, {3, 5}}, {{0, 2}, {3, 1}},

{{0, 3}, {1, 4}}, {{0, 5}, {1, 2}}},

C = {{{a+ i, b+ i}, {c+ i, d+ i}} :

{{a, b}, {c, d}} ∈ C0, i ∈ {0, 2, 4}}.

Then (X, C) is a 3-(6, 2) EK design.
For n ≥ 8, there exists a 3-BD(n, {4, 6}) by Theorem 4.1.

The result now follows from Proposition 4.1.

Proposition 4.3. There exists a 3-(n, 2) EK packing of size
n(n− 1)(n− 3)/8 for all odd n ≥ 5.

Proof: By Proposition 4.2, there exists a 3-(n+1, 2) EK
design (X, C). Fix any point x ∈ X and define

X
� = X \ {x}, C

� = {{A,B} ∈ C : x /∈ A ∪B}.

Since x is contained in exactly n(n− 1)/2 set-pairs in C, we
have |C�| = n(n+1)(n− 1)/8−n(n− 1)/2 = n(n− 1)(n−

3)/8.
Propositions 2.1, 4.2, 4.3, and Theorem 1.2 combine to give

the following.

Theorem 4.2. Let n ≥ 4. Then

C(n, 2, 2) =






n(n− 1)(n− 2)

8
, if n is even,

n(n− 1)(n− 3)

8
, if n is odd.

5. CONCLUSION

New infinite families of optimal codes in the Enomoto-
Katona space are obtained in this paper. In particular, we show
that C(n, k, 2k − 1) attains the Quistorff bound for infinitely
many n. The value of C(n, 2, 2) is also completely determined.
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