・ロト ・ 同ト ・ ヨト ・ ヨト

= √Q (~

Optimal Codes in the Enomoto-Katona Space

Han Mao Kiah Joint work with Yeow Meng Chee, Hui Zhang, Xiande Zhang

School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

8 Jul, 2013

Outline

2 Enomoto-Katona Codes

3 Decomposition of Edge-Colored Complete Graphs

Outline

Enomoto-Katona Codes

Observation of Edge-Colored Complete Graphs

Sac

Last name	Initials	Institute	Date	Paper
Chee	Y.M.	NTU	July 8	Optimal Codes in the Enomoto-Katona Space
Chee	Y.M.	NTU	July 8	Complexity of Dependencies in Bounded Domains, Armstrong Codes, and Generalizations
Chong	H.F.	I^2R	July 8	A new extremal entropy inequality with applications
Grassl	M.	NUS	July 8	Leveraging Automorphisms of Quantum Codes for Fault-Tolerant Quantum Computation
Grassl	М.	NUS	July 8	Stabilizer Formalism for Generalized Concatenated Quantum Codes
Hollman	H.D.L.	NTU	July 8	Characterizations and construction methods for linear functional-repair storage codes
Kiah	H.M.	NTU	July 8	Optimal Codes in the Enomoto-Katona Space
Liang	Y.C.	I^2R	July 8	A new extremal entropy inequality with applications
Nair	R.	NUS	July 8	A Realizable Receiver for discriminating arbitrary Coherent States near the Quantum Limit
Oggier	F.	NTU	July 8	Explicit Constructions of Quasi-Uniform Codes from Groups
Poh	W.	NTU	July 8	Characterizations and construction methods for linear functional-repair storage codes
Tan	S.H.	DSI	July 8	A Realizable Receiver for discriminating arbitrary Coherent States near the Quantum Limit
Thomas	Ε.	NTU	July 8	Explicit Constructions of Quasi-Uniform Codes from Groups
Zhang	Н.	NTU	July 8	Optimal Codes in the Enomoto-Katona Space
Zhang	Х.	NTU	July 8	Optimal Codes in the Enomoto-Katona Space
Zhang	Х.	NTU	July 8	Complexity of Dependencies in Bounded Domains, Armstrong Codes, and Generalizations
Zhang	Н.	NTU	July 8	Complexity of Dependencies in Bounded Domains, Armstrong Codes, and Generalizations
Chong	H.F.	I^2R	July 9	The capacity region of a class of two-user degraded compound broadcast channels
Ezerman	M.F.	NUS	July 9	Asymmetric Quantum Codes Detecting a Single Amplitude Error
Grassl	М.	NUS	July 9	Asymmetric Quantum Codes Detecting a Single Amplitude Error
Ho	C.K.	I^2R	July 9	The Multi-Sender Multicast Index Coding
Hollmann	H.D.L.	NTU	July 9	Locally Repairable Codes with Multiple Repair Alternatives
Leong	D.	I^2R	July 9	On Coding for Real-Time Streaming under Packet Erasures
Leong	D.	NTU	July 9	Distributed Storage Allocations and a Hypergraph Conjecture of Erdös
Liang	Y.C.	I^2R	July 9	The capacity region of a class of two-user degraded compound broadcast channels
Oggier	F.	NTU	July 9	Locally Repairable Codes with Multiple Repair Alternatives
Pamies-Juarez	L.	NTU	July 9	Locally Repairable Codes with Multiple Repair Alternatives
Pernas	J.	SUTD	July 9	Non-homogeneous Two-Rack Model for Distributed Storage Systems
Yuen	С.	SUTD	July 9	Non-homogeneous Two-Rack Model for Distributed Storage Systems
Che	Υ.	NTU	July 11	On Spatial Capacity in Ad-Hoc Networks with Threshold Based Scheduling
Chong	H.F.	I^2R	July 11	Secrecy capacity region of a class of two-user Gaussian MIMO BC with degraded message sets
Dau	Н.	SUTD	July 11	Balanced Sparsest Generator Matrices for MDS Codes
Dong	Ζ.	SUTD	July 11	Balanced Sparsest Generator Matrices for MDS Codes
Gong	Υ.	NTU	July 11	On Spatial Capacity in Ad-Hoc Networks with Threshold Based Scheduling

Attributes ->	Last name	Initials	Institute	Date	Paper
	Chee	Y.M.	NTU	July 8	Optimal Codes in the Enomoto-Katona Space
	Chee	Y.M.	NTU	July 8	Complexity of Dependencies in Bounded Domains, Armstrong Codes, and Generalizatio
	Chong	H.F.	I^2R	July 8	A new extremal entropy inequality with applications
	Grassl	М.	NUS	July 8	Leveraging Automorphisms of Quantum Codes for Fault-Tolerant Quantum Computation
	Grassl	М.	NUS	July 8	Stabilizer Formalism for Generalized Concatenated Quantum Codes
	Hollman	H.D.L.	NTU	July 8	Characterizations and construction methods for linear functional-repair storage codes
	Kiah	H.M.	NTU	July 8	Optimal Codes in the Enomoto-Katona Space
	Liang	Y.C.	I^2R	Julv 8	A new extremal entropy inequality with applications
	Nair	R.	NUS	July 8	A Realizable Receiver for discriminating arbitrary Coherent States near the Quantum Li
	Oggier	F.	NTU	July 8	Explicit Constructions of Quasi-Uniform Codes from Groups
	Poh	W.	NTU	July 8	Characterizations and construction methods for linear functional-repair storage codes
	Tan	S.H.	DSI	July 8	A Realizable Receiver for discriminating arbitrary Coherent States near the Quantum Li
	Thomas	Ε.	NTU	July 8	Explicit Constructions of Quasi-Uniform Codes from Groups
	Zhang	Н.	NTU	July 8	Optimal Codes in the Enomoto-Katona Space
	Zhang	Х.	NTU	July 8	Optimal Codes in the Enomoto-Katona Space
	Zhang	Х.	NTU	July 8	Complexity of Dependencies in Bounded Domains, Armstrong Codes, and Generalizatio
	Zhang	Н.	NTU	July 8	Complexity of Dependencies in Bounded Domains, Armstrong Codes, and Generalizatio
	Chong	H.F.	I^2R	July 9	The capacity region of a class of two-user degraded compound broadcast channels
	Ezerman	M.F.	NUS	July 9	Asymmetric Quantum Codes Detecting a Single Amplitude Error
	Grassl	M.	NUS	July 9	Asymmetric Quantum Codes Detecting a Single Amplitude Error
	Ho	C.K.	I^2R	July 9	The Multi-Sender Multicast Index Coding
	Hollmann	H.D.L.	NTU	July 9	Locally Repairable Codes with Multiple Repair Alternatives
	Leong	D	$1^2 R$	July 9	On Coding for Real-Time Streaming under Packet Frasures
	Leong	D.	NTU	July 9	Distributed Storage Allocations and a Hypergraph Conjecture of Erdös
	Linng	v.c	12 p	July 0	The conscient region of a class of two user degraded compound broadcast channels
	Orgion	г.с. Е	NTU	July 9	Locally Repairable Codes with Multiple Repair Alternatives
	Damior Juaran	1.	NTU	July 9	Locally Repairable Codes with Multiple Repair Alternatives
	Pernos	1	SUTD	July 9	Non-homogeneous Two-Back Model for Distributed Storage Systems
	Vuen	c.	SUTD	July 0	Non-homogeneous Two-Rack Model for Distributed Storage Systems
	Che	Y	NTU	July 11	On Spatial Capacity in Ad-Hoc Networks with Threshold Based Scheduling
	Chong	ц с	120	July 11	Secrecy capacity region of a class of two user Caussian MIMO RC with degraded mess-
	Dau	п.е.	SUTD	July 11	Palanced Sparcet Concrater Matrices for MDS Codes
	Dong	7	SUTD	July 11	Palanced Sparsest Concrator Matrices for MDS Codes

	Last name	Initials	Institute	Date	Paper
	Chee	Y.M.	NTU	July 8	Optimal Codes in the Enomoto-Katona Space
	Chee	Y.M.	NTU	July 8	Complexity of Dependencies in Bounded Domains, Armstrong Codes, and Generalizatio
	Chong	H.F.	I ² R	July 8	A new extremal entropy inequality with applications
	Grassl	М.	NUS	July 8	Leveraging Automorphisms of Quantum Codes for Fault-Tolerant Quantum Computation
	Grassl	М.	NUS	July 8	Stabilizer Formalism for Generalized Concatenated Quantum Codes
	Hollman	H.D.L.	NTU	July 8	Characterizations and construction methods for linear functional-repair storage codes
Data Item→	Kiah	H.M.	NTU	July 8	Optimal Codes in the Enomoto-Katona Space
	Liang	Y.C.	I ² R	July 8	A new extremal entropy inequality with applications
	Nair	R.	NUS	July 8	A Realizable Receiver for discriminating arbitrary Coherent States near the Quantum Lin
	Oggier	F.	NTU	July 8	Explicit Constructions of Quasi-Uniform Codes from Groups
	Poh	W.	NTU	July 8	Characterizations and construction methods for linear functional-repair storage codes
	Tan	S.H.	DSI	July 8	A Realizable Receiver for discriminating arbitrary Coherent States near the Quantum Li
	Thomas	E.	NTU	July 8	Explicit Constructions of Quasi-Uniform Codes from Groups
	Zhang	Н.	NTU	July 8	Optimal Codes in the Enomoto-Katona Space
	Zhang	Х.	NTU	July 8	Optimal Codes in the Enomoto-Katona Space
	Zhang	Х.	NTU	July 8	Complexity of Dependencies in Bounded Domains, Armstrong Codes, and Generalization
	Zhang	Н.	NTU	July 8	Complexity of Dependencies in Bounded Domains, Armstrong Codes, and Generalization
	Chong	H.F.	I^2R	July 9	The capacity region of a class of two-user degraded compound broadcast channels
	Ezerman	M.F.	NUS	July 9	Asymmetric Quantum Codes Detecting a Single Amplitude Error
	Grassl	Μ.	NUS	July 9	Asymmetric Quantum Codes Detecting a Single Amplitude Error
	Ho	C.K.	I^2R	July 9	The Multi-Sender Multicast Index Coding
	Hollmann	H.D.L.	NTU	July 9	Locally Repairable Codes with Multiple Repair Alternatives
	Leong	D.	I^2R	July 9	On Coding for Real-Time Streaming under Packet Erasures
	Leong	D.	NTU	July 9	Distributed Storage Allocations and a Hypergraph Conjecture of Erdös
	Liang	Y.C.	I^2R	July 9	The capacity region of a class of two-user degraded compound broadcast channels
	Oggier	F.	NTU	July 9	Locally Repairable Codes with Multiple Repair Alternatives
	Pamies-Juarez	L.	NTU	July 9	Locally Repairable Codes with Multiple Repair Alternatives
	Pernas	J.	SUTD	July 9	Non-homogeneous Two-Rack Model for Distributed Storage Systems
	Yuen	C.	SUTD	July 9	Non-homogeneous Two-Rack Model for Distributed Storage Systems
	Che	Υ.	NTU	July 11	On Spatial Capacity in Ad-Hoc Networks with Threshold Based Scheduling
	Chong	H.F.	I^2R	July 11	Secrecy capacity region of a class of two-user Gaussian MIMO BC with degraded messa
	Dau	Н.	SUTD	July 11	Balanced Sparsest Generator Matrices for MDS Godes
	Dong	7	SUTD	July 11	Palanced Sparrett Constator Matrices for MDS Codes

Sac

Last name	Initials	Institute	Date	Paper
Chee	Y.M.	NTU	July 8	Optimal Codes in the Enomoto-Katona Space
Chee	Y.M.	NTU	July 8	Complexity of Dependencies in Bounded Domains, Armstrong Codes, and Generalizations
Chong	H.F.	I^2R	July 8	A new extremal entropy inequality with applications
Grassl	M.	NUS	July 8	Leveraging Automorphisms of Quantum Codes for Fault-Tolerant Quantum Computation
Grassl	М.	NUS	July 8	Stabilizer Formalism for Generalized Concatenated Quantum Codes
Hollman	H.D.L.	NTU	July 8	Characterizations and construction methods for linear functional-repair storage codes
Kiah	H.M.	NTU	July 8	Optimal Codes in the Enomoto-Katona Space
Liang	Y.C.	I^2R	July 8	A new extremal entropy inequality with applications
Nair	R.	NUS	July 8	A Realizable Receiver for discriminating arbitrary Coherent States near the Quantum Limit
Oggier	F.	NTU	July 8	Explicit Constructions of Quasi-Uniform Codes from Groups
Poh	W.	NTU	July 8	Characterizations and construction methods for linear functional-repair storage codes
Tan	S.H.	DSI	July 8	A Realizable Receiver for discriminating arbitrary Coherent States near the Quantum Limit
Thomas	Ε.	NTU	July 8	Explicit Constructions of Quasi-Uniform Codes from Groups
Zhang	Н.	NTU	July 8	Optimal Codes in the Enomoto-Katona Space
Zhang	Х.	NTU	July 8	Optimal Codes in the Enomoto-Katona Space
Zhang	Х.	NTU	July 8	Complexity of Dependencies in Bounded Domains, Armstrong Codes, and Generalizations
Zhang	Н.	NTU	July 8	Complexity of Dependencies in Bounded Domains, Armstrong Codes, and Generalizations
Chong	H.F.	I^2R	July 9	The capacity region of a class of two-user degraded compound broadcast channels
Ezerman	M.F.	NUS	July 9	Asymmetric Quantum Codes Detecting a Single Amplitude Error
Grassl	М.	NUS	July 9	Asymmetric Quantum Codes Detecting a Single Amplitude Error
Ho	C.K.	I^2R	July 9	The Multi-Sender Multicast Index Coding
Hollmann	H.D.L.	NTU	July 9	Locally Repairable Codes with Multiple Repair Alternatives
Leong	D.	I^2R	July 9	On Coding for Real-Time Streaming under Packet Erasures
Leong	D.	NTU	July 9	Distributed Storage Allocations and a Hypergraph Conjecture of Erdös
Liang	Y.C.	I^2R	July 9	The capacity region of a class of two-user degraded compound broadcast channels
Oggier	F.	NTU	July 9	Locally Repairable Codes with Multiple Repair Alternatives
Pamies-Juarez	L.	NTU	July 9	Locally Repairable Codes with Multiple Repair Alternatives
Pernas	J.	SUTD	July 9	Non-homogeneous Two-Rack Model for Distributed Storage Systems
Yuen	С.	SUTD	July 9	Non-homogeneous Two-Rack Model for Distributed Storage Systems
Che	Υ.	NTU	July 11	On Spatial Capacity in Ad-Hoc Networks with Threshold Based Scheduling
Chong	H.F.	I^2R	July 11	Secrecy capacity region of a class of two-user Gaussian MIMO BC with degraded message sets
Dau	Н.	SUTD	July 11	Balanced Sparsest Generator Matrices for MDS Codes
Dong	Ζ.	SUTD	July 11	Balanced Sparsest Generator Matrices for MDS Codes
Gong	Υ.	NTU	July 11	On Spatial Capacity in Ad-Hoc Networks with Threshold Based Scheduling

(ロ)、(型)、(E)、(E)、(E)、(D)へ(C)

Functional Dependencies

Clearly, certain attributes can be determined from others. For example,

- {Last name, Initials} determines Institute.
- {Paper} determines Date.

Functional Dependencies

Clearly, certain attributes can be determined from others. For example,

- {Last name, Initials} determines Institute.
- {Paper} determines Date.

Definition

Let $X \subseteq A$ and $y \in A$. We say that y functionally depends on X, or $X \to y$, if no two rows of R(A) agree in X but differs in y.

- {Last name, Initials} \rightarrow Institute.
- $\{Paper\} \rightarrow Date.$

(p,q)-Dependencies

So, $\{Paper\} \not\longrightarrow Last Names$.

(p,q)-Dependencies

So, $\{Paper\} \not\longrightarrow Last Names$.

Definition

Let $X \subseteq A$ and $y \in A$. For positive integers $p \leq q$, we say that y(p,q)-depends on X, or $X \xrightarrow{(p,q)} y$, if there do not exist q + 1 data items $d_1, d_2, \ldots, d_{q+1}$ of R(A) such that (i) $|\{d_i|\{x\} : 1 \leq i \leq q+1\}| \leq p$ for each $x \in X$, and, (ii) $|\{d_i|\{y\} : 1 \leq i \leq q+1\}| = q + 1$.

In particular, in our example, $\{Paper\} \xrightarrow{(1,5)} Last Names$.

(p,q)-Dependencies

So, $\{Paper\} \not\longrightarrow Last Names$.

Definition

Let $X \subseteq A$ and $y \in A$. For positive integers $p \leq q$, we say that y(p,q)-depends on X, or $X \xrightarrow{(p,q)} y$, if there do not exist q + 1 data items $d_1, d_2, \ldots, d_{q+1}$ of R(A) such that (i) $|\{d_i|\{x\} : 1 \leq i \leq q+1\}| \leq p$ for each $x \in X$, and, (ii) $|\{d_i|\{y\} : 1 \leq i \leq q+1\}| = q+1$.

In particular, in our example, $\{Paper\} \xrightarrow{(1,5)} Last Names$.

- \bullet Functional dependency is equivalent to a $(1,1)\mbox{-dependency}$
- When functional dependencies are not known, (p, q)-dependencies identified in a relational database can still be exploited for improving storage efficiency.

Implication Structure

Definition

Let $p \leq q$ be positive integers. For a table R(A), define the operation $J_{R(A)}^{(p,q)}: 2^A \to 2^A$ so that for $X \subseteq A$, we have

$$J_{R(A)}^{(p,q)}(X) = \left\{ y \in A : X \xrightarrow{(p,q)} y \right\}.$$

We call $J_{R(A)}^{(p,q)}$ the (p,q)-implication structure of R(A).

So,

• $J_{R(A)}^{(1,1)}({\text{Last Name, Initials}}) = {\text{Last Name, Initials, Institute}}.$

•
$$J_{R(A)}^{(1,1)}({Paper}) = {Date, Paper}.$$

• $J_{R(A)}^{(1,5)}({Paper}) = {Last Name, Initials, Institute, Date, Paper} = A.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めへぐ

(p,q)-Representable Functions

Definition

A function $J: 2^A \to 2^A$ is said to be (p,q)-representable if there exists a table R(A) such that $J_{R(A)}^{(p,q)} = J$.

Proposition (Armstrong, 1974)

The function $J: 2^A \to 2^A$ is (1,1)-representable if and only if J is a closure operator on A.

Characterization for general p and q is given by Demetrovics *et al.*,1992.

(p,q)-Representable Functions

Objective

Given a function J, to determine the table R(A) with the least number of rows such that $J_{R(A)}^{(p,q)}=J.$

In particular, for fixed k, consider the function

$$J_n^k(X) = \begin{cases} X, & \text{if } |X| < k \\ A, & \text{otherwise.} \end{cases}$$

Outline

2 Enomoto-Katona Codes

Observation of Edge-Colored Complete Graphs

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ≣ のQ@

э

Sac

Enomoto-Katona Space

- Let $2k \leq n$.
- Let X be a finite set of n elements.
- $\binom{X}{k}$ denote the set of all k-subsets of X.

Definition

Enomoto-Katona Space (2001)

• The set of all unordered pairs of disjoint k-subsets of X is given by

$$\mathcal{E}(X,k) = \left\{ \{A,B\} \subseteq \begin{pmatrix} X\\ k \end{pmatrix} : A \cap B = \varnothing \right\}$$

• "Codewords" of $\mathcal{E}(X, k)$ are called *set-pairs*.

Enomoto-Katona Space

- Let $2k \leq n$.
- Let X be a finite set of n elements.
- $\binom{X}{k}$ denote the set of all k-subsets of X.

Definition

Enomoto-Katona Space (2001)

• The set of all unordered pairs of disjoint k-subsets of X is given by

$$\mathcal{E}(X,k) = \left\{ \{A,B\} \subseteq \begin{pmatrix} X \\ k \end{pmatrix} : A \cap B = \varnothing \right\}$$

- "Codewords" of $\mathcal{E}(X, k)$ are called *set-pairs*.
- ▶ The function $d_{\mathcal{E}} : \mathcal{E}(X,k) \times \mathcal{E}(X,k) \rightarrow \{0,1,\ldots,2k\}$ is given by

 $\mathsf{d}_{\mathcal{E}}(\{A, B\}, \{S, T\}) = \min\{|A \setminus S| + |B \setminus T|, |A \setminus T| + |B \setminus S|\}$

▶ Then $(\mathcal{E}(X, k), \mathsf{d}_{\mathcal{E}})$ is a metric space called the *Enomoto-Katona space*.

Enomoto-Katona Space - An example

Let $X = \mathbb{Z}/4\mathbb{Z}$ and k = 2. $\mathcal{E}(X, 2)$ consists of the following set-pairs:

 $\{\{0,1\},\{2,3\}\}, \quad \{\{0,2\},\{1,3\}\}, \quad \{\{0,3\},\{1,2\}\}.$

Enomoto-Katona Space - An example

Let $X = \mathbb{Z}/4\mathbb{Z}$ and k = 2. $\mathcal{E}(X, 2)$ consists of the following set-pairs:

```
\{\{0,1\},\{2,3\}\}, \quad \{\{0,2\},\{1,3\}\}, \quad \{\{0,3\},\{1,2\}\}.
```

For example,

 $d_{\mathcal{E}}(\{\{0,1\},\{2,3\}\},\{\{0,2\},\{1,3\}\})$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

Enomoto-Katona Space - An example

Let $X = \mathbb{Z}/4\mathbb{Z}$ and k = 2. $\mathcal{E}(X, 2)$ consists of the following set-pairs:

```
\{\{0,1\},\{2,3\}\}, \quad \{\{0,2\},\{1,3\}\}, \quad \{\{0,3\},\{1,2\}\}.
```

For example,

 $\begin{aligned} &d_{\mathcal{E}}(\{\{0,1\},\{2,3\}\},\{\{0,2\},\{1,3\}\}) \\ &= \min\{|\{0,1\} \setminus \{0,2\}| + |\{2,3\} \setminus \{1,3\}|, |\{0,1\} \setminus \{1,3\}| + |\{2,3\} \setminus \{0,2\}|\} \end{aligned}$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

Enomoto-Katona Space - An example

Let $X = \mathbb{Z}/4\mathbb{Z}$ and k = 2. $\mathcal{E}(X, 2)$ consists of the following set-pairs:

 $\{\{0,1\},\{2,3\}\}, \quad \{\{0,2\},\{1,3\}\}, \quad \{\{0,3\},\{1,2\}\}.$

For example,

$$\begin{split} &d_{\mathcal{E}}(\{\{0,1\},\{2,3\}\},\{\{0,2\},\{1,3\}\})\\ &=\min\{|\{0,1\}\setminus\{0,2\}|+|\{2,3\}\setminus\{1,3\}|,|\{0,1\}\setminus\{1,3\}|+|\{2,3\}\setminus\{0,2\}|\}\\ &=\min\{1+1,1+1\}=2. \end{split}$$

Enomoto-Katona Code

Enomoto-Katona Code

An *Enomoto-Katona code* (or *EK code*, in short), is a set $C \subseteq \mathcal{E}(X, k)$. More specifically, C is an EK code of *length* n, *weight* k, and *distance* d, or (n, k, d)-EK code, if

 $d_{\mathcal{E}}(\mathbf{u}, \mathbf{v}) \geq d$ for all distinct $\mathbf{u}, \mathbf{v} \in \mathcal{C}$.

Let $X = \mathbb{Z}/4\mathbb{Z}$ and k = 2. Let C consists of the following set-pairs:

 $\{\{0,1\},\{2,3\}\}, \quad \{\{0,2\},\{1,3\}\}, \quad \{\{0,3\},\{1,2\}\}.$

Then C is a (4, 2, 2)-EK code.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 … のへぐ

Constructing a table with an EK code

Consider the following
$$(9, 2, 3)$$
-EK code C , where $X = \mathbb{Z}/9\mathbb{Z}$.
 $c_1 = \{\{0, 1\}, \{2, 4\}\}, \quad c_2 = \{\{1, 2\}, \{3, 5\}\}, \quad c_3 = \{\{2, 3\}, \{4, 6\}\},$
 $c_4 = \{\{3, 4\}, \{5, 7\}\}, \quad c_5 = \{\{4, 5\}, \{6, 8\}\}, \quad c_6 = \{\{5, 6\}, \{7, 0\}\},$
 $c_7 = \{\{6, 7\}, \{8, 1\}\}, \quad c_8 = \{\{7, 8\}, \{0, 2\}\}, \quad c_9 = \{\{8, 0\}, \{1, 3\}\}.$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 … のへぐ

Constructing a table with an EK code

Consider the following
$$(9, 2, 3)$$
-EK code C , where $X = \mathbb{Z}/9\mathbb{Z}$.
 $c_1 = \{\{0, 1\}, \{2, 4\}\}, \quad c_2 = \{\{1, 2\}, \{3, 5\}\}, \quad c_3 = \{\{2, 3\}, \{4, 6\}\}$
 $c_4 = \{\{3, 4\}, \{5, 7\}\}, \quad c_5 = \{\{4, 5\}, \{6, 8\}\}, \quad c_6 = \{\{5, 6\}, \{7, 0\}\}$
 $c_7 = \{\{6, 7\}, \{8, 1\}\}, \quad c_8 = \{\{7, 8\}, \{0, 2\}\}, \quad c_9 = \{\{8, 0\}, \{1, 3\}\}$

Each set-pair $\{A, B\}$ constructs a column in the following manner:

	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8	c_9
0									
1									
2									
3									
4									
5									
6									
7									
8									

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Constructing a table with an EK code

Consider the following
$$(9, 2, 3)$$
-EK code C , where $X = \mathbb{Z}/9\mathbb{Z}$.
 $c_1 = \{\{0, 1\}, \{2, 4\}\}, \quad c_2 = \{\{1, 2\}, \{3, 5\}\}, \quad c_3 = \{\{2, 3\}, \{4, 6\}\},$
 $c_4 = \{\{3, 4\}, \{5, 7\}\}, \quad c_5 = \{\{4, 5\}, \{6, 8\}\}, \quad c_6 = \{\{5, 6\}, \{7, 0\}\},$
 $c_7 = \{\{6, 7\}, \{8, 1\}\}, \quad c_8 = \{\{7, 8\}, \{0, 2\}\}, \quad c_9 = \{\{8, 0\}, \{1, 3\}\}.$

Each set-pair $\{A, B\}$ constructs a column in the following manner:

• place 1 at rows indexed by elements of A,

	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8	c_9
0	1								1
1	1	1							
2		1	1						
3			1	1					
4				1	1				
5					1	1			
6						1	1		
7							1	1	
8								1	1

Constructing a table with an EK code

Consider the following
$$(9, 2, 3)$$
-EK code C , where $X = \mathbb{Z}/9\mathbb{Z}$.
 $c_1 = \{\{0, 1\}, \{2, 4\}\}, \quad c_2 = \{\{1, 2\}, \{3, 5\}\}, \quad c_3 = \{\{2, 3\}, \{4, 6\}\},$
 $c_4 = \{\{3, 4\}, \{5, 7\}\}, \quad c_5 = \{\{4, 5\}, \{6, 8\}\}, \quad c_6 = \{\{5, 6\}, \{7, 0\}\},$
 $c_7 = \{\{6, 7\}, \{8, 1\}\}, \quad c_8 = \{\{7, 8\}, \{0, 2\}\}, \quad c_9 = \{\{8, 0\}, \{1, 3\}\}.$

Each set-pair $\{A, B\}$ constructs a column in the following manner:

- place 1 at rows indexed by elements of A,
- place 2 at rows by elements of *B*,

	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8	c_9
0	1					2		2	1
1	1	1					2		2
2	2	1	1					2	
3		2	1	1					2
4	2		2	1	1				
5		2		2	1	1			
6			2		2	1	1		
7				2		2	1	1	
8					2		2	1	1

Constructing a table with an EK code

Consider the following
$$(9, 2, 3)$$
-EK code C , where $X = \mathbb{Z}/9\mathbb{Z}$.
 $c_1 = \{\{0, 1\}, \{2, 4\}\}, \quad c_2 = \{\{1, 2\}, \{3, 5\}\}, \quad c_3 = \{\{2, 3\}, \{4, 6\}\},$
 $c_4 = \{\{3, 4\}, \{5, 7\}\}, \quad c_5 = \{\{4, 5\}, \{6, 8\}\}, \quad c_6 = \{\{5, 6\}, \{7, 0\}\},$
 $c_7 = \{\{6, 7\}, \{8, 1\}\}, \quad c_8 = \{\{7, 8\}, \{0, 2\}\}, \quad c_9 = \{\{8, 0\}, \{1, 3\}\}.$

Each set-pair $\{A, B\}$ constructs a column in the following manner:

- place 1 at rows indexed by elements of A,
- place 2 at rows by elements of B,
- place distinct elements from $\mathbb{Z}_{>3}$ for the remaining rows.

	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8	c_9
0	1	3	3	3	3	2	3	2	1
1	1	1	4	4	4	3	2	3	2
2	2	1	1	5	5	4	4	2	3
3	3	2	1	1	6	5	5	4	2
4	2	4	2	1	1	6	6	5	4
5	4	2	5	2	1	1	7	6	5
6	5	5	2	6	2	1	1	7	6
7	6	6	6	2	7	2	1	1	7
8	7	7	7	7	2	7	2	1	1

Constructing a table with an EK code

Consider the following
$$(9, 2, 3)$$
-EK code C , where $X = \mathbb{Z}/9\mathbb{Z}$.
 $c_1 = \{\{0, 1\}, \{2, 4\}\}, \quad c_2 = \{\{1, 2\}, \{3, 5\}\}, \quad c_3 = \{\{2, 3\}, \{4, 6\}\},$
 $c_4 = \{\{3, 4\}, \{5, 7\}\}, \quad c_5 = \{\{4, 5\}, \{6, 8\}\}, \quad c_6 = \{\{5, 6\}, \{7, 0\}\},$
 $c_7 = \{\{6, 7\}, \{8, 1\}\}, \quad c_8 = \{\{7, 8\}, \{0, 2\}\}, \quad c_9 = \{\{8, 0\}, \{1, 3\}\}.$

Each set-pair $\{A, B\}$ constructs a column in the following manner:

- place 1 at rows indexed by elements of A,
- place 2 at rows by elements of B,
- place distinct elements from $\mathbb{Z}_{>3}$ for the remaining rows.

	c1	c_2	c_3	c_4	c_5	c_6	c_7	c_8	c_9
0	1	3	3	3	3	2	3	2	1
1	1	1	4	4	4	3	2	3	2
2	2	1	1	5	5	4	4	2	3
3	3	2	1	1	6	5	5	4	2
4	2	4	2	1	1	6	6	5	4
5	4	2	5	2	1	1	7	6	5
6	5	5	2	6	2	1	1	7	6
7	6	6	6	2	7	2	1	1	7
8	7	7	7	7	2	7	2	1	1

Check that the implication structure $J^{(1,1)}$ is J_9^2 .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Central Problem

The maximum size of an (n, k, d)-EK code is denoted by C(n, k, d). An (n, k, d)-EK code of size C(n, k, d) is said to be *optimal*.

The central problem is to determine C(n, k, d).

Problem Status

Theorem (Brightwell and Katona, 2001)

For $1 \leq d \leq 2k \leq n$,

$$C(n,k,d) \le \frac{n(n-1)\cdots(n-2k+d)}{2k(k-1)\cdots\lceil (d+1)/2\rceil \cdot k(k-1)\lfloor (d+1)/2\rfloor}$$

In fact,

$$C(n,k,d) = \Theta(n^{2k-d+1})$$
 for fixed k and d.

Theorem (Bollobás, Katona, Leader)

$$\lim_{n \to \infty} \frac{C(n,k,d)}{n^{2k-d+1}} = \frac{1}{2k(k-1)\cdots \lceil (d+1)/2 \rceil \cdot k(k-1) \lfloor (d+1)/2 \rfloor}.$$

Problem Status

Best upper bound ${\cal C}(n,k,d)$ currently known:

Theorem (Quistorff, 2009)

Suppose $k - d + 1 \le e \le \min\{k, 2k - d\}$. Then

$$C(n,k,d) \le \left\lfloor \frac{\binom{n}{e}}{2\binom{k}{e}} \left\lfloor \frac{\binom{n-e}{2k-d-e+1}}{\binom{k}{2k-d-e+1}} \right\rfloor \right\rfloor$$

Problem Status

Best upper bound C(n, k, d) currently known:

Theorem (Quistorff, 2009)

Suppose
$$k - d + 1 \le e \le \min\{k, 2k - d\}$$
. Then

$$C(n,k,d) \le \left\lfloor \frac{\binom{n}{e}}{2\binom{k}{e}} \left\lfloor \frac{\binom{n-e}{2k-d-e+1}}{\binom{k}{2k-d-e+1}} \right\rfloor \right\rfloor$$

Only the following exact values of ${\cal C}(n,k,d)$ are known.

Theorem (Bollobás, Katona, Leader)

$$C(n, 2, 3) = \frac{n(n-1)}{8}, \quad \text{if } n \equiv 1 \text{ or } 9 \mod 72,$$
$$C(n, 3, 5) = \frac{n(n-1)}{18}, \quad \text{if } n \equiv 1 \text{ or } 19 \mod 342.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

▲ロ ▶ ▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○

Our Contributions

Main Theorem

For any fixed $k \ge 2$, we have $C(n, k, 2k - 1) = \left\lfloor \frac{n}{2k} \left\lfloor \frac{n-1}{k} \right\rfloor \right\rfloor$ for all sufficiently large n satisfying (i) $n \equiv 1 \mod k$ and $n(n-1) \equiv 0 \mod 2k^2$, or (ii) $n \equiv 0 \mod k$.

Exact values

We determine

- (i) the value of C(n, 2, d) for all n and $1 \le d \le 4$.
- (ii) the value of C(n, 3, 5) for $n \equiv 0 \mod 3$ and $n \equiv 1 \mod 9$ with finite exceptions.

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Our Contributions

Main Theorem

For any fixed $k \ge 2$, we have

$$C(n,k,2k-1) = \left\lfloor \frac{n}{2k} \left\lfloor \frac{n-1}{k} \right\rfloor \right\rfloor$$

for all sufficiently large \boldsymbol{n} satisfying

(i)
$$n \equiv 1 \mod k$$
 and $n(n-1) \equiv 0 \mod 2k^2$, or

(ii) $n \equiv 0 \mod k$.

▲ロ ▶ ▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○

Our Contributions

Main Theorem

For any fixed $k \ge 2$, we have

$$C(n,k,2k-1) = \left\lfloor \frac{n}{2k} \left\lfloor \frac{n-1}{k} \right\rfloor \right\rfloor$$

for all sufficiently large \boldsymbol{n} satisfying

(i)
$$n \equiv 1 \mod k$$
 and $n(n-1) \equiv 0 \mod 2k^2$, or

(ii) $n \equiv 0 \mod k$.

Our main tool is combinatorial design theory.

In particular, decomposition of edge-colored complete graphs.

Outline

2 Enomoto-Katona Codes

3 Decomposition of Edge-Colored Complete Graphs

(日) (四) (E) (E) (E) (E)

990

Complete Graph K_n

A complete graph K_n on n vertices has an edge between any two vertices.

- B

590

イロト イポト イヨト イヨト

Edge-Colored Complete Graph $K_n^{(r)}$

A complete graph $K_n^{\left(r\right)}$ on n vertices has an edge of each of r colors between any two vertices.

Sac

Decomposition of Edge-Colored Graphs

nac

Decomposition of Edge-Colored Graphs

Decomposition of Edge-Colored Graphs

Existence of G-Decompositions of $K_n^{(r)}$

Theorem (Lamken, Wilson, 2000)

Let G be an edge-colored graph with r colors and m edges of each of r different colors. There exists a constant n_0 such that there is G-decomposition of $K_n^{(r)}$ for all $n \ge n_0$ satisfying both

 $n-1 \equiv 0 \mod \alpha(G),$ $n(n-1) \equiv 0 \mod 2m,$

where $\alpha(G)$ is a parameter dependent on G.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

C(n,k,2k-1) for sufficiently large n

▲ロ ▶ ▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○

C(n,k,2k-1) for sufficiently large n

Proposition

If there is a G_k -decomposition of K_n , then there is an (n, k, 2k - 1)-EK code of size $n(n-1)/2k^2$, which is optimal by Quistorff bound.

$\overline{C(n,k,2k-1)}$ for sufficiently large n

Proposition

If there is a G_k -decomposition of K_n , then there is an (n, k, 2k - 1)-EK code of size $n(n-1)/2k^2$, which is optimal by Quistorff bound.

Proof Sketch

$\overline{C(n,k,2k-1)}$ for sufficiently large n

Proposition

If there is a G_k -decomposition of K_n , then there is an (n, k, 2k - 1)-EK code of size $n(n-1)/2k^2$, which is optimal by Quistorff bound.

Proof Sketch

Suppose we have a G_k -decomposition of K_n :

Obtain our code by taking the set-pairs:

 $\{\{a_1, a_2, \dots, a_k\}, \{b_1, b_2, \dots, b_k\}\}, \{\{s_1, s_2, \dots, s_k\}, \{t_1, t_2, \dots, t_k\}\}, \dots$

▲ロ ▶ ▲暦 ▶ ▲臣 ▶ ▲臣 ▶ ▲ 国 ▶ ④ ♀ ⊘

C(n,k,2k-1) for sufficiently large n

Proposition

If there is a G_k -decomposition of K_n , then there is an (n, k, 2k - 1)-EK code of size $n(n-1)/2k^2$, which is optimal by Quistorff bound.

Proof Sketch

Suppose we have a G_k -decomposition of K_n :

Obtain our code by taking the set-pairs:

 $\{\{a_1, a_2, \dots, a_k\}, \{b_1, b_2, \dots, b_k\}\}, \quad \{\{s_1, s_2, \dots, s_k\}, \{t_1, t_2, \dots, t_k\}\}, \dots$ Check that this is indeed a (n, k, 2k - 1)-EK code.

▲ロト ▲舂 ト ▲ 臣 ト ▲ 臣 ト ─ 臣 ─ の Q ()~

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

C(n,k,2k-1) for sufficiently large n

Proposition

If there is a G_k -decomposition of K_n , then there is an (n, k, 2k - 1)-EK code of size $n(n-1)/2k^2$, which is optimal by Quistorff bound.

Theorem (Lamken, Wilson, 2000)

Let G be an edge-colored graph with r colors and m edges of each of r different colors. There exists a constant n_0 such that there is G-decomposition of $K_n^{(r)}$ for all $n \ge n_0$ satisfying both

 $n-1 \equiv 0 \mod \alpha(G), \quad n(n-1) \equiv 0 \mod 2m.$

C(n,k,2k-1) for sufficiently large n

Proposition

If there is a G_k -decomposition of K_n , then there is an (n, k, 2k - 1)-EK code of size $n(n-1)/2k^2$, which is optimal by Quistorff bound.

Theorem (Lamken, Wilson, 2000)

Let G be an edge-colored graph with r colors and m edges of each of r different colors. There exists a constant n_0 such that there is G-decomposition of $K_n^{(r)}$ for all $n \ge n_0$ satisfying both

 $n-1 \equiv 0 \mod \alpha(G), \quad n(n-1) \equiv 0 \mod 2m.$

Main Theorem (i)

For any fixed $k \geq 2$,

$$C(n,k,2k-1) = \frac{n(n-1)}{2k^2}$$

for all sufficiently large n satisfying

 $n \equiv 1 \mod k$ and $n(n-1) \equiv 0 \mod 2k^2$.

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Outline

Relational Databases

Enomoto-Katona Codes

Observation of Edge-Colored Complete Graphs

▲□>
▲□>
▲□>
■>
■>
●

Conclusion

- Motivated by relational databases, we looked at codes in the Enomoto-Katona space.
- Showed that C(n,k,2k-1) attains the Quistorff bound for infinitely many n.
- Direct application of decomposition of edge-colored graphs.
- Other combinatorial design tools like *t*-wise balanced designs and Wilson's fundamental construction enable us to determine other values of C(n, k, d).

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 … のへぐ

Thank you for your attention!