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Functional Dependencies

Clearly, certain attributes can be determined from others. For example,

{Last name, Initials} determines Institute.

{Paper} determines Date.

Definition

Let X ⊆ A and y ∈ A. We say that y functionally depends on X, or X → y,
if no two rows of R(A) agree in X but differs in y.

{Last name, Initials} → Institute.

{Paper} → Date.
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(p, q)-Dependencies

So, {Paper} 6−→ Last Names.

Definition

Let X ⊆ A and y ∈ A. For positive integers p ≤ q, we say that y

(p, q)-depends on X, or X
(p,q)−→ y, if there do not exist q + 1 data items

d1, d2, . . . , dq+1 of R(A) such that

(i) |{di|{x} : 1 ≤ i ≤ q + 1}| ≤ p for each x ∈ X, and,

(ii) |{di|{y} : 1 ≤ i ≤ q + 1}| = q + 1.

In particular, in our example, {Paper} (1,5)−→ Last Names.

Functional dependency is equivalent to a (1, 1)-dependency

When functional dependencies are not known, (p, q)-dependencies
identified in a relational database can still be exploited for improving
storage efficiency.
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Implication Structure

Definition

Let p ≤ q be positive integers. For a table R(A), define the operation

J
(p,q)

R(A) : 2A → 2A so that for X ⊆ A, we have

J
(p,q)

R(A)(X) =

{
y ∈ A : X

(p,q)−→ y

}
.

We call J
(p,q)

R(A) the (p, q)-implication structure of R(A).

So,

J
(1,1)

R(A)({Last Name, Initials}) = {Last Name, Initials, Institute}.

J
(1,1)

R(A)({Paper}) = {Date, Paper}.

J
(1,5)

R(A)({Paper}) = {Last Name, Initials, Institute, Date, Paper} = A.
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(p, q)-Representable Functions

Definition

A function J : 2A → 2A is said to be (p, q)-representable if there exists a table

R(A) such that J
(p,q)

R(A) = J .

Proposition (Armstrong, 1974)

The function J : 2A → 2A is (1, 1)-representable if and only if J is a closure
operator on A.

Characterization for general p and q is given by Demetrovics et al.,1992.
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(p, q)-Representable Functions

Objective

Given a function J , to determine the table R(A) with the least number of rows

such that J
(p,q)

R(A) = J .

In particular, for fixed k, consider the function

Jk
n(X) =

{
X, if |X| < k

A, otherwise.
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Enomoto-Katona Space

Let 2k ≤ n.

Let X be a finite set of n elements.(
X
k

)
denote the set of all k-subsets of X.

Definition

Enomoto-Katona Space (2001)

I The set of all unordered pairs of disjoint k-subsets of X is given by

E(X, k) =

{
{A,B} ⊆

(
X

k

)
: A ∩B = ∅

}
I “Codewords” of E(X, k) are called set-pairs.

I The function dE : E(X, k)× E(X, k)→ {0, 1, . . . , 2k} is given by

dE({A,B}, {S, T}) = min{|A \ S|+ |B \ T |, |A \ T |+ |B \ S|}

I Then (E(X, k), dE) is a metric space called the Enomoto-Katona space.
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Enomoto-Katona Space - An example

Let X = Z/4Z and k = 2.
E(X, 2) consists of the following set-pairs:

{{0, 1}, {2, 3}}, {{0, 2}, {1, 3}}, {{0, 3}, {1, 2}}.

For example,

dE({{0, 1}, {2, 3}}, {{0, 2}, {1, 3}})
= min{|{0, 1} \ {0, 2}|+ |{2, 3} \ {1, 3}|, |{0, 1} \ {1, 3}|+ |{2, 3} \ {0, 2}|}
= min{1 + 1, 1 + 1} = 2.
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Enomoto-Katona Code

Enomoto-Katona Code

An Enomoto-Katona code (or EK code, in short), is a set C ⊆ E(X, k). More
specifically, C is an EK code of length n, weight k, and distance d, or
(n, k, d)-EK code, if

dE(u,v) ≥ d for all distinct u,v ∈ C.

Let X = Z/4Z and k = 2.
Let C consists of the following set-pairs:

{{0, 1}, {2, 3}}, {{0, 2}, {1, 3}}, {{0, 3}, {1, 2}}.

Then C is a (4, 2, 2)-EK code.
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Constructing a table with an EK code

Consider the following (9, 2, 3)-EK code C, where X = Z/9Z.
c1 = {{0, 1}, {2, 4}}, c2 = {{1, 2}, {3, 5}}, c3 = {{2, 3}, {4, 6}},
c4 = {{3, 4}, {5, 7}}, c5 = {{4, 5}, {6, 8}}, c6 = {{5, 6}, {7, 0}},
c7 = {{6, 7}, {8, 1}}, c8 = {{7, 8}, {0, 2}}, c9 = {{8, 0}, {1, 3}}.

Each set-pair {A,B} constructs a column in the following manner:

place 1 at rows indexed by elements of A,

place 2 at rows by elements of B,

place distinct elements from Z≥3 for the remaining rows.

c1 c2 c3 c4 c5 c6 c7 c8 c9
0

1 3 3 3 3 2 3 2 1

1

1 1 4 4 4 3 2 3 2

2

2 1 1 5 5 4 4 2 3

3

3 2 1 1 6 5 5 4 2

4

2 4 2 1 1 6 6 5 4

5

4 2 5 2 1 1 7 6 5

6

5 5 2 6 2 1 1 7 6

7

6 6 6 2 7 2 1 1 7

8

7 7 7 7 2 7 2 1 1

Check that the implication structure J(1,1) is J2
9 .
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Central Problem

The maximum size of an (n, k, d)-EK code is denoted by C(n, k, d).

An (n, k, d)-EK code of size C(n, k, d) is said to be optimal.

The central problem is to determine C(n, k, d).



Relational Databases Enomoto-Katona Codes Decomposition of Edge-Colored Complete Graphs Conclusion

Problem Status

Theorem (Brightwell and Katona, 2001)

For 1 ≤ d ≤ 2k ≤ n,

C(n, k, d) ≤ n(n− 1) · · · (n− 2k + d)

2k(k − 1) · · · d(d+ 1)/2e · k(k − 1) b(d+ 1)/2c .

In fact,
C(n, k, d) = Θ(n2k−d+1) for fixed k and d.

Theorem (Bollobás, Katona, Leader)

lim
n→∞

C(n, k, d)

n2k−d+1
=

1

2k(k − 1) · · · d(d+ 1)/2e · k(k − 1) b(d+ 1)/2c .
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Problem Status

Best upper bound C(n, k, d) currently known:

Theorem (Quistorff, 2009)

Suppose k − d+ 1 ≤ e ≤ min{k, 2k − d}. Then

C(n, k, d) ≤

⌊ (
n
e

)
2
(
k
e

) ⌊( n−e
2k−d−e+1

)(
k

2k−d−e+1

)⌋⌋ .

Only the following exact values of C(n, k, d) are known.

Theorem (Bollobás, Katona, Leader)

C(n, 2, 3) =
n(n− 1)

8
, if n ≡ 1 or 9 mod 72,

C(n, 3, 5) =
n(n− 1)

18
, if n ≡ 1 or 19 mod 342.
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Our Contributions

Main Theorem

For any fixed k ≥ 2, we have

C(n, k, 2k − 1) =

⌊
n

2k

⌊
n− 1

k

⌋⌋
for all sufficiently large n satisfying

(i) n ≡ 1 mod k and n(n− 1) ≡ 0 mod 2k2, or

(ii) n ≡ 0 mod k.

Exact values

We determine

(i) the value of C(n, 2, d) for all n and 1 ≤ d ≤ 4.

(ii) the value of C(n, 3, 5) for n ≡ 0 mod 3 and n ≡ 1 mod 9 with finite
exceptions.



Relational Databases Enomoto-Katona Codes Decomposition of Edge-Colored Complete Graphs Conclusion

Our Contributions

Main Theorem

For any fixed k ≥ 2, we have
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2k
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n− 1

k

⌋⌋
for all sufficiently large n satisfying

(i) n ≡ 1 mod k and n(n− 1) ≡ 0 mod 2k2, or

(ii) n ≡ 0 mod k.

Our main tool is combinatorial design theory.

In particular, decomposition of edge-colored complete graphs .
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Complete Graph Kn

0

1

2

3 4

5

6

A complete graph Kn on n vertices has an edge between any two vertices.
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Edge-Colored Complete Graph K
(r)
n

0

1

2

3 4

5

6

A complete graph K
(r)
n on n vertices has an edge of each of r colors between

any two vertices.
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Decomposition of Edge-Colored Graphs

0

1

2

3 4

5

6

−→

0

1 3
6

1

2 4
0

2

3 5
1

3

4 6
2

4

5 0
3

5

6 1
4

6

0 2
5

A

•

• •
• –decomposition of K

(2)
7 .

Observations

I Each subgraph in the decomposition is isomorphic to

•

• •
• .

I Every edge of K
(2)
7 belongs to exactly one subgraph in the decomposition.
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Existence of G-Decompositions of K
(r)
n

Theorem (Lamken, Wilson, 2000)

Let G be an edge-colored graph with r colors and m edges of each of r
different colors. There exists a constant n0 such that there is G-decomposition
of K

(r)
n for all n ≥ n0 satisfying both

n− 1 ≡ 0 mod α(G),

n(n− 1) ≡ 0 mod 2m,

where α(G) is a parameter dependent on G.
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C(n, k, 2k − 1) for sufficiently large n

Definition

Let Gk be the following graph.

11 21 · · · k1

12 22 · · · k2

Proposition

If there is a Gk-decomposition of Kn, then there is an (n, k, 2k − 1)-EK code
of size n(n− 1)/2k2, which is optimal by Quistorff bound.



Relational Databases Enomoto-Katona Codes Decomposition of Edge-Colored Complete Graphs Conclusion

C(n, k, 2k − 1) for sufficiently large n

Definition

Let Gk be the following graph.

11 21 · · · k1

12 22 · · · k2

Proposition

If there is a Gk-decomposition of Kn, then there is an (n, k, 2k − 1)-EK code
of size n(n− 1)/2k2, which is optimal by Quistorff bound.



Relational Databases Enomoto-Katona Codes Decomposition of Edge-Colored Complete Graphs Conclusion

C(n, k, 2k − 1) for sufficiently large n

Proposition

If there is a Gk-decomposition of Kn, then there is an (n, k, 2k − 1)-EK code
of size n(n− 1)/2k2, which is optimal by Quistorff bound.

Proof Sketch

Suppose we have a Gk-decomposition of Kn:

a1 a2 · · · ak

b1 b2 · · · bk ,

s1 s2 · · · sk

t1 t2 · · · tk , · · ·

Obtain our code by taking the set-pairs:

{{a1, a2, . . . , ak}, {b1, b2, . . . , bk}}, {{s1, s2, . . . , sk}, {t1, t2, . . . , tk}}, . . .

Check that this is indeed a (n, k, 2k − 1)-EK code.
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C(n, k, 2k − 1) for sufficiently large n

Proposition

If there is a Gk-decomposition of Kn, then there is an (n, k, 2k − 1)-EK code of size
n(n− 1)/2k2, which is optimal by Quistorff bound.

Theorem (Lamken, Wilson, 2000)

Let G be an edge-colored graph with r colors and m edges of each of r different

colors. There exists a constant n0 such that there is G-decomposition of K
(r)
n for all

n ≥ n0 satisfying both

n− 1 ≡ 0 mod α(G), n(n− 1) ≡ 0 mod 2m.

Main Theorem (i)

For any fixed k ≥ 2,

C(n, k, 2k − 1) =
n(n− 1)

2k2

for all sufficiently large n satisfying

n ≡ 1 mod k and n(n− 1) ≡ 0 mod 2k2.
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Conclusion

Motivated by relational databases, we looked at codes in the
Enomoto-Katona space.

Showed that C(n, k, 2k − 1) attains the Quistorff bound for infinitely
many n.

Direct application of decomposition of edge-colored graphs.

Other combinatorial design tools like t-wise balanced designs and Wilson’s
fundamental construction enable us to determine other values of
C(n, k, d).
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Thank you for your attention!
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