
Geometric Orthogonal Codes Better than Optical
Orthogonal Codes

Yeow Meng Chee, Han Mao Kiah, San Ling, and Hengjia Wei
School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

Emails: {ymchee, hmkiah, lingsan, hjwei}@ntu.edu.sg

Abstract—The class of geometric orthogonal codes (GOCs) were
introduced by Doty and Winslow (2016) for more robust mac-
robonding in DNA origami. They observed that GOCs are closely
related to optical orthogonal codes (OOCs). It is possible for
GOCs to have size greater than OOCs of corresponding parameters
due to slightly more relaxed constraints on correlations. However,
the existence of GOCs exceeding the size of optimal OOCs of
corresponding parameters have never been demonstrated. This
paper gives the first infinite family of GOCs of size greater than
optimal OOCs.

I. INTRODUCTION

Nucleic acids play an important role in the self assembly of
nanostructures owing the specificity of the Watson-Crick base
pairing. Rothemund [1] showed how a long strand of (scaffold)
DNA can be folded into a specific shape (DNA origami) with
the help of a carefully designed set of short ”staple” DNAs that
bind to intended sites on the scaffold DNA, forcing the scaffold
DNA to fold in desired ways. Beyond base pairing, base stacking
between base pairs is another dominant cause of DNA binding.
Woo and Rothemund [2] showed that by careful placement of
blunt ends in the DNA origami of Rothemund, we can force a set
of DNA origamis to bind through base stacking to form intended
arrangements. This geometric placement of blunt ends within a
DNA origami forms a macrobond. Extending the work of Woo
and Rothemund [2], Doty and Winslow [3] introduce the class
of geometric orthogonal codes (GOCs) for the design of more
robust macrobonds that weed out undesirable bonding arising
from flexibility of DNA and misalignment. GOCs of large size
are desirable because they give rise to large number of binding
interactions, thereby increasing the number of structures that can
potentially be formed.

Doty and Winslow [3] observed that GOCs are closely related
to optical orthogonal codes (OOCs) introduced by Chung et
al. [4]. Although it is possible for GOCs to have size larger
than OOCs of corresponding parameters, this has never been
demonstrated. The main contribution of this paper is the first
construction of GOCs that is better than optimal OOCs. We also
improve an upper bound of Doty and WInslow [3] on the size
of GOCs.

II. PRELIMINARIES

For an integer n ≥ 2, let In denote the set of integers
{0, 1, . . . , n− 1}. Given M ⊆ I2n and v ∈ Z2, the translation of
M by v is defined to be M+v = {m+v : m ∈M}. The auto-
correlation of M is defined as maxv∈Z2\{(0,0)} |M ∩ (M +v)|.

For two subsets M,M ′ ⊆ I2n, the cross-correlation of M and
M ′ is defined as maxv∈Z2 |M ∩ (M ′ + v)|.

Let w ∈ {2, 3, . . . , n2} and let λ ∈ {1, 2 . . . , w−1}. A family
M = {M1,M2, . . . ,Mm} of size-w subsets (or w-subsets for
short) of I2n is an (n,w, λ)-geometric orthogonal code (GOC) if

(i) the auto-correlation of M is ≤ λ, for all M ∈M, and
(ii) the cross-correlation of M and M ′ is ≤ λ, for all M,M ′ ∈

M with M 6= M ′.

The parameter w is called the macrobond strength (or weight) of
M, while λ is its mismatch strength limit. We note further that
every M ⊆ I2n may be identified with an n × n (0, 1)-matrix
(mi,j)0≤i,j≤n−1, where mi,j = 1 if (i, j) ∈ M and mi,j = 0
otherwise.

Let M(n,w, λ) denote the largest possible size of an
(n,w, λ)-GOC. A code with the largest size is said to be
optimal. Doty and Winslow derived the following upper bound
for M(n,w, λ).

Theorem 1 ([3]). Let

UGOC(n,w, λ)

,
1(
w
λ+1

) [(n2 − 1

λ

)
+

n−1∑
x0=1

n−1∑
y0=1

(
n2 − x0 − y0 − 1

λ− 1

)]

= (1 + o(1))
(λ+ 1)2n2λ

w(w − 1)(w − 2) · · · (w − λ)
. (1)

Then M(n,w, λ) ≤ UGOC(n,w, λ).

Let N be a positive integer, let 1 ≤ λ ≤ w ≤ N and
let ZN denote the integers modulo N . A collection C =
{C1, C2, . . . , Cm} of w-subsets of ZN is an (N,w, λ)-optical
orthogonal code (OOC) if the following conditions are satisfied:

(i) maxv∈ZN\{0} |C ∩ (C + v)| ≤ λ, for all C ∈ C, and
(ii) maxv∈ZN

|C ∩ (C ′ + v)| ≤ λ, for all C,C ′ ∈ C with
C 6= C ′.

Note that, for translations in the definition of OOCs, addition is
performed over the cyclic group ZN , instead of over the integers
as in the definition of GOCs.

Chung et al. [4] showed that the size of an (N,w, λ)-OOC is
bounded above by UOOC(N,w, λ), where

UOOC(N,w, λ) ,
(N − 1)(N − 2) · · · (N − λ)

w(w − 1)(w − 2) · · · (w − λ)
. (2)
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Observe that an (n2, w, λ)-OOC is an (n,w, λ)-GOC, by
regarding each one-dimensional (1D) codeword of length n2

as the concatenation of the n rows of a two-dimensional (2D)
codeword. Comparing (1) and (2), with N = n2, we note
that the size of an (n,w, λ)-GOC could possibly exceed the
upper bound UOOC(n2, w, λ). However, no such classes of
GOCs are known. While Doty and Winslow [3] constructed
a class of (p, p, λ)-GOCs of size pλ−1 − pλ−2, for all primes
p, and have compared this code size with some known lower
bounds for OOCs, this code size does not beat the bound
UOOC(p2, p, λ) = pλ−1 +O(pλ−2).

A. Our Contributions

The main contributions of this paper are:
• For suitably large w, an upper bound for M(n,w, λ), which

is asymptotically equal to (2), with N = n2 (Section III).
• For t ≤ p and p−bp/tc ≤ λ ≤ p, a class of (p, p, λ)-GOCs

of size tpλ−1 − t, which exceeds the OOC upper bound
pλ−1+O(pλ−2) (Section V). The construction makes use of
a class of GOCs, called cyclic orthogonal geometric codes,
discussed in Section IV.

• A recursive construction for GOCs, which can increase n
while keeping w and λ fixed (Section VI). We also show
that, if the input codes are close to optimal, so are the
output codes. Examples of GOCs with size exceeding (2)
are obtained.

• We construct optimal GOCs for λ = 1 (Section VII).
The techniques used are from combinatorial design theory. Due
to space constraints, many proofs have been omitted.

III. AN ASYMPTOTIC UPPER BOUND

In this section, we use a method of Erdős et al. [5] to obtain an
asymptotic upper bound on the size of (n,w, λ)-GOC when w
is large. For a = (a1, a2) ∈ Z2 and positive integer R, let Wa,R

be an R × R window starting at a, that is, Wa,R = {a1, a1 +
1, . . . , a1 +R− 1}× {a2, a2 + 1, . . . , a2 +R− 1}. For S ⊆ I2n,
the observation of S through the window Wa,R is

Wa,R(S) = {v − a : v ∈ S ∩Wa,R}.

Note that every observation, by definition, lies within I2R.

Theorem 2. Let w and λ be functions in n. If w = Ω(λ4nc) for
some positive constant c, then

M(n,w, λ) ≤ (1 + o(1))
n2λ

wλ+1
.

Therefore, limn→∞M(n,w(n), λ(n))/UOOC(n2, w(n), λ(n)) ≤
1.

Proof. Let M = {M1,M2, . . . ,Mm} be an (n,w, λ)-GOC. The
number of R×R windows with nonempty intersection with I2n
is (n+R− 1)2, so the number of observations of the elements
of M through these windows is N = m(n + R − 1)2. As each
element of I2n is observed through R2 windows, the average
number of elements per observation, over these N observations,
is A = R2mw/N .

On the other hand, suppose the ith observation is of size wi.
Then it has precisely

(
wi

λ+1

)
subsets of size λ+1. Therefore, there

are in total
∑N
i=1

(
wi

λ+1

)
subsets of size exactly λ + 1, induced

by these N observations.
Now, since M is an (n,w, λ)-GOC, we have |Wa,R(Mi) ∩

Wb,R(Mj)| ≤ λ for any two distinct observations Wa,R(Mi)
and Wb,R(Mj), with a 6= b or i 6= j. Therefore, all the (λ+1)-
subsets, induced from the observations, are pairwise distinct. The
number of possible (λ+1)-subsets in an R×R window is

(
R2

λ+1

)
.

Since all observations lie within the R×R window I2R, we have

N∑
i=1

(
wi
λ+ 1

)
≤
(
R2

λ+ 1

)
.

Note that A =
∑N

i=1 wi

N . It follows from the convexity of the
function

(
x
λ+1

)
in variable x and Jensen’s inequality that(

A

λ+ 1

)
≤ 1

N

N∑
i=1

(
wi
λ+ 1

)
≤ 1

N

(
R2

λ+ 1

)
.

In other words, NA(A− 1) · · · (A− λ) ≤ R2λ+2, or, mw(A−
1) · · · (A− λ) ≤ R2λ.

Choose R = n1−c/4. Since w = Ω(λ4nc), we have A =
R2w/(n+R− 1)2 = Ω(λ4nc/2). It follows that for n large
enough, we have

(A− 1)(A− 2) · · · (A− λ) ≥ Aλ − λ2Aλ−1.

Hence, mw(Aλ − λ2Aλ−1) ≤ R2λ, and

m ≤ R2λ

wAλ
+
mλ2

A
=

(n+R− 1)2λ

wλ+1
+
mλ2

A
,

=
n2λ

wλ+1
+ o

(
n2λ

wλ+1

)
+
mλ2

A

=
n2λ

wλ+1
+ o

(
n2λ

wλ+1

)
.

The last equation holds as m = O(λ2n2λ/wλ+1) and mλ2/A =
o(n2λ/wλ+1).

It follows that both OOCs and GOCs share the same asymp-
totic upper bound when w = Ω(λ4nc), for any constant c > 0.

IV. CYCLIC GEOMETRIC ORTHOGONAL CODES

Let M be a family of w-subsets of Zm×Zn. For M ∈M, the
auto-correlation of M is defined as maxv∈(Zm×Zn)\{(0,0)} |M ∩
(M + v)|. For distinct M,M ′ ∈M, the cross-correlation of M
and M ′ is defined as maxv∈Zm×Zn |M ∩ (M ′ + v)|. (Note that
the translations are computed over the group Zm ×Zn.) Such a
family M is called an (m,n,w, λ)-optical orthogonal signature
pattern code (OOSPC) if, for M,M ′ ∈ M with M 6= M ′, we
have:

(i) the auto-correlation of M is ≤ λ, and
(ii) the cross-correlation of M and M ′ is ≤ λ.

Optical orthogonal signature pattern codes were studied in the
context of optical CDMA networks [6], [7], [8].
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We restrict ourselves to the case where m = n. Each codeword
may then be visualized as a square array. When a translation is
applied to such a codeword, entries in the codeword that move off
one edge of the array reappear in the array from the opposite edge
(due to the modulo n operation), unlike in the case of a GOC,
where the symbols simply move out of the array. Therefore,
identifying Z2

n with I2n as sets in the obvious way, it is easy to
see the auto-correlation (resp. cross-correlation) in the OOSPC
definition is always no less than the auto-correlation (resp. cross-
correlation) in the GOC definition. It follows that an (n, n,w, λ)-
OOSPC is also an (n,w, λ)-GOC. For these reasons, we shall
refer to an (n, n,w, λ)-OOSPC as an (n,w, λ)-cyclic geometric
orthogonal code (CGOC). These codes are used in Section V to
construct GOCs whose size exceeds (2), with N = n2.

Although an (n2, w, λ)-OOC is an (n,w, λ)-GOC and the
translations in both OOCs and CGOCs are done modulo n,
there are differences in their properties. Consider, for example,
the codeword (011100000). As a 1D codeword of length nine,
it has auto-correlation two. However, when interpreted as the

corresponding 2D codeword

 0 1 1
1 0 0
0 0 0

, its auto-correlation,

in both the GOC and OOSPC definitions, is one.
Let C(n,w, λ) denote the largest possible size of an (n,w, λ)-

CGOC. Since CGOCs may be regarded as binary constant weight
codes (by identifying subsets of Z2

n with n×n (0, 1)-matrices),
by using the Johnson bound [9] for constant weight codes, we
have the following upper bound on C(n,w, λ).

Theorem 3 (Johnson-type bound). Let

UCGOC(n,w, λ) ,
(n2 − 1)(n2 − 2) · · · (n2 − λ)

w(w − 1)(w − 2) · · · (w − λ)
.

Then C(n,w, λ) ≤ UCGOC(n,w, λ).

Although UCGOC(n,w, λ) = UOOC(n2, w, λ), CGOCs have
the potential to yield GOCs whose size exceeds (2), since the
correlation in the CGOC definition may be larger than that in
GOC definition and there is room to add more codewords.

A. Constructions for CGOCs

Some direct constructions of CGOCs have recently been given
by Ji et al.[10].

Theorem 4 ([10]). Let p ≥ 3 be a prime and λ an integer with
2 ≤ λ ≤ p. Then there is a (p, p, λ)-CGOC of size pλ−1 − 1.

Let G be an abelian group and let r be a positive integer.
An s × t matrix A = (aij) over G is called r-simple, if the
list of differences of any two column vectors of A contains any
element of G at most r − 1 times. Chu and Golomb [11] gave
a powerful recursive construction for OOCs, based on r-simple
matrices over Zv . Ji et al. [10] modified their approach and gave
a recursive construction for CGOCs.

Theorem 5 ([10]). Suppose there exist an (n,w, λ)-CGOC M

and a w × N (λ + 1)-simple matrix D = (dij) over Z2
g . Then

there is an (ng,w, λ)-CGOC of size N |M|.

The following result on r-simple matrices is useful.

Theorem 6 ([10]). Let n be a positive integer with prime power
factorization n =

∏
i p
αi
i . Let pmin be the smallest pi and let r be

a positive integer with r ≤ pmin. Then there exists a pmin×n2r
matrix which is (r + 1)-simple over Z2

n.

V. A DIRECT CONSTRUCTION OF GOCS FROM CGOCS

Recall that an (n,w, λ)-CGOC is also an (n,w, λ)-GOC. The
following result therefore follows immediately from Theorem 4.

Corollary 7. Let p ≥ 3 be a prime and λ an integer with 2 ≤
λ ≤ p. Then there is a (p, p, λ)-GOC of size pλ−1 − 1.

When λ = O
(
p1/4−ε

)
for some ε > 0, the condition in Theo-

rem 2 is satisfied. In other words, M(p, p, λ) ≤ pλ−1 +o(pλ−1),
so the codes in Corollary 7 are asymptotically optimal. However,
when λ = Ω(p1/4), the condition in Theorem 2 does not hold.
Indeed, for some values of λ satisfying λ = Θ(p), we construct,
in this section, some GOCs with sizes tpλ−1 − O(1), where t
may be chosen to be greater than one.

In what follows, we canonically identify the elements in In
with those in Zn. Given M ⊆ I2n and v = (va, vb) ∈ I2n, let
the translation of M by v modulo n be M + v (mod n) ,
{(ma + va mod n,mb + vb mod n) : (ma,mb) ∈M}.

Let M be a w-subset of I2n such that |M ∩ ({i} × Zn)| ≤ 1
for each i ∈ Zn. In other words, regarding M as an n×n (0, 1)-
matrix, there is at most one 1 in each row of M . Clearly, for
every 1 ≤ δ ≤ w, we can find a vector v(M, δ) = (v(M, δ), 0),
with v(M, δ) ∈ In, such that |I2n ∩ (M + v(M, δ))| = δ. Let
tr(M, δ) denote M + v(M, δ) (mod n).

Construction 1. Suppose that there exists an (n,w, λ)-CGOC
M such that, for each M ∈ M and each i ∈ Zn, we have
|M ∩ ({i}×Zn)| ≤ 1. For any positive integer t with t ≤ w, let

tr(M, iγ) = {tr(M, iγ) : M ∈M},

where i = 1, 2, . . . , t and γ = bw/tc. Let

F = tr(M, γ) ∪ tr(M, 2γ) ∪ · · · ∪ tr(M, tγ).

If w − bw/tc ≤ λ, then F is an (n,w, λ)-GOC of size t|M|.

The key steps in the proof that Construction 1 works are
as follows. We first check that each tr(M, iγ) is an (n,w, λ)-
CGOC. It then remains to show that the cross-correlation of
tr(M, iγ) and tr(M ′, jγ) is ≤ λ, where (M, i) 6= (M ′, j). When
M 6= M ′, the case of i = j may be checked directly, while the
case of i 6= j follows from the auto- and cross-correlation of M
as CGOC. The remaining case where M = M ′ and i 6= j may
again be checked directly.

It can be verified that the CGOCs in Theorem 4 satisfy the
condition of Construction 1. We may therefore apply Construc-
tion 1 to obtain the following class of (p, p, λ)-GOCs, whose
size exceeds the OOC upper bound pλ−1 +O(pλ−2).

Corollary 8. Let p ≥ 3 be a prime. Let λ and t be two positive
integers with t ≤ p and p − bp/tc ≤ λ ≤ p. Then there is a
(p, p, λ)-GOC of size tpλ−1 − t.
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VI. A RECURSIVE CONSTRUCTION FOR (n,w, λ)-GOCS

In this section, we introduce a recursive approach to construct
(n,w, λ)-GOCs of large size. In addition to CGOCs, permutation
codes constitute another key ingredient in our method.

Let Sn be the set of permutations on the set {1, 2 . . . , n}.
Write a permutation πππ ∈ Sn in the form πππ = (π1, π2, . . . , πn).
The Hamming distance between two permutations σσσ =
(σ1, σ2, . . . , σn) and πππ = (π1, π2, . . . , πn) in Sn is defined to
be dH(σσσ,πππ) = |{i : σi 6= πi}|.

For 1 ≤ d ≤ n, we say that ∅ 6= C ⊆ Sn is an (n, d)-
permutation code if dH(σσσ,πππ) ≥ d for every two distinct
permutations σσσ,πππ ∈ C. Let the largest possible size of an
(n, d)-permutation code be denoted by P (n, d). Bounds on
P (n, d) and the exact values of P (n, d) under some specific
parameters have been studied in [12]. In particular, we have
P (n, d) ≤ n!/(d− 1)!.

We now present a recursive construction for GOCs.

Construction 2. Let A = {A1, A2, . . . , Am1} be an (n1, w, λ)-
CGOC, let C = {C1, C2, . . . , Cm2

} be an (n2, w, λ)-GOC, and
let P = {πππ1,πππ2, . . . ,πππm0

} be a (w,w − λ)-permutation code.
For each Ai = {(ai1, bi1), (ai2, bi2), . . . , (aiw, biw)} ∈ A,

Cj = {(cj1, dj1), (cj2, dj2), . . . , (cjw, djw)} ∈ C and πππk ∈ P,
construct a new codeword Fijk as follows:

Fijk = {(ai` + n1cjπππk(`), bi` + n1djπππk(`)) : 1 ≤ ` ≤ w}.

Let

F = {Fijk : 1 ≤ i ≤ m1, 1 ≤ j ≤ m2, 1 ≤ k ≤ m0}.

Then F is an (n1n2, w, λ)-GOC of size m0m1m2.

To show that the auto-correlation of any Fijk is ≤ λ, we
use the auto-correlation property of A. For the cross-correlation
between Fijk and Fi′j′k′ : (i) When i 6= i′, we use the cross-
correlation property of A; (ii) When i = i′: one subcase uses the
auto- and cross-correlation properties of C, while the remaining
subcase uses the auto-correlation property of A.

In Construction 2, suppose that

m1 = α
n2λ1

w(w − 1) · · · (w − λ)
,

m2 = β
n2λ2

w(w − 1) · · · (w − λ)
, and

m0 = γw(w − 1) · · · (w − λ),

where α, γ ≤ 1 and β ≤ (λ + 1)2. Then we can obtain an
(n1n2, w, λ)-GOC of size αβγ(n1n2)2λ/w(w − 1) · · · (w − λ).
Recall that

UGOC(n1n2, w, λ) = (λ+1)2
(n1n2)

2λ

w(w − 1) · · · (w − λ)
+o

(
(n1n2)

2λ
)
.

Hence, if α and γ are close to 1 and β is close to (λ + 1)2,
the size of the resultant code is close to this upper bound. In
other words, if the ingredients A,C, and P in Construction 2 are
“close to optimal”, then the new GOC F obtained is also “close
to optimal”.

TABLE I
COMPARISON OF THE COEFFICIENT c WITH U∗

GOC AND U∗
OOC

n1 n2 w λ U∗
OOC U∗

GOC c
4 3 4 2 864 7,776 2,112
5 4 4 2 6,666 60,000 23,688
7 6 4 2 129,654 1,166,886 644,160
4 4 5 2 1,092 9,830 2,520
5 5 5 2 6,510 58,593 17,640
7 6 5 2 51,861 466,754 155,520
7 5 6 2 12,505 112,546 16,200
7 6 6 2 25,930 233,377 36,720
3 4 5 3 24,883 398,133 37,440
5 5 5 3 2,034,505 32,552,083 6,748,800
7 6 5 3 45,741,931 731,870,899 198,374,400
7 4 6 3 1,338,584 21,417,346 1,651,680
7 6 6 3 15,247,310 243,956,966 30,636,000
4 6 6 4 155,882,380 3,822,059,520 322,560,000

When w ≤ 6 and λ < w, Chu et al. [12] showed that a
(w,w−λ)-permutation code of size w(w−1) · · · (w−λ) exists.
Therefore, we have the following result on the size of codes
resulting from Construction 2 for w ≤ 6.

Theorem 9. Let w ∈ {3, 4, 5, 6} and let N be a positive integer
whose prime factors are at least w. Suppose that there exists an
(n1, w, λ)-CGOC of size m1 and an (n2, w, λ)-GOC of size m2.
Then there exists an (n1n2N,w, λ)-GOC of size cN2λ, where
c = m1m2w(w − 1) · · · (w − λ).

Proof. From Theorem 6, there is a w × N2λ matrix which is
(λ + 1)-simple over Z2

N . By Theorem 5, this matrix and the
(n1, w, λ)-CGOC yield an (n1N,w, λ)-CGOC of size m1N

2λ.
Applying Construction 2 with this CGOC, together with the
(n2, w, λ)-GOC and the (w,w−λ)-permutation code from [12],
then yields an (n1n2N,w, λ)-GOC with the desired size.

We obtain some lower bounds on the sizes of (n1, w, λ)-
CGOCs and (n2, w, λ)-GOCs for w ≤ 6 by computer search.
Then, by applying Theorem 9, we obtain some (n1n2N,w, λ)-
GOCs of size cN2λ, with c listed in Table I. Recall that

UGOC(n1n2N,w, λ) =
(λ+ 1)2(n1n2)

2λ

w(w − 1) · · · (w − λ)
N2λ + o(N2λ),

UOOC((n1n2N)2, w, λ) =
(n1n2)

2λ

w(w − 1) · · · (w − λ)
N2λ + o(N2λ).

In Table I, the coefficients (of N2λ)

U∗GOC(n1n2, w, λ) =
(λ+ 1)2(n1n2)2λ

w(w − 1) · · · (w − λ)
and

U∗OOC((n1n2)2, w, λ) =
(n1n2)2λ

w(w − 1) · · · (w − λ)
,

are also listed (abbreviated as simply U∗OOC and U∗GOC) for
comparison with c. We note that c is significantly greater than the
corresponding U∗OOC in all these cases. These are again examples
of GOCs with size exceeding the OOC upper bound.

VII. CONSTRUCTIONS FOR OPTIMAL GOCS WITH λ = 1

We focus now on the case λ = 1 and investigate the existence
of (n,w, 1)-GOCs attaining the upper bound 4n(n−1)

w(w−1) . Our
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constructions are based on some combinatorial structures, which
we now introduce.

Let v be a positive integer. Let B = {B1, B2, . . . , Bm}, where
Bi = (bi1, bi2, . . . , bik), be a family of (ordered) k-tuple of Iv
called blocks. The list of directed differences from Bi is defined
to be the multiset ∆Bi = {bik − bij : 1 ≤ j < k ≤ w} for
1 ≤ i ≤ m, while the list of directed differences from B is
defined to be the multiset union ∆B = ∪mi=1∆Bi . If ∆B =
{1, 2, . . . , (v−1)/2}, then B is called a perfect difference family,
or briefly, a (v, k, 1)-PDF. Note that, if B = {B1, B2, . . . , Bm}
is a (v, k, 1)-PDF, we must have m = (v − 1)/(k(k − 1)).

For each block Bi = (bi1, bi2, . . . , bik) of a (v, k, 1)-PDF,
let B′i = (0, bi2 − bi1, . . . , bik − bi1). Then ∆B′i = ∆Bi, so
B′ = {B′1, B′2, . . . , B′m} is a family of k-tuple of I(v+1)/2, with
∆B′ = ∪mi=1∆B′i = {1, 2, . . . , (v− 1)/2}. (It is also a (v, k, 1)-
PDF.) We call such a structure a strictly perfect difference family
(SPDF). Specifically, an (n, k, 1)-SPDF B = {B1, B2, . . . , Bm}
is a family of k-tuples of In such that ∆B = {1, 2, . . . , n− 1}.

The argument above proves the following fact.

Lemma 10. A (v, k, 1)-PDF exists if and only if a ((v +
1)/2, k, 1)-SPDF exists.

Another ingredient needed for our construction is the class of
strictly perfect difference matrices (SPDMs). An SPDM(k, n) is
a k × (2n − 1) matrix with entries from In such that, for all
1 ≤ s < t ≤ k, the list of differences Dst = {dsj − dtj : 1 ≤
j ≤ 2n− 1} = {−(n− 1), . . . ,−1, 0, 1, . . . , n− 1}.

Construction 3. Suppose that there exist an (n,w, 1)-SPDF and
an SPDM(w, n). Then an (n,w, 1)-GOC of size 4n(n−1)

w(w−1) exists.

This construction shows that SPDFs and SPDMs can be used
to construct optimal GOCs. We show further that SPDMs can
also be constructed from SPDFs.

An orthogonal array OA(m,n) is an m × n2 array A, with
entries from a set X of n elements, such that, when restricted to
any two rows of A, every ordered pair of elements from X occurs
in exactly one column of the restricted array. An orthogonal
array A is idempotent if it contains the n distinct m× 1 vectors
{(x, x, . . . , x)T : x ∈ X} as columns.

Example 11. For a prime power q, let Fq be the field of order
q. Let A be a q × q2 array, with rows labeled by x ∈ Fq and
columns by (i, j) ∈ F2

q , whose entry in row x and column (i, j)
is ix+ j. It is easy to check that A is an idempotent OA(q, q).

Construction 4. Suppose that there exist both an (n, k, 1)-SPDF
and an idempotent OA(w, k). Then an SPDM(w, n) exists.

The existence of an (n,w, 1)-SPDF implies that w ≤ 5 [13].
By Example 11, an idempotent OA(w,w) exists for 2 ≤ w ≤ 5.
Construction 4 yields an SPDM(w, n). Then, by applying Con-
struction 3, an optimal (n,w, 1)-GOC is obtained.

Proposition 12. Suppose that there exists an (n,w, 1)-SPDF.
Then an optimal (n,w, 1)-GOC of size 4n(n−1)

w(w−1) exists.

As a consequence of Lemma 10, Proposition 12, and existence
results on PDFs in [14], [15], we have the following result.

Corollary 13. M(n,w, 1) = 4n(n−1)
w(w−1) when

(i) w = 3, n ≡ 1, 4 (mod 12); or
(ii) w = 4, n ≡ 1 (mod 6), n ≤ 6001 and n 6= 13, 19; or

(iii) w = 5, n = 61, 81 or 101.

VIII. CONCLUSION

In this paper, we provid two families of GOCs whose sizes
are greater than OOCs of corresponding parameters by a factor
greater than one. In addition, we provide a tighter asymptotic
upper bound for GOCs in certain regime and show that it is
asymptotically equal to the Johnson bound for OOCs in the same
regime. Finally, we obtain some optimal GOCs codes which
achieve the upper bound UGOC for λ = 1.

ACKNOWLEDGEMENT

The research of Y. M. Chee, H. M. Kiah and S. Ling is
supported in part by the Singapore Ministry of Education under
Research Grant MOE2015-T2-2-086.

REFERENCES

[1] P. W. K. Rothemund, “Folding DNA to create nanoscale shapes and
patterns,” Nature, vol. 440, pp. 297–302, 2006.

[2] S. Woo and P. W. K. Rothemund, “Programmable molecular recognition
based on the geometry of DNA nanostructures,” Nature Chemistry, vol. 3,
no. 8, pp. 620–627, 2011.

[3] D. Doty and A. Winslow, “Design of geometric molecular bonds,” IEEE
Transactions on Molecular, Biological and Multi-Scale Communications,
vol. 3, no. 1, pp. 13–23, 2017.

[4] F. R. K. Chung, J. A. Salehi, and V. K. Wei, “Optical orthogonal codes:
design, analysis, and applications,” IEEE Trans. Inform. Theory, vol. 35,
no. 3, pp. 595–604, 1989.
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