
RELIABLE COMMUNICATIONS OVER

POWER LINES THROUGH CODED

MODULATION SCHEMES

HAN MAO KIAH

SCHOOL OF PHYSICAL & MATHEMATICAL SCIENCES

2013



RELIABLE COMMUNICATIONS OVER

POWER LINES THROUGH CODED

MODULATION SCHEMES

HAN MAO KIAH

School of Physical & Mathematical Sciences

A thesis submitted to the Nanyang Technological University

in fulfillment of the requirement for the degree of

Doctor of Philosophy

2013



ACKNOWLEDGEMENTS

Japanese mountain potatoes known as taros are rough and dirty when harvested,

but when they are placed in a basin of running water together and rolled against

each other, the skin peels away, leaving the potatoes clean and ready for cooking.

Similarly, the only way for us to hone and polish our character is through our

interactions with others.
— Daisaku Ikeda

This dissertation is the fruit of the countless maddening arguments, lively discussions

and meaningful interactions with many individuals, whom I had the great fortune to come

in contact with.

Firstly, I am greatly indebted to my supervisor Yeow Meng Chee. Under his strict guid-

ance and insightful advice, I have not only grown academically, but also gained strength in

character. His thirst for precision and perfection have pushed me to make vast improve-

ments in my technical writing, presentation skills and critical thinking. I am also deeply

appreciative of the many opportunities that he has presented during this period. From tech-

nical conferences to informal meetings with academic giants, I have benefitted immensely

from each experience.

I am also fortunate to meet with my close collaborator and friend, Punarbasu. He has

been an unofficial mentor, offering a listening ear to my problems and sharing invaluable

lessons from time to time. His knowledge of coding and communications principles is excep-

tional. Without our lively discussions and his constructive suggestions, much of this thesis

would not have been possible.

Another close collaborator and friend is Chengmin. He is my teacher in combinatorial

design theory. Without his exclamation “of course, it is so!” and the subsequent elucidations,

I would have remained lost in the sea of design theoretic jargon and technicalities.



ii

I am also delighted to have worked with Alan Ling and Patrick Solé, who are giants in
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ABSTRACT

Single-tone frequency shift keying (FSK) modulation with permutation codes has been found

to be useful in establishing reliable communications over power lines. This dissertation is

devoted to the study of generalizations to this coded modulation scheme.

In the first part of this dissertation, we extend this coded modulation scheme based on

permutation codes to general block codes and establish the conditions for correct decoding

over a power line communications (PLC) channel. In the process, we introduce a new

parameter to measure the performance against narrowband noise. As a result, we define a

new class of codes, namely, equitable symbol weight codes, which are optimal with respect

to this measure. Simulation results validating the relevance of this new parameter are given.

Hence, we investigate the possible sizes of equitable symbol weight codes. Using an

Elias-type bound, we determine the asymptotic size of equitable symbol weight codes under

certain conditions. Using both classical coding and computational methods, we also tabulate

the possible lower and upper bounds of an optimal equitable code for certain parameters.

However, the exact size of optimal equitable symbol codes is only known in a limited

number of instances. Generalizing a class of combinatorial objects called generalized bal-

anced tournament designs introduced by Lamken and Vanstone (1989), we define a class of

combinatorial objects called generalized balanced tournament packings and establish a con-

nection to equitable symbol weight codes. As a result, we construct new infinite families of

optimal equitable symbol weight codes whose narrowband noise error-correcting capability

to code length ratios are bounded away for zero.

Unfortunately, this general coded modulation scheme usually requires the use of a code-

book and does not have an efficient decoding algorithm. Hence, we propose the use of

multitone FSK and codes defined over binary matrices in the final part of this dissertation.
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Adopting techniques from classical concatenation, we construct infinite families of efficiently

decodable matrix codes with rates and relative distances bounded away from zero. Simula-

tion results demonstrating the merits of multitone FSK modulation scheme are also given.
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1. INTRODUCTION

Power line communications (PLC) is a technology that enables the transmission of data over

electric power lines. It was started in the 1910’s for voice communication [69], and used in

the 1950’s in the form of ripple control for load and tariff management in power distribution.

With the emergence of the Internet in the 1990’s, research into broadband PLC gathered

pace as a promising technology for Internet access and local area networking, since the

electrical grid infrastructure provides “last mile” connectivity to premises and capillarity

within premises. Recently, there has been a renewed interest in high-speed narrowband

PLC due to applications in sustainable energy strategies, specifically in smart grids (see

[30,40,53,85]).

However, as power lines are not originally designed for information transmission, they

present a difficult communications environment with the presence of various types of noise

that include additive white Gaussian noise, fading, permanent narrowband noise, and im-

pulse noise. Establishing reliable communication thus remains a challenging problem and a

variety of coding and modulation strategies have been proposed [4, 5, 65,80].

In particular, this dissertation studies generalizations to a coded modulation scheme

proposed by Vinck [80] that utilizes single-tone (multiple) frequency shift keying (FSK) and

permutation codes as ingredients.

1.1 Vinck’s Coded Modulation Scheme and its Generalizations

As there are some inconsistent uses of various notions of FSK in the literature, we clarify our

terminology before going further. In general FSK systems, each symbol is signaled by an

element or a combination of elements from an alphabet of orthogonal sinusoidal waveforms

(tones) tuned to different specific frequencies. FSK schemes can be either single-tone or
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multitone.

(i) Single-tone FSK is an FSK scheme where each symbol is signaled by a single tone.

(ii) Multitone FSK is an FSK scheme where each symbol is signaled by a combination of

(one or more) tones.

Vinck’s scheme is based on single-tone FSK, where channel state information is assumed

to be unknown to the receiver and a hard-decision threshold demodulator is used. In this

scheme, narrowband noise results in the unwanted appearance of a certain frequency (or

information symbol) over a prolonged period, while impulse noise results in the unwanted

appearance of all frequencies at certain time instances (see Figure 1.1). To determine the

sequence of frequencies for transmission, Vinck proposed the use of a codebook that con-

sists only of permutation words. Using a minimum distance decoder, Vinck showed that a

permutation code of minimum (Hamming) distance d with single-tone FSK modulation is

able to correct up to d− 1 errors due to narrowband and impulse noise.

Many generalizations has since been made to Vinck’s coded modulation scheme. Con-

stant composition codes (see [10,18,21,24–27,38,42,56]), frequency permutation arrays (see

[42,43]), and injection codes (see [28]) have been considered as possible replacements for per-

mutation codes in PLC. Versfeld et al. [78,79] later introduced the notion of ‘same-symbol

weight’ (henceforth, termed as symbol weight) of a code as a measure of the capability of

a code in dealing with narrowband noise. They also showed empirically that low sym-

bol weight cosets of Reed-Solomon codes outperform normal Reed-Solomon codes in the

presence of narrowband noise and additive white Gaussian noise.

Unfortunately, symbol weight alone is not sufficient to capture the performance of a

code in dealing with permanent narrowband noise and this motivates our study of coded

modulation schemes that use general block codes as ingredients. Extending Vinck’s analysis

for permutation codes to general block codes, we introduce an additional new parameter that

more precisely captures a code’s performance against permanent narrowband noise. This

parameter in turn motivates the study of a class of codes, called equitable symbol weight

codes. Not surprisingly, the class of equitable symbol weight codes includes the classes of

permutation codes, injection codes and frequency permutation arrays.
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Fig. 1.1: Vinck’s coded modulation scheme and the noise arising from a PLC channel

Using classical coding and computational methods, we provide estimates on both asymp-

totic and finite sizes of equitable symbol weight codes. In particular, we determine the

asymptotic sizes of equitable symbol weight codes and also provide tables estimating the
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optimal sizes for certain parameters. Unfortunately, the exact size of optimal equitable

symbol codes is only known in a limited number of instances. Interestingly, a class of com-

binatorial objects called generalized balanced tournament designs (introduced by Lamken

and Vanstone [46]) can be used to construct optimal equitable symbol weight codes. Gener-

alizing their definitions, we then construct new infinite families of equitable symbol weight

codes.

However, while this more general coded modulation scheme using block codes gives better

flexibility and performance, it involves the use of codebooks that require large storage and

do not have efficient decoding algorithms. Coded modulation schemes with low decoding

complexity are possible if the size of the code is small enough so that exhaustive search can

be performed, or if the codes have sufficient structure such that efficient decoding algorithms

can be implemented. Some families of codes with low decoding complexity are given by:

(i) distance preserving maps from the Hamming space to the permutation space (see

[8, 9, 19,52,75]),

(ii) permutation trellis codes [31],

(iii) permutation group codes (see [3]), and

(iv) cosets of Reed-Solomon codes with low symbol weight (see [78,79]).

However, the lengths of the families of codes are constrained by the number of frequencies,

which is at least as large the alphabet size of the code. In addition, the first three families

of codes do not simultaneously achieve positive relative distance and positive rate, with

increasing code length. This provides the impetus to determine code families that can be

used to combat permanent narrowband noise in PLC and with the following (simultaneous)

properties:

(i) positive relative distance,

(ii) positive rate,

(iii) have efficient decoding algorithms, and
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(iv) without restriction that the length of the codes is at most the size of the alphabet.

This prompts the next modification to Vinck’s coded modulation scheme. Instead of

a single-tone FSK, we propose the use of multitone FSK modulation with binary matrix

codes. With classical concatenation techniques, we establish an infinite family of efficiently

decodable codes whose rate and relative distance are bounded away from zero, and uses a

logarithmic number of frequencies in the length of the code.

1.2 Structure and Contributions of Thesis

This dissertation is organized as follows. Contributions of the thesis are indicated in italics.

Chapter 2 introduces a generalization of Vinck’s coded modulation scheme and describes

the effects of noise over a PLC channel. We extend Vinck’s analysis to general codes and

derive the conditions where correct decoding occurs. A new parameter is introduced to mea-

sure the performance against narrowband noise and this parameter is related to symbol

equity, the uniformity of frequencies of symbols in each codeword. Codes designed taking

into account this new parameter, or equitable symbol weight codes, are shown to perform

better than general ones.

This leads to the investigation of the possible sizes of equitable symbol weight codes

in Chapter 3. Using an Elias-type bound, we determine the asymptotic sizes of optimal

equitable symbol weight codes under certain conditions. Using both classical coding and

computation methods, we provide tables listing the possible upper and lower bounds for the

size of an optimal equitable code.

Chapter 4 examines a construction of optimal equitable symbol weight codes. Specifi-

cally, we define a class of combinatorial objects called generalized balanced tournament pack-

ings and employ tools from combinatorial design theory to determine the existence of such

objects. As a result, we construct new infinite families of optimal equitable symbol weight

codes.

The next generalization to Vinck’s scheme is given in chapter 5. We outline a coded

modulation scheme that uses codes defined over binary matrices and multitone FSK as ingre-

dients. Using classical concatenation techniques, we establish infinite families of efficiently
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Fig. 1.2: Generalizations to Vinck’s coded modulation scheme
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decodable codes whose rate and relative distance are bounded away from zero. Simulation

results demonstrating the merits of multitone FSK modulation scheme are also given.

1.3 Notation and Coding Preliminaries

We introduce notation that is used throughout this dissertation. We denote the set of

integers and positive integers by Z and Z>0 respectively.

For integers m,n ∈ Z with m ≤ n, the set {m,m+ 1, . . . , n} is denoted by [m,n]. For a

positive integer n, the set [1, n] is written as [n]. Let Zn denote the ring of integers modulo

n and Fq denote the finite field with q elements, where q is a prime power.

The cardinality of a finite set X is given by |X|. For k ≤ |X| , denote the collection of

all k-subsets by
(
X
k

)
and denote the collection of all subsets of X, or the power set of X, by

2X .

Let T be an index set and Σ be a set of symbols. We denote a sequence or a vector with

index set T by (ut : t ∈ T, ut ∈ Σ). In contrast, we denote a multiset by angled brackets,

that is, 〈ut : t ∈ T 〉. For the latter, when more convenient, the exponential notation

〈ut11 ut22 · · ·utnn 〉 is used to describe a multiset with exactly ti elements ui, i ∈ [n].

When |Σ| = q, a q-ary code C of length n over the alphabet Σ is a subset of Σn. Elements

of C are called codewords. The size of C is the number of codewords in C. For i ∈ [n], the

ith coordinate of a codeword u is denoted by ui.

Given two codewords u, v ∈ Σn, the Hamming distance between u and v, denoted by

d(u, v), is given by the number of differing coordinates, or

d(u, v) := |{i ∈ [n] : ui 6= vi}|. (1.1)

The (minimum) distance of a code C is then given by min{d(u, v) : u, v ∈ C, u 6= v}. An

(n, d)q-code then denotes a q-ary code of length n and distance d and Aq(n, d) is defined

to be the maximum size of an (n, d)q-code. An (n, d)q-code of size Aq(n, d) is said to be

optimal.

A central problem in coding theory is to determine Aq(n, d) given parameters n, d and
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q. We conclude this section with some classical bounds for Aq(n, d) (see [57] for example).

Theorem 1.3.1 (Singleton Bound). Let 1 ≤ d ≤ n. Then

Aq(n, d) ≤ qn−d+1 .

Theorem 1.3.2 (Gilbert-Varshamov (GV) and Hamming Bound). Let 1 ≤ d ≤ n. Then

qn

Vq(n, d− 1)
≤ Aq(n, d) ≤ qn

Vq(n, b(d− 1)/2c) ,

where

Vq(n, d) =
d∑
i=0

(
n

i

)
(q − 1)i.

Theorem 1.3.3 (Plotkin Bound). Suppose qd− (q − 1)n > 0. Then

Aq(n, d) ≤ qd

qd− (q − 1)n
.



2. IMPORTANCE OF SYMBOL EQUITY IN A

CODED MODULATION SCHEME

This chapter extends the analysis of Vinck’s coded modulation scheme based on permutation

codes (see [80],[2, Subsection 5.2.4]) to general block codes. In particular, we outline a noise

model for PLC and derive the criterion under which correct decoding can be performed. In

the process, we define a new parameter that captures how well a code can perform under

narrowband noise and show that equitable symbol weight codes are optimal with respect

to this new parameter. At the end of the chapter, we present some simulation results to

compare the performance of equitable symbol weight codes with other block codes previously

studied in the literature. This chapter has been presented in part at the IEEE International

Symposium on Information Theory, 2012 [15] and appears in Chee et al. [16].

2.1 Preliminaries

Recall that Σ is a set of q symbols and a q-ary code C of length n over the alphabet Σ is

a subset of Σn. Elements of C are called codewords. For i ∈ [n], the ith coordinate of a

codeword u is denoted by ui.

2.1.1 Symbol Weight

Let u ∈ Σn. For σ ∈ Σ, let wσ(u) be the number of times the symbol σ appears among the

coordinates of u, that is,

wσ(u) := |{i ∈ [n] : ui = σ}|.
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The symbol weight of u is the maximum frequency of any symbol in u. That is,

swt(u) := max
σ∈Σ

wσ(u).

A code has bounded symbol weight r if the maximum symbol weight of all its codewords

is r. A code C has constant symbol weight r if all its codewords have symbol weight exactly

r. For any u ∈ Σn, observe that swt(u) ≥ dn/qe. A code has minimum symbol weight if it

has constant symbol weight dn/qe.

A codeword u ∈ Σn is said to have equitable symbol weight if wσ(u) ∈ {bn/qc, dn/qe} for

all σ ∈ Σ. In other words, if r = dn/qe, then every symbol appears r or r − 1 times in u. If

all the codewords of C have equitable symbol weight, then the code C is called an equitable

symbol weight code. Every equitable symbol weight code is hence a minimum symbol weight

code.

Recall that a q-ary code of length n and distance d is called an (n, d)q-code. Similarly, a

q-ary code of length n having bounded symbol weight r and distance d is called an (n, d, r)q-

symbol weight code, while a q-ary equitable symbol weight code of length n and distance d

is called an (n, d)q-equitable symbol weight code.

2.1.2 Composition and Partition

The composition of u ∈ Σn is the sequence (wσ(u) : σ ∈ Σ), while the partition of u is the

multiset 〈wσ(u) : σ ∈ Σ〉. Fix a multiset of nonnegative numbers 〈cσ : σ ∈ Σ〉 such that∑
σ∈Σ cσ = n. A code C is a constant composition code with composition (cσ : σ ∈ Σ) if all

words in C have composition (cσ : σ ∈ Σ). Similarly, a code C is a constant partition code

with partition 〈cσ : σ ∈ Σ〉 if all words in C have partition 〈cσ : σ ∈ Σ〉.

Clearly, a constant composition code is necessarily a constant partition code. The fol-

lowing example demonstrates that the converse is not true.

Example 2.1.1. The code {(1, 2, 3), (2, 3, 4), (3, 4, 1), (4, 1, 2)} is a constant partition code

with partition 〈130〉, since in each code word three symbols appear once each, and one

symbol does not appear. However, the words have different compositions.
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Furthermore, we show that an equitable symbol weight code is necessarily a constant

partition code with minimum symbol weight. This follows from the next lemma that states

that for any codeword u ∈ Σn having equitable symbol weight, the number of symbols

occurring with frequency dn/qe in u is uniquely determined. Hence, the frequencies of

symbols in an equitable symbol weight codeword are as uniformly distributed as possible

and the partition of the codeword is fixed.

Lemma 2.1.2. Let u ∈ Σn, r = dn/qe, and t = qr − n. If u has equitable symbol weight,

then u has partition 〈rq−t(r − 1)t〉

Proof. Let x = |{σ ∈ Σ : wσ(u) = r}| and y = |{σ ∈ Σ : wσ(u) = r−1}|. Then the following

equations hold:

x+ y = q,

rx+ (r − 1)y = n.

Solving this set of equations gives the lemma. �

Using the above notation, we observe that equitable symbol weight codes are generaliza-

tions of certain classes of codes which have been studied in PLC applications. For example,

if q|n, then an equitable symbol weight code has constant partition 〈(n/q)q〉, which is known

as a frequency permutation array (FPA). If n ≤ q then an equitable symbol weight code has

constant partition 〈1n0q−n〉, which is called an injection code. Finally, if n = q, then all

definitions coincide to give the definition of a permutation code. We exhibit the (inclusion)

relationships between these classes of codes in Figure 2.1.

2.2 Correcting Noise with Single-tone FSK Modulation

In coded modulation for power line communications [80], a q-ary code of length n is used,

whose symbols are modulated using q-ary single-tone FSK. The receiver demodulates the

received signal using an envelope detector to obtain an output, which is then decoded by a

decoder.
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Four detector/decoder combinations are possible: classical, modified classical, hard-

decision threshold, and soft-decision threshold (see [2] for details). A soft-decision threshold

detector/decoder requires exact channel state knowledge and is therefore not useful if we

do not have channel state knowledge. Henceforth, we consider the hard-decision threshold

detector/decoder, since it contains more information about the received signal compared to

the classical and modified classical ones. We remark that in the case of the hard-decision

threshold detector/decoder, the decoder used is a minimum distance decoder.

Let C be an (n, d)q-code over alphabet Σ, and let u = (u1, . . . , un) be a codeword trans-

mitted over the PLC channel where the symbol ui is transmitted at discrete time instance i

for i ∈ [n]. The received signal (which may contain errors caused by noise) is demodulated

to give an output v = (v1, v2, . . . , vn) in which each vi is a subset of Σ. The errors that arise

from the different types of noise in the channel (see [2, pp. 222–223]) have the following

effects on the output of the detector.

1. Narrowband noise at a particular frequency introduces a symbol at several consecutive

discrete time instances of the transmitted signals. The narrowband noise affects only

a part of the transmission that occurs at discrete time instances from i = 1 to i =

n. Hence, narrowband noise of duration l affects up to l consecutive positions in

the discrete time instances from i = 1 to i = n, depending on whether the noise

started prior to or during the current transmission. Narrowband noise may be present

simultaneously at multiple frequencies corresponding to different symbols.

Let 1 ≤ e ≤ q and l ∈ Z>0. If e narrowband noise errors of duration l occur, then there

is a set Γ ∈
(

Σ
e

)
of e symbols and e corresponding starting instances {iσ ≤ n : σ ∈ Γ}

such that for σ ∈ Γ,

σ ∈ vi for max{1, iσ} ≤ i ≤ min{iσ + l − 1, n}.

We write the condition max{1, iσ} ≤ i ≤ min{iσ+ l−1, n} compactly as the condition

i ∈ [iσ, iσ + l − 1] ∩ [n].

2. A signal fading error results in the absence of a symbol in the received signal. Let



14 2. Importance of Symbol Equity in a Coded Modulation Scheme

1 ≤ e ≤ q. If e signal fading errors occur, then there are e symbols, none of which

appears in any vi, that is, (
⋃n
i=1 vi) ∩ Γ = ∅ for some Γ ∈

(
Σ
e

)
.

3. Impulse noise results in the entire set of symbols being received at a certain discrete

time instance. Let 1 ≤ e ≤ n. If e impulse noise errors occur, then there is a set

Π ∈
(

[n]
e

)
of e positions such that vi = Σ for all i ∈ Π.

4. An insertion error results in an unwanted symbol in the received signal. Let 1 ≤ e ≤

n(q− 1). If e insertion errors occur, then there is a set Ω ∈
(

[n]×Σ
e

)
such that for each

(i, σ) ∈ Ω, vi contains σ and σ 6= ui.

5. A deletion error results in the absence of a transmitted symbol in the received signal.

Let 1 ≤ e ≤ n. If e deletion errors occur, then there is a set Π ∈
(

[n]
e

)
of e positions

such that vi does not contain ui for all i ∈ Π.

Both insertion and deletion errors are due to background noise. This definition of insertion

and deletion error is different from the errors that arise in an “insertion-deletion channel”

(see [50]).

Example 2.2.1. Suppose u = (1, 2, 3, 4).

1. Narrowband noise can start prior to or during the transmission of u. Narrowband

noise error of duration four at symbol 1 starting at discrete time instance i = −1

results in detector output v = ({1}, {1, 2}, {3}, {4}), while the same narrowband

noise error starting at discrete time instance i = 3 results in detector output v =

({1}, {2}, {1, 3}, {1, 4}).

2. The same detector output can arise from different combinations of error types. A

signal fading error of symbol 1 and a deletion error at position 1 would each result in

the same detector output of v = (∅, {2}, {3}, {4}).

For a codeword u ∈ Σn and an output v ∈
(
2Σ
)n

, define

d(u, v) := |{i : ui /∈ vi}|.
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Note that in this context, we identify c ∈ Σn with ({c1}, {c2}, . . . , {cn}) ∈
(
2Σ
)n

, so that

d(u, c) coincides with the definition of Hamming distance given by (1.1). We also extend the

definition of distance so that for C ⊆ Σn, we have d(C, v) = minu∈C d(u, v). Given v ∈ (2Σ)n,

a minimum distance decoder (for a code C) outputs a codeword u ∈ C which has the smallest

distance to v, that is, a minimum distance decoder returns an element of

arg min
u∈C

d(u, v) := {u ∈ C : d(u, v) ≤ d(u′, v) ∀u′ ∈ C}. (2.1)

In the following, we study the conditions under which a minimum distance decoder outputs

the correct codeword, that is, when arg min
u∈C

d(u, v) = {u}. This is equivalent to saying that

the decoder correctly outputs u if and only if d(C \ {u}, v) > d(u, v).

Let d′ = d(C \ {u}, u). Since C has distance d, we have d′ ≥ d. Observe the following:

• Let 1 ≤ e ≤ n. If e impulse noise errors occur, then in e coordinates all the symbols

occur. Therefore, those e coordinates do not contribute to the distance between v and

any codeword. Hence, we get

d(u, v) = 0 and d(C \ {u}, v) ≥ d′ − e.

• Let 1 ≤ e ≤ n(q − 1). If e insertion errors occur, then there are at most e coordinates

which do not contribute to the distance between v and some codeword in the code.

Hence, we get

d(u, v) = 0 and d(C \ {u}, v) ≥ d′ − e.

• Let 1 ≤ e ≤ n. If e deletion errors occur, then there are exactly e coordinates where

the transmitted codeword u differs from v. Any other codeword still differs from v in

at least d′ coordinates. Therefore, we get

d(u, v) = e and d(C \ {u}, v) ≥ d′.

For errors due to narrowband noise we introduce a quantity that measures how many
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coordinates of any codeword in the code are affected by the noise. Specifically, a narrow-

band noise at the frequency corresponding to symbol σ can affect up to n coordinates in

a codeword, depending on the number of times the symbol σ appears in the codeword. If

narrowband noise is present in the set of symbols Γ ⊆ Σ, then the maximum number of

entries of any codeword c that can be affected by the noise is
∑

σ∈Γwσ(c). Therefore, we

define

E(e; C) := max
c∈C,Γ∈(Σ

e)

∑
σ∈Γ

wσ(c). (2.2)

The expression E(e; C) measures the maximum number of coordinates, over all codewords

in C that are affected by e narrowband noise. Equation (2.2) assumes that the duration

of the narrowband noise is at least n and that it is present in all the coordinates of the

codeword transmitted. In general, a narrowband noise error of duration l at symbol σ may

not be present for the full duration of the codeword. In Subsection 2.2.1 we show that it

suffices to consider narrowband noise of duration n since it measures the maximum effect

of narrowband noise on the codewords.

Recall that d′ = d(C \ {u}, u). From the definition of E(e; C), it is clear that the distance

between any codeword, other than the transmitted codeword u, and the output v decreases

by E(e; C). Similarly, in the presence of a fading error the distance between u and v increases

by at most E(e; C). Therefore we get the two inequalities below.

• Let 1 ≤ e ≤ q. If e narrowband noise errors occur, then

d(u, v) = 0 and d(C \ {u}, v) ≥ d′ − E(e; C).

• Let 1 ≤ e ≤ q. If e signal fading errors occur, then

d(u, v) ≤ E(e; C) and d(C \ {u}, v) ≥ d′.

Hence, if we denote by eN, eF, eIMP, eINS, and eDEL the number of errors due to narrowband
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noise, signal fading, impulse noise, insertion, and deletion, respectively, we have

d(u, v) ≤ eDEL + E(eF; C),

d(C \ {u}, v) ≥ d′ − eIMP − eINS − E(eN; C).

Hence,

d(u, v)− d(C \ {u}, v) ≤ (eDEL + E(eF; C))− (d′ − eIMP − eINS − E(eN; C))

= eDEL + eIMP + eINS + E(eF; , C) + E(eN; C)− d′. (2.3)

Under the condition

eDEL + eIMP + eINS + E(eF; C) + E(eN; C) < d,

the inequality (2.3) reduces to d(u, v) < d(C \ {u}, v), which implies correct decoding.

On the other hand, if

eDEL + eIMP + eINS + E(eF; C) + E(eN; C) ≥ d,

say eIMP = d, and u,w ∈ C is such that d(u,w) = d (since C has distance d, the codewords

u,w must exist), then d′ = d(C \ {u}, u) = d, and we have d(u, v)−d(C \ {u}, v) ≤ d−d′ = 0.

In this case, the correctness of the decoder output cannot be guaranteed. We therefore have

the following theorem.

Theorem 2.2.2. Let C be an (n, d)q-code and 0 ≤ eDEL, eIMP, eINS ≤ n, 0 ≤ eN, eF ≤ q.

Then C is able to correct eN narrowband noise errors, eF signal fading errors, eIMP impulse

noise errors, eINS insertion errors, and eDEL deletion errors if and only if

eDEL + eIMP + eINS + E(eF; C) + E(eN; C) < d.

Therefore, the parameters n, q, d, and r (symbol weight) of a code are insufficient to

characterize the total error-correcting capability of a code in a PLC system using single-tone
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FSK, since E(C) cannot be specified by n, q, d, and r alone. We now introduce an additional

new parameter that together with n, q, and d, more precisely captures the error-correcting

capability of a code for PLC using single-tone FSK.

Definition 2.2.3. Let C be a code of distance d. The narrowband noise error-correcting

capability of C is

c(C) = min{e : E(e; C) ≥ d}.

From Theorem 2.2.2 we infer that a code C can correct up to c(C)− 1 narrowband noise

errors. In general, the minimum value of c(C) is about d/r if all the symbols occur exactly r

times, and the maximum value of c(C) is at most d if all the symbols appear once. Therefore,

for a code C with bounded symbol weight r, we have dd/re ≤ c(C) ≤ min{d, q}. However,

the gap between the upper and lower bounds can be large. Furthermore, the lower bound

can be attained, giving codes of low resilience against narrowband noise, as is shown in the

following example.

Example 2.2.4. The code

C = {(1, . . . , 1︸ ︷︷ ︸
r times

, 2, 3, 4, . . . , q), (2, . . . , 2︸ ︷︷ ︸
r times

, 1, 3, 4, . . . , q)}

is a (q+r−1, r+1, r)q-symbol weight code with narrowband noise error-correcting capability

c(C) = dd/re = 2.

In the next section, we provide a tight upper bound for c(C) and demonstrate that

equitable symbol weight codes attain this upper bound.

2.2.1 Narrowband noise of different durations and E(C)

In this subsection we show that it suffices to consider narrowband noise of length n instead of

smaller lengths since it measures the maximum effect of narrowband noise on the codewords.

Consequently, we justify the definition of E(C) given by (2.2).

Given n and for an integer iσ ≤ n, we can write
{
i : max{1, iσ} ≤ i ≤ min{iσ+ l−1, n}

}
as [iσ, iσ + l− 1]∩ [n]. For errors due to narrowband noise, we define the following quantity
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for Γ ⊂ Σ, l ∈ Z>0, c ∈ C,

E(Γ; l, c) = max
iσ≤n:σ∈Γ

|{i : i ∈ [iσ, iσ + l − 1] ∩ [n], ci = σ}| .

The quantity E(Γ; l, c) measures the maximum number of coordinates in c that can be

affected by narrowband noise of duration l at symbols in Γ.

Let L ⊂ Z>0. We consider the following quantity as a function in e, E(L, C) : [q]→ [n],

E(e;L, C) = max
l∈L, Γ∈

(
Σ
e

)
, c∈C

E(Γ; l, c).

Then E(e;L, C) measures the maximum number of coordinates, over all codewords in C,

that can be affected by e narrowband noise of duration l ∈ L. The following lemma states

that it suffices to consider the maximum duration when determining the performance of a

code in a PLC.

Lemma 2.2.5. Let C be a q-ary code of length n. Consider L ⊂ Z>0 and define n′ =

min{n,maxL}. Then

E(L, C) = E({n′}, C).

Proof. Let l′ = maxL and fix l ∈ L and e ∈ [q].

Observe that since [i, i+ l − 1] ⊆ [i, i+ l′ − 1] for i ≤ n,

E(Γ; l, c) ≤ E(Γ; l′, c) for c ∈ C, Γ ⊂ Σ.

Hence, E(e; {l}, C) ≤ E(e; {l′}, C) and so, E(e;L, C) ≤ E(e; {l′}, C).

In addition, since [i, i+ l − 1] ∩ [n] ⊆ [n] for i ≤ n,

E(Γ; l, c) ≤ E(Γ;n, c) for c ∈ C, Γ ⊂ Σ.

Similar argument shows that E(e;L, C) ≤ E(e; {n}, C). Since l′ ∈ L, we have E(e;L, C) ≥

E(e; {l′}, C) and the lemma follows. �

The following is now immediate.
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Corollary 2.2.6. Let C be a q-ary code of length n. For L ⊂ Z>0,

E(e;L, C) ≤ E(e; {n}, C) for all e ∈ [q].

Therefore, E(L, C), which measures the maximum effect of narrowband noise on code-

words, is maximized when L = {n}. Therefore, we assume that only narrowband noise of

duration n occurs and write E(e; C) and E(C) in lieu of E(e; {n}, C) and E({n}, C), respec-

tively.

2.3 Equitable Symbol Weight Codes and E(C)

In this section, we demonstrate the optimality of equitable symbol weight codes with respect

to parameter E(C). First, we make certain observations on the parameter E(C).

2.3.1 Relation with Symbol Weight and Partition

Symbol weight provides an estimate for E(C). Specifically, if C is a code of length n with

bounded symbol weight r, then E(1; C) = r, and for e > 1 the minimum possible value is

r + e− 1 if any other symbol occurs exactly once. Therefore, E(e; C) ≥ min{n, r + e− 1}.

On the other hand, if C is a constant partition code with partition 〈cσ : σ ∈ Σ〉, E(C)

can be determined precisely. Assume Σ = [q] and c1 ≥ c2 ≥ · · · ≥ cq, then E(e; C) is the

sum of e largest symbol weights in any codeword, that is,

E(e; C) =

e∑
i=1

ci for all e ∈ [q].

Further, suppose that C is an equitable symbol weight code. Then from Lemma 2.1.2, C

has constant partition 〈rq−t(r − 1)t〉, where r = dn/qe and t = qr − n. Hence,

E(e; C) =


re, if e ≤ q − t,

r(q − t) + (e− q + t)(r − 1), if q − t < e ≤ q.
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2.3.2 Importance of Symbol Equity

For narrowband noise error-correcting capability c(C) to be large, the parameter E(C) must

grow slowly as a function of e. We seek codes C for which E(C) grows as slowly as possible. In

this subsection we show that the minimum growth of E(C) is achieved when the maximum

symbol weight in any codeword of the code is at most dn/qe , that is, the symbols are

equitably distributed in any codeword. Fix n, q, and let Fn,q be the (finite) family of

functions

Fn,q = {E(C) : C is a q-ary code of length n}.

If f ∈ Fn,q, then f is a monotone increasing function with f(q) = n. We say that f ≺ g if

there exists e′ ∈ [q] with f(e) = g(e) for e ≤ e′ − 1, and f(e′) < g(e′). (2.4)

Define the total order � on Fn,q so that f � g if either f(e) = g(e) for all e ∈ [q] or f ≺ g.

The following proposition states that the total order �, in some sense, orders codes of

same length and alphabet size in accordance to their capabilities in a PLC system.

Proposition 2.3.1. Let C and C′ be (n, d)q-codes. Suppose E(C) ≺ E(C′) with e′ satisfying

equation (2.4). If E(e′; C) < d, then there exists a set of errors that C is able to correct but

C′ is unable to correct.

Proof. Consider e′ narrowband noise errors of duration n and d−E(e′; C)−1 impulse errors.

Then E(e′; C)+(d−E(e′; C)−1) < d, but E(e′; C′)+(d−E(e′; C)−1) ≥ d. The proposition

then follows from Theorem 2.2.2. �

Hence we seek the least element in Fn,q with respect to the total order �.

Proposition 2.3.2. Let f∗n,q : [q]→ [n] be defined by

f∗n,q(e) =


re, if 1 ≤ e ≤ q − t,

r(q − t) + (e− q + t)(r − 1), otherwise,

where r = dn/qe and t = qr − n. Then f∗n,q is the unique least element in Fn,q with respect
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to the total order �.

Proof. Since � is total, it suffices to establish that f∗n,q � f for all f ∈ Fn,q, and that

f∗n,q ∈ Fn,q.

Let f = E(C) ∈ Fn,q, where C is a q-ary code of length n over the alphabet [q]. Let u ∈ C.

By permuting symbols if necessary, we may assume that w1(u) ≥ w2(u) ≥ · · · ≥ wq(u). We

show that for all e ∈ [q],
e∑
i=1

wi(u) ≥ f∗n,q(e). (2.5)

Suppose on the contrary that
∑e

i=1wi(u) < f∗n,q(e) for some e ∈ [q]. If e ≤ q − t, then

we have
∑e

i=1wi(u) < re and r − 1 ≥ we(u) ≥ wj(u) for j ≥ e+ 1. Hence,

n =

q∑
i=1

wi(u) < re+ (q − e)(r − 1) = qr − q + e ≤ qr − t = n,

a contradiction.

Similarly, when e > q − t, we have
∑e

i=1wi(u) < r(q − t) + (e − q + t)(r − 1) and

r − 1 ≥ we(u) ≥ wj(u) for j ≥ e+ 1. Hence,

n =

q∑
i=1

wi(u)

< r(q − t) + (e− q + t)(r − 1) + (q − e)(r − 1)

= qr − t = n,

also a contradiction. Hence, (2.5) holds. This then implies E(e; C) ≥ f∗n,q(e) for all e ∈ [q],

and consequently f � f∗n,q.

The proposition then follows by noting that f∗n,q ∈ Fn,q, since E(C) = f∗n,q when C is a

q-ary equitable symbol weight code of length n. �

Corollary 2.3.3. A q-ary code C of length n is equitable symbol weight if and only if its

parameter E(C) is given by f∗n,q.

Proof. If C is a q-ary equitable symbol weight code of length n, we have already determined

that E(C) = f∗n,q. Hence, it only remains to show that E(C) = f∗n,q implies C is a q-ary
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equitable symbol weight code of length n. Let u ∈ C and we follow the notation in the proof

of Proposition 2.3.2. Equality holds in (2.5) if and only if wi(u) = r for 1 ≤ i ≤ q − t and

wi(u) = r − 1, otherwise. That is, u has equitable symbol weight. Hence, C is an equitable

symbol weight code. �

It follows that an equitable symbol weight code C gives E(C) of the slowest growth rate.

From Proposition 2.3.1, this is the desired condition for correcting as many narrowband

noise and signal fading errors as possible.

We end this section with a tight upper bound on c(C).

Corollary 2.3.4. Let C be an (n, d)q-code. Then

c(C) ≤ min {e : f∗n,q(e) ≥ d},

and equality is achieved when C is an equitable symbol weight code.

Proof. Let c′ = min{e : f∗n,q(e) ≥ d}. Observe that

E(c′; C) ≥ f∗n,q(c′) ≥ d.

Hence, by minimality of c(C), we have c(C) ≤ c′. The second part of the statement follows

from Corollary 2.3.3. �

The results in this section establish that an equitable symbol weight code has the best

narrowband noise error-correcting capability, among codes of the same distance and symbol

weight.

2.4 Simulation Results

In this section, we study the performance of equitable symbol weight codes in a simulated

setup. The setup is as follows. We transmit with a code of length n over alphabet Σ.

Let 0 < p < 1 and L = {bn : b ∈ [10]}. We simulate a PLC channel with the following

characteristics:
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1. for each σ ∈ Σ, narrowband noise error1 of duration l ∈ L occurs at symbol σ with

probability p,

2. for each σ ∈ Σ, a signal fading error occurs at symbol σ with probability 0.05,

3. for each i ∈ [n], an impulse noise error occurs at coordinate i with probability 0.05,

and

4. for each (σ, i) ∈ Σ× [n], an insertion/deletion error occurs at symbol σ and coordinate

i with probability 0.05.

These errors occur independently.

We choose random codewords (with repetition) from each code to transmit through the

simulated PLC channel. At the receiver, we decode the detector output v to the codeword

u′ using the minimum distance decoder defined in equation (2.1). The number of symbols

in error is then d(u′, u) and the symbol error rate is the ratio of the total number of symbols

in error to the total number of symbols transmitted.

We remark that the choice of the code lengths in our simulations is similar to code lengths

studied in prior work in this area [63,78,79]. While in theory the minimum distance decoder

described by (2.1) works for all code lengths, this decoding algorithm becomes inefficient

when the size of the code is big. We address the issue of efficient decodability in Chapter 5.

Decoding with narrowband noise detection. Versfeld et al. [78, 79] introduced a

method to detect narrowband noise in order to enhance the error correction capability of

the detector introduced in Section 2.2, when used with bounded distance decoding. Based

on the energy metrics obtained at each time slot for each frequency, they first determine the

presence of narrowband interference and if so, the metrics of the corresponding frequency are

set to zero. Depending on the detector/decoder combination, a signal is sent to the decoder.

Specifically, consider narrowband noise detection with the use of an (n, d, r)-symbol weight

code. If the number of discrete time instances in which a particular symbol appears, exceeds

b(n+ r)/2c, the particular symbol is removed from the coordinates in which it occurs. We

describe an algorithm to detect and remove narrowband noise in Figure 2.2.

1 The choice of L is similar to that of the narrowband noise model in the setup of Versfeld et al. [78, 79].
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Input: Detector Output, v ∈ (2Σ)n

Output: Modified v ∈ (2Σ)n

τ ← b(n+ r)/2c;
for σ ∈ Σ do

if |{i : σ ∈ vi}| > τ then
for i ∈ [n] do

vi ← vi \ {σ}
end

end

end

Fig. 2.2: Narrowband noise detection with a (n, d, r)-symbol weight code

Tab. 2.1: Comparison of Equitable Symbol Weight Codes and Minimum Symbol Weight
Codes

(n, d, r)q-symbol
weight code

Dis-
tance

Narrowband
noise error-
correcting
capability

Sym-
bol

weight
Size Remarks

ESW(25, 24, 2)17 24 16 2 51 equitable symbol weight
MSW(25, 24, 2)17 24 12 2 51 minimum symbol weight

ESW(11, 6, 2)10 6 5 2 1000 equitable symbol weight
MSW(11, 6, 2)10 6 3 2 1000 minimum symbol weight

2.4.1 Minimum Symbol Weight Codes

We exhibit the difference in performance between equitable symbol weight codes and (non-

equitable) minimum symbol weight codes. Specifically, we consider the codes of various

lengths and relative distances in Table 2.1.

The results of the simulation are displayed in Fig. 2.3. We detect the presence of narrow-

band noise2 using the algorithm given in Fig. 2.2 in the simulations denoted by solid lines and

labeled by “(NB)”. The similarly colored dashed lines denote simulations without narrow-

band noise detection. From the results, observe that ESW(25, 24, 2)17 and ESW(11, 6, 2)10

achieve lower symbol error rates compared to MSW(25, 24, 2)17 and MSW(11, 6, 2)10, re-

spectively.

2 As discussed in Section 2.2, after narrowband noise detection, the multivalued output is given directly
to a minimum distance decoder. This deviation from the setup by Versfeld et al. (where envelope detection
and Viterbi threshold ratio test is applied prior to decoding) means that the results are independent of the
choice of demodulation rule.
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2.4.2 Cosets and Subcodes of Reed-Solomon Codes

Versfeld et al. [78, 79] showed empirically that using narrowband detection, low symbol

weight cosets of Reed-Solomon codes outperform normal Reed-Solomon codes in the presence

of narrowband noise and additive white Gaussian noise. We continue this investigation and

observe the difference in performance between equitable symbol weight codes and low symbol

weight cosets of Reed-Solomon codes. In addition, we consider subcodes of Reed-Solomon

codes with low symbol weight.

Tab. 2.2: Comparison of Equitable Symbol Weight Codes and Low Symbol Weight Cosets
and Subcodes of Reed-Solomon Codes

(n, d, r)q-symbol
weight code

Dis-
tance

Narrowband
noise error-
correcting
capability

Sym-
bol

weight
Size Remarks

ESW(7, 5, 1)8 5 5 1 336 equitable symbol weight
RSS(7, 5, 2)8 5 3 2 336 subcode of Reed-Solomon code
RSC(7, 6, 2)8 6 3 2 64 coset of Reed-Solomon code

ESW(7, 2, 1)8 2 2 1 20160 equitable symbol weight
RSS(7, 3, 2)8 3 2 2 20160 subcode of Reed-Solomon code
RSC(7, 4, 4)8 4 1 4 4096 coset of Reed-Solomon code

ESW(15, 11, 1)16 11 11 1 21120 equitable symbol weight
RSS(15, 12, 3)16 12 4 3 21120 subcode of Reed-Solomon code
RSC(15, 13, 3)16 13 5 3 4096 coset of Reed-Solomon code

Specifically, we consider the codes in Table 2.2. See [78,79] for the construction of Reed-

Solomon coset codes, denoted by RSC. The codes denoted by RSS are subcodes of Reed-

Solomon codes. They are obtained by expurgation of a Reed-Solomon code and retaining

only the codewords with low symbol weight.

We note that it is not possible for equitable symbol weight codes and Reed-Solomon

coset codes of the same minimum distance and length over the same alphabet to be of the

same size. Therefore, for each Reed-Solomon coset codes, we make comparisons with an

equitable symbol weight code of a larger size, albeit with a smaller distance. However, these

equitable symbol weight codes have larger narrowband noise error-correcting capabilities.

In addition, we make comparisons with subcodes of Reed-Solomon codes with parameters

as close as possible to the corresponding equitable symbol weight codes. In particular, we

ensure that the subcodes and the equitable symbol weight codes have the same size.

The results of the simulation are displayed in Fig. 2.4, where we adopt similar conven-
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tions as in Fig. 2.3, and we make the following observations.

(i) While narrowband noise detection in general improves the performance of codes in

PLC, it has negligible effect on the performance of equitable symbol weight codes. A

natural question is if there is another parameter that measures this improvement and

if this parameter is related to symbol equity.

(ii) Equitable symbol weight codes show larger improvement over Reed-Solomon coset

codes at higher narrowband noise probabilities. This reflects the relevance of narrow-

band noise error-correcting capabilities as a measure of performance when the effects

of narrowband interference are significant. In contrast, when the effects of narrowband

interference are negligible, the classical Hamming distance parameter provides a better

measure of performance.

2.5 Concluding Remarks

We introduce a new code parameter that captures the error-correcting capability of a code

with respect to narrowband noise. Equitable symbol weight codes are shown to be optimal

with respect to this parameter when code length, alphabet size and distance are fixed. This

makes equitable symbol weight codes a viable option to handle narrowband noise in a PLC

channel and we study their sizes and some constructions in Chapter 3 and 4. However,

our analysis is based on a minimum distance decoder and this algorithm becomes inefficient

when the size of the code is big. We address the issue of efficient decodability in Chapter 5.

Next, we remark that the notion of symbol equity used in this chapter differs from the

notion of symbol equity that is used in Swart and Ferreira [74]. In that work, the authors

consider the code-matrix of the code (the matrix whose rows consist of all the codewords),

and show that an equal distribution of symbols in each column of the code-matrix results in

the maximum possible separation between all the codewords. This notion of symbol equity

also appears in the computation of the Plotkin bound on codes. In contrast, the symbol

equity discussed here considers the distribution of symbols in every codeword of the code,

that is, in every row of the code-matrix.
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Fig. 2.3: Comparison of equitable and minimum symbol weight codes
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Fig. 2.4: Comparison of equitable symbol weight codes and low symbol weight cosets and
subcodes of Reed-Solomon codes
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Finally, the notion of symbol equity discussed in this chapter is also applicable to systems

where crisscross types of errors are encountered [66].



3. ESTIMATES ON THE SIZES OF EQUITABLE

SYMBOL WEIGHT CODES

Motivated by results in Chapter 2, we investigate the possible sizes of equitable symbol

weight codes and in particular, provide lower and upper bounds on the sizes. Of signifi-

cance, we determine the asymptotic size for equitable symbol weight codes under certain

conditions and tabulate the estimated size of optimal equitable symbol weight codes for

certain parameters.

Section 3.2 is presented part in Chee et al. [13], where we examine the asymptotic behav-

ior of codes in the bounded symbol weight space. Interestingly, even though the equitable

symbol weight space is a subset of the bounded symbol weight space, the asymptotic sizes

of the two are approximately the same.

3.1 Preliminaries

Throughout this chapter, let Σ denote an alphabet of size q and n denote the code length.

Let u ∈ Σn. For σ ∈ Σ, recall that wσ(u) is the number of times the symbol σ appears

among the coordinates of u.

A word u has symbol weight r if r = maxσ∈Σwσ(u). Denote the space of all codewords

of length n with symbol weight at most r by SW(q, n,≤ r). The size of SW(q, n,≤ r) is

hence given by

|SW(q, n,≤ r)| =
∑

(r1,r2,...,rq)∈P (n,q,r)

(
n

r1, r2, . . . , rq

)
, (3.1)

where P (n, q, r) denote the compositions of n into q parts where each part is bounded

between 0 and r.

On the other hand, a word u has equitable symbol weight if wσ(u) ∈ {dn/qe , bn/qc} for
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all σ ∈ Σ. Denote the space of all codewords with equitable symbol weight by ESW(q, n)

and the size of the equitable symbol weight space can be derived easily. Let r = dn/qe and

t = qr − n. Then,

|ESW(q, n)| =
(
q

t

)(
n

r, r, . . . , r︸ ︷︷ ︸
q−t

, r − 1, r − 1, . . . , r − 1︸ ︷︷ ︸
t

)
=

(
q

t

)
n!

(r!)q−t(r − 1)!t
(3.2)

Denote the maximum size of an (n, d)q-equitable symbol weight code by AESWq (n, d).

Any (n, d)q-equitable symbol weight code of size AESWq (n, d) is said to be optimal.

3.1.1 Classical Bounds

We provide upper and lower bounds for AESWq (n, d) by considering familiar techniques in

classical coding theory. While certain bounds are not expressed in simple forms and are

computationally infeasible for large values, we use them in Section 3.3 to provide bounds

for specific values of q, n and d.

Proposition 3.1.1 (Singleton-type bound). Let 1 ≤ d ≤ n. Let r = dn/qe. Then

AESWq (n, d) ≤ |SW (q, n− d+ 1,≤ r)|. (3.3)

Proof. Let C be an (n, d)q-equitable symbol weight code. Pick any n− d+ 1 coordinates of

[n], that is, I ∈
( [n]
n−d+1

)
, and consider the code C|I := {(ui) : i ∈ I}. Then C|I consists of

distinct words from SW(q, n− d+ 1,≤ r). The inequality is then immediate. �

We remark that Proposition 3.1.1 generalizes previously known bounds for equitable

symbol weight codes. Namely, when n ≤ q, the proposition reduces to the Singleton-type

bound for injection codes given by Dukes [28, Theorem 1].

As with classical GV and Hamming bounds, we consider the volume of a Hamming ball

in the equitable symbol weight space. In particular, fix any u0 ∈ ESW(q, n) and define the

following,

V ESW (q, n, d) := |{u ∈ ESW(q, n) : d(u, u0) ≤ d}|. (3.4)
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Note that the value of V ESW (q, n, d) is independent of the choice u0. Hence, we obtain

the following GV-type and Hamming-type bounds.

Proposition 3.1.2 (GV-type and Hamming-type bounds). Let 1 ≤ d ≤ n. Then

|ESW(q, n)|
V ESW (q, n, d− 1)

≤ AESWq (n, d) ≤ |ESW(q, n)|
V ESW (q, n, b(d− 1)/2c) . (3.5)

To end this section, we remark that Luo et al. gave a nonrecursive Johnson-type bound

for constant composition codes [56, Lemma 2] and Huczynska and Mullen observed that

this bound reduces to the Plotkin bound for frequency permutation arrays [43]. For general

equitable symbol weight codes, we remark the classical Plotkin bound suffices in the sense

that there are families of optimal equitable symbol weight codes that meet the Plotkin

bound. We construct these codes in Chapter 4.

3.2 Asymptotic Size of Equitable Symbol Weight Codes

In this section, we show that the asymptotic sizes of an optimal equitable symbol weight

code and an optimal classical code with the same parameters are approximately the same,

provided that the ratio q/n tends to a constant. Moreover, when q also grows with n, the

asymptotic size of an optimal equitable symbol weight code can be precisely determined.

We remark that the condition that q grows at most proportional to n is a reasonable

assumption. This is because in many applications the number of frequencies (or symbols)

available for transmission is restricted as compared to the code length.

To establish this result, we require the following lemma that states that the asymptotic

size of the equitable symbol weight space is approximately one. As the proof of the lemma

is a technical application of Stirling’s approximation, we defer the proof to the Subsection

3.2.1.

Lemma 3.2.1. Let q/n→ θ as n→∞. Then

1

n
logq |ESW(q, n)| = 1− o(1).
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With this simple lemma and an Elias-type argument, we establish the main result of

this chapter.

Theorem 3.2.2. Let q/n→ θ as n→∞ where 0 ≤ θ <∞. Then

1

n
logq A

ESW
q (n, d) =

1

n
logq Aq(n, d)− o(1).

Furthermore, if q →∞ and d/n→ δ as n→∞,

lim
n→∞

1

n
logq A

ESW
q (n, d) = 1− δ.

Proof. Using an Elias-type argument, we have

Aq(n, d) ≤ qn

|ESW(q, n)|A
ESW
q (n, d).

Taking logarithms and applying Lemma 3.2.1, we have

1

n
logq Aq(n, d) ≤ 1 +

1

n
logq |ESW(q, n)|+ 1

n
logq A

ESW
q (n, d)

≤ 1

n
logq A

ESW
q (n, d) + o(1).

On the other hand, we have the fact AESWq (n, d) ≤ Aq(n, d), and so,

1

n
logq Aq(n, d)− o(1) ≤ 1

n
logq A

ESW
q (n, d) ≤ 1

n
logq Aq(n, d).

Suppose in addition d/n→ δ and q →∞. Then by GV bound,

1

n
logq A

ESW
q (n, d) ≥ 1

n
logq Aq(n, d)− o(1)

≥ 1− hq(δ)− o(1).

Since hq(x)→ x as q →∞, we have

lim
n→∞

1

n
logq A

ESW
q (n, d) ≥ 1− δ.
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On the other hand, by Singleton bound,

1

n
logq A

ESW
q (n, d) ≤ 1

n
logq Aq(n, d) ≤ 1− δ,

and this gives the last equality. �

3.2.1 Asymptotic Size of ESW(q, n)

In this subsection, we establish Lemma 3.2.1. Recall that given n and q, we define r = dn/qe

and t = qr−n. In other words, we have r = (n+ t)/q and 0 ≤ t < q. The size of ESW(q, n)

is given by (3.2) and to estimate the size we make use of Stirling’s approximation.

Theorem 3.2.3 (Stirling Approximation). Let n > 0. Then

n! ≥ n lnn− n, (3.6)

n! = n lnn− n+
1

2
lnn+O(1). (3.7)

Let q be a function of n such that q/n→ θ when n→∞. Consider the following cases.

First, suppose θ > 0. Hence, q →∞ as n→∞.

Observe that ESW(q, n) ≥ n!
rn and applying Stirling’s approximation,

1

n
logq |ESW(q, n)| ≥ logq n− logq e− logq r

= logq n− logq e− logq(n+ t) + 1

= 1− logq e− logq
n+ t

n

≥ 1− logq e− logq
n+ q

n

= 1− o(1),

where the last equality follow from the fact that logq e → 0 and logq(n + q)/n = logq(1 +

q/n)→ 0 since q/n→ θ and q →∞.

Suppose θ = 0. Then r = (n+ t)/q →∞ as n→∞. Applying Stirling’s approximation,
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we have

1

n
logq |ESW(q, n)| = 1

n
logq

(n!)rt

(r!)q

≥ logq n− logq e+
t

n
logq r −

qr

n
logq r +

qr

n
logq e

− q

2n
logq r −

q

n
logq O(1).

We make the following observations:

t

n
logq r −

qr

n
logq r = − logq r = 1− logq(n+ t),

− logq e+
qr

n
logq e =

t

n
logq e ≤

q

n
log2 e = o(1),

q

2n
logq r =

q

2n
logq

n+ t

q
≤ q

2n
log2

2n

q
= o(1),

q

n
logq O(1) = o(1),

Therefore,

1

n
logq |ESW(q, n)| ≥ 1− logq(n+ t)/n− o(1) ≥ 1− logq(1 + q/n)− o(1) = 1− o(1),

since 1 + q/n→ 1 as n→∞.

3.3 Sizes of Equitable Symbol Weight Codes for Specific Parameters

This section looks at the possible sizes of optimal equitable symbol weight codes for specific

parameters. In particular, we provide a table of values of lower and upper bounds for

AESWq (n, d) where q ∈ {3, 4} at the end of the chapter.

While there is extensive literature on constant composition codes (see [10, 18, 21, 24–27,

38, 42, 56]) and frequency permutation arrays (see [42, 43]), few results apply in the range

of parameters in our tables. In fact, it turns out that computational methods yield better

results for this set of parameters.

But first we provide a survey on known values of AESWq (n, d). The following facts on

the size of optimal equitable symbol weight codes are trivial.
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(i) Given q and n, AESWq (n, 1) = ESW(q, n).

(ii) Given q and r, AESWq (rq, 2) = ESW(q, rq) = (rq)!/(r!)q.

(iii) Given q and n, AESWq (n, n) = q.

For other values of q, n and d, relatively little is known about optimal equitable symbol

weight codes, other than those that correspond to permutation codes, injection codes and

frequency permutation arrays. In Table 3.1, we provide a summary of the known infinite

families of optimal equitable symbol weight codes. We observe that only six infinite families

of optimal equitable symbol weight codes with code length greater than alphabet size are

known. These have all been constructed by Ding and Yin [26], and Huczynska and Mullen

[42] as frequency permutation arrays and they meet the Plotkin bound.

One drawback with the code parameters of these families is that the narrowband noise

error-correcting capability (see Definition 2.2.3) to length ratio diminishes as its length

grows. This is undesirable for narrowband noise correction for PLC and the following

theorem provides infinite families of optimal equitable symbol weight codes with code lengths

are larger than alphabet size and whose relative narrowband noise capability to length ratios

tend to a positive constant as length grows.

Theorem 3.3.1. The following holds.

(i)

AESWq (2q − 1, 2q − 2) =


3, q = 2,

2q, q ≥ 3.

(ii)

AESWq (3q − 1, 3q − 3) =


4, q = 2,

3q, q ≥ 3.

(iii)

AESWq (4q − 1, 4q − 4) =


4q − 1, q = 2, 3,

4q, q ≥ 4.
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(iv) If q ≥ 62 or q ∈ {5− 18, 30, 42, 46, 48− 50, 54− 57},

AESWq (5q − 1, 5q − 5) = 5q.

(v) If q is an odd prime power,

AESWq (q2 − 1, q2 − q) = q2.

(vi)

AESWq

(
3q − 1

2
,
3q − 3

2

)
=


4q − 6, q = 3, 5,

3q, q ≥ 7 is odd.

(vii)

AESWq (2q − 3, 2q − 4) =


6q − 12, q = 3, 4,

14, q = 5, 6,

2q + 1, q ≥ 7, except possibly q ∈ {12, 13}.

The proof of Theorem 3.3.1 is based on the construction of equivalent combinatorial

objects called generalized balanced tournament packings (GBTPs) and reveals an interesting

interplay with combinatorial design theory. The construction of GBTPs forms the theme of

Chapter 4. In particular, Theorem 3.3.1(i) to (v) follows from Proposition 4.1.2, Theorem

4.2.4 and Theorem 4.2.5. Theorem 3.3.1(vi) follows from Proposition 4.1.2, Theorem 4.2.4

and Lemma 4.6.3, while Theorem 3.3.1(vii) follows from Proposition 4.1.2, Theorem 4.2.6

and Lemma 4.6.6.

In the following subsections, we describe certain constructions of equitable symbol weight

codes which help to establish estimates for AESWq (n, d).

3.3.1 Subcodes of Cosets of Linear Codes

Motivated by Theorem 3.2.2, we construct equitable symbol weight codes by looking at

subcodes of cosets of classical linear codes.
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Specifically, let C be a linear code over Fq of length n with distance d. Suppose k is the

dimension of C and H is the parity check matrix for C. For s ∈ Fn−kq , if we consider the code

C(s) := {u ∈ ESW(q, n) : uHT = s},

then C(s) is an (n, d)q-equitable symbol weight code. It then follows that

AESWq (n, d) ≥ max
s∈Fn−kq

|C(s)| . (3.8)

In Table 3.2 and Table 3.3, we make use of (3.8) with known optimal linear codes

(recorded at [39]) to establish certain lower bounds.

A notable class of optimal linear code is the Reed-Solomon codes. In particular, for

d ≤ n ≤ q and q is a prime power, there exists a linear (n, d)q-code of dimension n− d+ 1.

Since there are qd−1 cosets, an averaging argument shows that there exists a (n, d)q equitable

symbol weight codes with size at least q!/((q−n)!qd−1). Since n ≤ q, these codes are in fact

injection codes. Furthermore, observe that

q!

(q − n)!qd−1
=

q!

(q − n+ d− 1)!
· (q − n+ 1)(q − n+ 2) · · · (q − n+ d− 1)

qd−1

and consider n as a function of q. If n = o(q), then this construction shows that the

Singleton-type bound given in Proposition 3.1.1 is asymptotically tight. In addition, as

these codes are subcodes of cosets of Reed-Solomon codes, classical decoding algorithms1 of

the latter apply to these injection codes.

Proposition 3.3.2. Let n ≤ q and q be a prime power. Then

AESWq (n, d) ≥ q!

(q − n)!qd−1
.

Furthermore, when n = o(q), then AESWq (n, d) = (1 − o(1))q!/(q − n+ d− 1)!, where the

1 Versfeld et al. [78, 79] (see also Section 2.4) adapted classical bounded distance decoding methods to
cosets of Reed-Solomon codes in the presence of narrowband interference. Their methods can be applied
directly to the subcodes and decode up to the distance of the supercodes. Decoding up to the distance of
the subcode is an area for future study.
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asymptotics are in q.

Next, we observe that our construction can easily extended to codes that are nonlinear

over a finite field, but are ‘additive’ over some abelian group.

Proposition 3.3.3. Consider an abelian group Γ of order q. Let γ ∈ Γ and define

C(q, n, γ) := {u ∈ ESW(q, n) :
n∑
i=1

ui = γ}.

Then C(q, n, γ) is a (n, 2)q-equitable symbol weight code. Hence,

AESWq (n, 2) ≥ max
γ∈Γ
|C(q, n, γ)| .

3.3.2 Computational Methods Based on Maximum Clique Problem

Given any coding metric, the problem of determining the size of an optimal code can be

reduced to an instance of the maximum clique problem. More precisely, a clique of a graph

is a set of mutually adjacent vertices and a maximum clique is a clique with the maximum

number of vertices. Fix q, n, and d and define the graph G(q, n, d) whose vertex set is

ESW(q, n). The vertices u, v ∈ ESW(q, n) are adjacent if the Hamming distance between u

and v is at least d. Hence, it is not difficult to observe that the maximum clique of G(q, n, d)

corresponds to an optimal (n, d)q-equitable symbol weight code.

Unfortunately, the maximum clique problem for a general graph is a difficult problem.

Specifically, given M and an arbitrary graph, the problem of determining the existence of

a clique of size M is NP-hard. Despite this theoretic complexity for general graphs, many

clique-finding algorithms and heuristics have been developed and shown experimentally to

be effective for maximum clique problems of practical importance (see Pardolos and Xue

[64] and Bomze et al. [7] for a survey).

Note that while the maximum clique problem for general graphs is NP-hard, it remains

an open problem to determine if the maximum clique problem for the family of graphs

G(q, n, d) is NP-hard. However, the exact algorithms and heuristics for clique-finding are

still applicable and we outline a few to determine certain exact values and lower bounds in
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Table 3.2 and Table 3.3. We remark that there are many other computationally intensive

search methods that may lead to tighter lower bounds.

In the following, let G = (V,E) be a general graph.

Exact Algorithm - Branch-and-bound. A branch-and-bound algorithm for the

maximum clique problem typically consists of a systematic enumeration (branching process)

of all subsets of vertices or candidate solutions, where large sets of ‘fruitless’ candidates are

discarded by using a bounding function on the candidate solutions (bounding or pruning

process). Hence, the algorithm is exhaustive and always produces a maximum clique.

A typical branching algorithm for maximum clique orders the vertex set V and maintains

a candidate solution set K ⊆ V , which is initialized to be the empty set. We recursively

add and remove vertices (according to the order) to K and check if K indeed forms a clique.

Clearly, when K is not a clique, we have a simple criterion to abandon all candidate solutions

K ′ ⊇ K. This pruning process turns out to be effective in reducing the running time of the

algorithm.

Various pruning methods [61, 71, 76] have been proposed and we use the algorithm

MaxCliqueDyn implemented and proposed by Konc and Janežič [45]. The algorithm which

builds on the work of Tomita et al. [76] is based on vertex coloring. Broadly speaking,

MaxCliqueDyn in addition to K maintains another global set Kmax, which is the maximum

clique currently found. Suppose v is the last added vertex to K and amongst the vertices

yet to be considered, we look at N(v), the set of vertices adjacent to v. The algorithm then

colors the vertices in N(v) such that adjacent vertices are of different color. If N(v) can be

colored with c colors, then from graph theory the size of a maximum clique in N(v) is at

most c. Hence, if |K|+ c < |Kmax|, we are able to prune the search space.

While it is desirable to use as little colors as possible in the pruning step, finding an

optimal coloring (with the least colors) is time-consuming and in factNP-hard. Hence, there

exists a trade-off between the time needed for an approximate coloring and the resulting

reduction in search space. MaxCliqueDyn in our experiments turns out to be suited for

determining the maximum clique in G(q, n, d).
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Heuristic Search - Local Search Techniques. Unfortunately, running times of exact

algorithms grow exponentially and for most instances, we resort to heuristic techniques to

determine lower bounds for AESWq (n, d). Despite having no a priori guarantee on the size

nor the running time, these heuristic techniques often produce better lower bounds than

conventional methods in reasonable time. Such methods are broadly called local search and

Honkala and Österg̊ard [41] documents the success of local search methods in coding theory.

Hill-climbing is one simple variant of local search methods. In our constructions, we begin

with an initial (n, d)q-equitable symbol weight code C. For each iteration, we randomly pick

u ∈ ESW(q, n) and we have three possibilities:

(I) if d(u, v) ≥ d for all v ∈ C, then repeat the iteration with C ∪ {u};

(II) if d(u, v) < d but d(u, v) ≥ d for all v ∈ C \ {v0}, we repeat the iteration with

C ∪ {u} \ {v0};

(III) otherwise, we repeat the iteration with C unchanged.

The crucial feature of this algorithm is at Step (II) where we ‘alter’ the code and prevent

the algorithm from being ‘trapped at a local maximum’.

Heuristic Search - Partitioning Techniques. A heuristic method that is peculiar

to coding theory is to transform a coding problem to an instance of the maximum clique

problem defined over a graph with less vertices. More precisely, to determine AESWq (n, d),

we partition ESWq(n, d) into parts C1, C2, . . . , Cv such that Ci is an equitable symbol weight

code with distance at least d for each i ∈ [v]. Consider the graph G∗(q, n, d) whose vertices

are C1, C2, . . . , Cv. For distinct i, j ∈ [v], we define Ci and Cj to be adjacent if the distance

between u and v is at least d for all u ∈ Ci and v ∈ Cj . Hence, a clique in G∗(q, n, d) yields

an (n, d)q-equitable symbol weight code.

Similar techniques have been employed in constructing binary codes [60, 62] and per-

mutation codes [20, 73]. Unfortunately, unlike binary codes and permutation codes, we do

not have an obvious partitioning of the equitable symbol weight space. In determining the

values of Table 3.2 and Table 3.3, we consider partitioning ESW(q, n) (defined over Zq) via

the equivalence relation u ∼ v if and only if u = v + (c, c, . . . , c) for some c ∈ Zq. In other
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words, each part is a code of size q and distance n. For convenience, we call such a code

a partition code of type I. Then, we used either exact algorithms or heuristic techniques in

the previous parts to determine the corresponding lower bounds.

3.3.3 Tables of Equitable Symbol Weight Codes

Finally, we provide estimates of the size of optimal equitable symbol weight codes based on

upper/lower bounds and constructions given in this chapter. Here, we look at q ∈ {3, 4}

and look at length n ≥ q + 1, as corresponding tables for injection codes and permutation

codes are given by Dukes [28] and Chu et al. [20], Smith and Montemanni [73] respectively.

We explain the annotations. The rows marked by ‘UB’ provides the upper bounds and

the bounds corresponding to the superscripts are as follow:

Superscript s : Singleton-type bound from Proposition 3.1.1.

Superscript h: Hamming-type bound from Proposition 3.1.2.

Superscript p: Plotkin bound from Theorem 1.3.3.

The rows marked by ‘LB’ provides the lower bounds and the bounds/constructions

corresponding to the superscripts are as follow:

Superscript cc : A subcode of a coset of an optimal linear code (see (3.8)).

Superscript hc: A code resulting from hill-climbing heuristic.

Superscript pc: Partition code of type I.

Exact values of AESWq (n, d) are highlighted in bold. The superscripts explain how the

values are derived.

Superscript t : Trivial.

Superscript g : Theorem 3.3.1.

Superscript m: Exhaustive search by MaxCliqueDyn.

3.4 Concluding Remarks

We determine the value of limn→∞
1
n logq A

ESW
q (n, d) under the condition that q/n tends to

a constant and explore certain constructions of equitable symbol weight codes. In addition,

we provide a table listing possible upper and lower bounds for AESWq (n, d) when q ∈ {3, 4}.
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Tab. 3.2: Table of possible values for AESW3 (n, d) for 4 ≤ n ≤ 10

n\d 1 2 3 4 5 6 7 8 9 10

4 UB 36t 12m 6g 3t

LB – – – –

5 UB 90t 36m 15m 6g 3t

LB – – – – –

6 UB 90t 90t 30m 15m 3m 3t

LB – – – – – –

7 UB 630t 510s 90h 30m 9m 3m 3t

LB – 210cc 72hc – – – –

8 UB 1680t 1050s 240h 210s 36h 9g 3m 3t

LB – 583hc 141pc 58hc 24pc – – –

9 UB 1680t 1680t 1050s 510s 60h 60h 6m 3m 3t

LB – – 312hc 168pc 36pc 24pc – – –

10 UB 12600t 11130s 1400h 1400h 190h 190h 21p 6m 3m 3t

LB – 4200cc 874hc 238hc 75pc 50cc 12hc – – –

Tab. 3.3: Table of possible values for AESW4 (n, d) for 4 ≤ n ≤ 9

n\d 1 2 3 4 5 6 7 8 9

5 UB 240t 204s 34h 12g 4t

LB – 60cc 28hc – –

6 UB 1080t 600s 120h 60s 9m 4t

LB – 360cc 80pc 36cc – –

7 UB 2520t 1440s 360h 204s 51h 8g 4t

LB – 864hc 216hc 63hc 18hc – –

8 UB 2520t 2520t 1440s 600s 100h 60s 5m 4t

LB – – 672hc 148hc 37hc 15hc – –

9 UB 30240t 30240h 3024h 3024h 397h 252s 28p 5m 4t

LB – 7560cc 1916hc 427hc 112hc 36hc 14hc – –
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We remark that the upper and lower bounds employed are simple generalizations of

classical coding techniques and computational methods. More sophisticated tools such as

linear programming and genetic algorithms can be used to derive tighter upper and lower

bounds respectively. An in-depth study of these methods is part of future research.



4. GENERALIZED BALANCED TOURNAMENT

PACKINGS AND OPTIMAL EQUITABLE

SYMBOL WEIGHT CODES

This chapter is devoted to the construction of optimal equitable symbol weight codes. The

construction implies the proof of Theorem 3.3.1 and is based on the construction of an

equivalent class of combinatorial objects called generalized balanced tournament packings

(GBTPs). These packings extend the concept of generalized balanced tournament designs

(GBTDs) introduced by Lamken and Vanstone [46] and our methods reveal an interesting

interplay between coding theory and combinatorial design theory.

In particular, we formally define GBTPs and establish the equivalence between GBTPs

and equitable symbol weight codes. In Section 4.2, we establish two classes of GBTPs that

correspond to optimal equitable symbol weight codes and subsequently settle the existence

of these two classes of GBTPs in the rest of the chapter. This chapter has been presented

in part at the IEEE International Symposium on Information Theory, 2012 [12]

4.1 Preliminaries

Throughout this chapter, let Σ denote an alphabet of size q and n denote the code length.

Let u ∈ Σn. For σ ∈ Σ, recall that wσ(u) is the number of times the symbol σ appears

among the coordinates of u.

A codeword u ∈ Σn has equitable symbol weight if wσ(u) ∈ {bn/qc, dn/qe} for any σ ∈ Σ.

If all the codewords of C have equitable symbol weight, then the code C is called an equitable

symbol weight code. Denote the maximum size of an (n, d)q-equitable symbol weight code

by AESWq (n, d). Any (n, d)q-equitable symbol weight code of size AESWq (n, d) is said to be
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optimal.

Taken as a q-ary code of length n, an optimal (n, d)q-equitable symbol weight code

satisfies the generalized Plotkin bound [44, Ch.2, Theorem 2.82, Corollary 2.84, Theorem

2.86].

Theorem 4.1.1 (Generalized Plotkin Bound [44]). If there is an (n, d)q-code C of size M ,

then (
M

2

)
d ≤ n

q−2∑
i=0

q−1∑
j=i+1

MiMj , (4.1)

where Mi = b(M + i)/qc. If M ≡ 0 mod q and
(
M
2

)
d = n

(
q
2

)
(M/q)2, then C is optimal.

In particular, the codes constructed in Theorem 3.3.1 meet this generalized Plotkin

bound with the exception of certain small values of n, q and d. For these small values (with

the exception of AESW6 (9, 8)), an exhaustive computer search established their respective

values of AESWq (n, d). For AESW6 (9, 8), a (9, 8)6-equitable symbol weight code of size 14

was found via computer search. Since a (9, 8)6-equitable symbol weight code of size 15

cannot exist by the generalized Plotkin bound, it follows that AESW6 (9, 8) = 14. We record

the results of the computations in the following proposition and the corresponding optimal

codes can be found at [11].

Proposition 4.1.2. We have the following:

AESW2 (3, 2) = 3 AESW2 (5, 3) = 4 AESW2 (7, 4) = 7

AESW3 (3, 2) = 6 AESW3 (4, 3) = 6 AESW3 (11, 8) = 11

AESW4 (5, 4) = 12 AESW5 (7, 6) = 14 AESW6 (9, 8) = 14.

The rest of the chapter establishes the remaining values in Theorem 3.3.1.

4.2 Generalized Balanced Tournament Packings

A set system is a pair S = (X,A), where X is a finite set of points and A ⊆ 2X . Elements

of A are called blocks. The order of S is the number of points in X, and the size of S is
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the number of blocks in A. Let K be a set of nonnegative integers. The set system (X,A)

is said to be K-uniform if |A| ∈ K for all A ∈ A.

Let λ, v be positive integers and K be a set of nonnegative integers. A (v,K, λ)-packing

is a K-uniform set system of order v such that every pair of distinct points is contained in

at most λ blocks. A parallel class (or resolution class) of a packing is a subset of the blocks

that partitions the set of points X. If the set of blocks can be partitioned into parallel

classes, then the packing is resolvable, and denoted by RP(v,K, λ). An RP(v,K, λ) is called

a maximum resolvable packing, denoted by MRP(v,K, λ), if it contains maximum possible

number of parallel classes.

Furthermore, an MRP(v, {k}, λ) is called a resolvable (v, {k}, λ)-balanced incomplete

block design, or RBIBD(v, k, λ) in short, if every pair of distinct points is contained in

exactly λ blocks. A simple computation gives the size of an RBIBD(v, k, λ) to be λv(v−1)
k(k−1) .

Definition 4.2.1. Let (X,A) be an RP(v,K, λ) with n parallel classes. Then (X,A) is

called a generalized balanced tournament packing if the blocks of A are arranged into an

m× n array satisfying the following conditions:

(i) every point in X is contained in exactly one cell of each column,

(ii) every point in X is contained in either dn/me or bn/mc cells of each row.

We denote such a GBTP by GBTPλ(K; v,m× n).

Unless otherwise stated, the rows of a GBTPλ(K; v,m× n) are indexed by [m] and the

columns by [n].

In a GBTPλ(K; v,m × n), given point x and column j, there is a unique row that

contains the point x in column j. Hence, for each point x ∈ X of a GBTPλ(K; v,m × n)

(X,A), we may correspond the codeword c(x) = (r1, r2, . . . , rn) ∈ [m]n, where rj is the row

in which point x appears in column j. It is obvious that C = {c(x) : x ∈ X} is an m-ary

code of length n over the alphabet [m]. We note that this correspondence is precisely the

one used by Semakov and Zinoviev [70] to show the equivalence between equidistant codes

and resolvable balanced incomplete block designs.
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For distinct points x, y ∈ X, the distance between c(x) and c(y) is the number of columns

for which x and y are not both contained in the same row. Since there are at most λ blocks

containing both x and y, and that no two such blocks can occur in the same column of the

GBTPλ(K; v,m× n), the distance between c(x) and c(y) is at least n− λ.

Next, we determine wi(c(x)), for x ∈ X and i ∈ [m]. From the construction of c(x), the

number of times a symbol i appears in c(x) is the number of cells in row i that contains

x. By the definition of a GBTPλ(K; v,m × n), this number belongs to {bn/mc , dn/me}.

Hence, C is an equitable symbol weight code with size v.

Finally, this construction of an equitable symbol weight code from a generalized balanced

tournament packing can easily be reversed. We record these observations as:

Theorem 4.2.2. Let K be set of nonnegative integers. Then a GBTPλ(K; v,m× n) exists

if and only if an (n, n− λ)m-equitable symbol weight code of size v exists.

Example 4.2.3. Consider the GBTP1({2, 3}; 6, 3× 4) below.

{1, 4} {2, 6} {3, 5}

{1, 2, 3} {2, 5} {3, 4} {1, 6}

{4, 5, 6} {3, 6} {1, 5} {2, 4}

Each point x ∈ [6] gives a codeword c(x) = (r1, r2, . . . , r5), where rj is the row in which

point x appears in column j. Hence, we have

c(1) = (2, 1, 3, 2), c(2) = (2, 2, 1, 3), c(3) = (2, 3, 2, 1),

c(4) = (3, 1, 2, 3), c(5) = (3, 2, 3, 1), c(6) = (3, 3, 1, 2).

Hence, {c(1), c(2), c(3), c(4), c(5), c(6)} is a (4, 3)3-equitable symbol weight code of size six.

Theorem 4.2.2 set up the equivalence between GBTPs and equitable symbol weight

codes. In general, a GBTP may not correspond to an optimal equitable symbol weight

code. However, in the following, we look at specific K to derive families of optimal equitable

symbol weight codes.
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4.2.1 Optimal Equitable Symbol Weight Codes from Generalized Balanced

Tournament Designs

A GBTPλ

(
{k}; km,m× λ(km−1)

k−1

)
is a generalized balanced tournament design (GBTD),

denoted by GBTDλ(k,m). In this case, we check that each pair of distinct points is contained

in exactly λ blocks and every point is contained in either
⌈
λ(km−1)
m(k−1)

⌉
or
⌊
λ(km−1)
m(k−1)

⌋
cells of

each row.

Applying Theorem 4.2.2, a
(
λ(km−1)
k−1 , λk(m−1)

k−1

)
m

-equitable symbol weight code of size

km exists and the corresponding code is optimal by generalized Plotkin bound. So, we have

the following.

Theorem 4.2.4. A GBTDλ(k,m) exists if and only if an optimal
(
λ(km−1)
k−1 , λk(m−1)

k−1

)
m

-

equitable symbol weight code of size km exists and attains the generalized Plotkin bound.

We remark that our definition of a generalized balanced tournament design extends that

of Lamken and Vanstone [46], which corresponds in our definition to the case when λ = k−1.

The following summarizes the state-of-the-art results on the existence of GBTDk−1(k,m).

Theorem 4.2.5 (Lamken [46–49], Yin et al. [84], Chee et al. [17], Dai et al. [23]). The

following holds.

(i) A GBTD1(2,m) exists if and only if m = 1 or m ≥ 3.

(ii) A GBTD2(3,m) exists if and only if m = 1 or m ≥ 3.

(iii) A GBTD3(4,m) exists if and only if m = 1 or m ≥ 4.

(iv) A GBTD4(5,m) exists if m ≥ 62 or m ∈ {5− 18, 30, 42, 46, 48− 50, 54− 57}.

(v) A GBTDk−1(k, k) exists if k is an odd prime power.

Theorem 3.3.1(i) to (v) is now an immediate consequence of Theorem 4.2.4, Theorem

4.2.5. and Proposition 4.1.2. The existence of GBTDλ(k,m) when λ 6= k − 1 has not been

previously investigated. The smallest open case is when k = 3 and λ = 1, which is the case

dealt with in this chapter.
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It follows readily from the fact that a GBTD1(3,m) is also an RBIBD(3m, 3, 1), that

a necessary condition for a GBTD1(3,m) to exist is that m must be odd. We note from

Proposition 4.1.2 that AESW3 (4, 3) = 6 and AESW5 (7, 6) = 14, which do not meet the Plotkin

bound. Hence, the corresponding designs GBTD1(3, 3) and GBTD1(3, 5) do not exist by

Theorem 4.2.4.

Hence, a GBTD1(3,m) can exist only if m is odd and m /∈ {3, 5}. In Sections 4.3 to 4.6,

we prove that this necessary condition is also sufficient for the existence of GBTD1(3,m).

A direct consequence of this is Theorem 3.3.1(vi).

4.2.2 Optimal Equitable Symbol Weight Codes a class of GBTPs

Theorem 4.2.4 constructs optimal equitable symbol weight codes from GBTDs. In this

subsection, we make slight variations to obtain another infinite family of optimal equitable

symbol weight codes.

Consider a GBTP1({2, 3}; v,m × n). If there is exactly one block of size three in each

resolution class, then we denote the GBTP by GBTP1({2, 3∗}; v,m × n). A simple com-

putation then shows v = 2m + 1. Now we establish the following construction for optimal

equitable symbol weight codes.

Theorem 4.2.6. Let m ≥ 7. If there exists a GBTP1({2, 3∗}; 2m+ 1,m× (2m− 3)), then

there exists an optimal (2m− 3, 2m− 4)m-equitable symbol weight code of size 2m+ 1 which

attains the generalized Plotkin bound.

Proof. By Theorem 4.2.2, we have a (2m−3, 2m−4)m-equitable symbol weight code of size

2m+ 1. It remains to verify its optimality.

Suppose otherwise that there exists a (2m− 3, 2m− 4)m-equitable symbol weight code

of size 2m+ 2. Consider (4.1) in Theorem 4.1.1. On the left hand side, we have

(
2m+ 2

2

)
· (2m− 4) = 4m3 − 2m2 − 10m− 4.

Since
⌊

2m+2+i
m

⌋
= 2 for 0 ≤ i ≤ m − 3 and

⌊
2m+2+(m−2)

m

⌋
=
⌊

2m+2+(m−1)
m

⌋
= 3, the term
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on the right hand side is

(2m− 3)

((
m−3∑
i=0

4(m− 3− i) + 12

)
+ 9

)
= (2m− 3)(4m(m− 2)− 2(m− 3)(m− 2) + 9)

= 4m3 − 2m2 − 12m+ 9

But for m ≥ 7,

4m3 − 2m2 − 10m− 4 > 4m3 − 2m2 − 12m+ 9,

contradicting (4.1). Hence, a (2m−3, 2m−4)m-equitable symbol weight code of size 2m+2

does not exist and the result follows. �

In the rest of this chapter, we construct a GBTP1({2, 3∗}; 2m + 1,m × (2m − 3)) for

m ≥ 4, except possibly m ∈ {12, 13}. This with Theorem 4.2.6 and Proposition 4.1.2 gives

Theorem 3.3.1(vii).

4.3 Proof Strategy

For the rest of the chapter, we determine with finite possible exceptions the existence of

GBTD1(3,m) and GBTP1({2, 3∗}; 2m+ 1,m× (2m−3)). Our proof is technical and rather

complex. This section outlines the general strategy used and introduces the required auxil-

iary designs.

As with most combinatorial designs, direct construction to settle their existence is often

difficult. Instead, we develop a set of recursive constructions, building big designs from

smaller ones. Direct methods are used to construct a large enough set of small designs on

which the recursions can work to generate all larger designs. For our recursion techniques

to work, the generalized balanced tournament packing must possess more structure than

stipulated in its definition. First, we consider GBTD1(3,m)s that are ∗colorable which are

defined below.
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0001∞ ♣ 204031 ♣ 614010 ♦ 211161 ♣ 511020 ♥ 413111 ♥ 514121 ♦
615131 ♣ 1011∞ ♣ 305041 ♣ 3031∞ ♦ 500061 ♦ 601001 ♦ 002011 ♥
103021 ♣ 016141 ♣ 2021∞ ♦ 406051 ♣ 116030 ♦ 5051∞ ♥ 311050 ♦
412060 ♣ 513000 ♣ 110151 ♦ 015020 ♥ 4041∞ ♦ 210040 ♥ 6061∞ ♥
114050 ♣ 215060 ♦ 316000 ♣ 410010 ♦ 312101 ♥ 612030 ♣ 013040 ♦

Fig. 4.1: A 3-∗colorable RBIBD(15, 3, 1) (X,A), where X = (Z7 × Z2) ∪ {∞}. The set of
colors used is {♣,♦,♥}. (X,A) has property Π as 10 is a witness for ♣ and∞ is a
witnesses for both ♦ and ♥ in row 1. For succinctness, a block {x, y, z} is written
xyz

4.3.1 c-∗colorable Generalized Balanced Tournament Designs

Definition 4.3.1. A c-∗colorable RBIBD(v, k, λ) is an RBIBD(v, k, λ) with the property

that its λv(v−1)
k(k−1) blocks can be arranged in a v

k ×
λ(v−1)
k−1 array, and each block can be colored

with one of c colors so that

(i) each point appears exactly once in each column, and

(ii) in each row, blocks of the same color are pairwise disjoint.

Definition 4.3.2. A GBTDλ(k,m) is c-∗colorable if each of its blocks can be colored with

one of c colors so that in each row, blocks of the same color are pairwise disjoint.

Definition 4.3.3. A c-∗colorable RBIBD(v, k, 1) is c-∗colorable with property Π if there

exists a row r such that for each color i, there exists a point (called a witness for i) that is

not contained in any block in row r that is colored i.

A GBTD1(k,m) that is c-∗colorable with property Π is similarly defined.

Example 4.3.4. The RBIBD(15, 3, 1) in Fig. 4.1 is 3-∗colorable with property Π.

Proposition 4.3.5. If an RBIBD(v, k, 1) is (k − 1)-∗colorable, then it is k-∗colorable with

property Π.

Proof. Consider a (k−1)-∗colorable RBIBD(v, k, 1) with colors c1, c2, · · · , ck−1. There must

exists a point, say x, that appears only once in the first row. Recolor the block that contains

this point with color ck. This new coloring shows that the RBIBD(v, k, 1) is k-∗colorable

with property Π, since for the first row, the point x is a witness for the colors c1, c2, . . . , ck−1,

while any point not in the block colored ck is a witness for color ck. �
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Example 4.3.6. The GBTD1(3, 9) in Fig. 4.2 is 2-∗colorable and is therefore 3-∗colorable

with property Π by Proposition 4.3.5.

4.3.2 Ingredient Generalized Balanced Tournament Packings

Suppose that (X,A) is a (v,K, λ)-packing. Let W ⊂ X with |W | = w. Furthermore, we

call (X,W,A) is an ingredient resolvable packing, denoted by IRP(v,K, λ;w), if it satisfies

the following conditions:

(i) any pair of points from W occurs in no blocks of A,

(ii) the blocks in A can be partitioned into parallel classes and partial parallel classes

X \W .

Definition 4.3.7. Let (X,W,A) be an IRP(v,K, λ;w). Then (X,W,A) is called an ingre-

dient generalized balanced tournament packing (IGBTP) if the blocks of A are arranged into

an m× n array A, with rows and columns indexed by R and C respectively, satisfying the

following conditions:

(i) there exist a P ⊂ R with |P | = m′ and a Q ⊂ C with |Q| = n′ such that the cell (r, c)

is empty if r ∈ P and c ∈ Q;

(ii) for any row r ∈ P , every point in X \W is contained in either dn/me or bn/mc cells

and the points in W do not appear; for any row r ∈ R\P , every point in X is contained

in either dn/me or bn/mc cells;

(iii) the blocks in any column c ∈ Q form a partial parallel class of X \W and the blocks

in any column c ∈ C \Q forms a parallel class of X.

Denote such an IGBTP by IGBTPλ(K, v,m× n;w,m′ × n′).

Example 4.3.8. An IGBTP1({2, 3∗}, 29, 14× 25; 9, 4× 5) is given in Fig. 4.3.

Consider an IGBTP1({k}, km,m× km−1
k−1 ; k, 1×1). Then its corresponding array has one

empty cell and we fill this cell with the block W to obtain a GBTD1(k,m). A GBTD1(k,m)

obtained in this way is called a special GBTD1(k,m) and the cell occupied by W is said to

be special.
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A B

where A is the array

1071∞2 ♣ 6032∞1 ♣ 004162 ♣ 607102 ♦ 700112 ♣ 505152 ♦ 1142∞0 ♣
5022∞1 ♦ 2001∞2 ♣ 7042∞1 ♣ 105172 ♣ 404142 ♦ 001122 ♣ 7051∞2 ♦
3162∞0 ♣ 4172∞0 ♦ 3011∞2 ♣ 0052∞1 ♣ 206102 ♣ 307112 ♦ 102132 ♣
304152 ♣ 101112 ♦ 5102∞0 ♣ 4021∞2 ♦ 5031∞2 ♣ 2072∞1 ♣ 400122 ♣
602142 ♦ 405162 ♣ 506172 ♦ 6112∞0 ♣ 1062∞1 ♦ 6041∞2 ♣ 3002∞1 ♣
000102 ♦ 502102 ♣ 407132 ♣ 201162 ♣ 7122∞0 ♦ 106142 ♣ 003172 ♣
706132 ♣ 703152 ♦ 603112 ♣ 500142 ♣ 302172 ♣ 0132∞0 ♦ 207152 ♣
205112 ♣ 007142 ♣ 202122 ♦ 704122 ♣ 601152 ♣ 403102 ♣ 606162 ♦
401172 ♣ 306122 ♣ 100152 ♣ 303132 ♦ 005132 ♣ 702162 ♣ 504112 ♣

where B is the array

0061∞2 ♦ 406152 ♣ 102040 ♦ 203050 ♣ 227202 ♣ 213151 ♣
2152∞0 ♣ 507162 ♣ 314161 ♣ 011131 ♦ 304060 ♣ 320212 ♣
203142 ♦ 600172 ♣ 421222 ♣ 415171 ♣ 516101 ♦ 405070 ♣
707172 ♦ 002112 ♣ 025262 ♦ 607010 ♣ 623242 ♣ 617111 ♣
501132 ♣ 103122 ♣ 710121 ♣ 522232 ♦ 700020 ♣ 724252 ♣
605122 ♣ 204132 ♦ 3070∞0 ♣ 126272 ♦ 5212∞2 ♣ 4101∞1 ♣
104102 ♣ 305142 ♦ 1151∞1 ♣ 4000∞0 ♣ 112141 ♦ 6222∞2 ♣
300162 ♣∞0∞1∞2 ♦ 3272∞2 ♣ 2161∞1 ♣ 5010∞0 ♣ 001030 ♦

4012∞1 ♦ 701102 ♦ 506000 ♦ 4202∞2 ♣ 3171∞1 ♣ 6020∞0 ♣

Fig. 4.2: A 2-∗colorable special GBTD1(3, 9) (X,A), where X = (Z8 × Z3) ∪ {∞0,∞1,∞2}
and colors {♣,♦}. The cell (1, 5), occupied by the block 700112, is special. For
succinctness, a set {x, y, z} is written xyz.

Example 4.3.9. The GBTD1(3, 9) in Fig. 4.2 is a special GBTD1(3, 9) with special cell

(1, 5).

A few more classes of auxiliary designs are also required.

4.3.3 Group Divisible Designs and Transversal Designs

Definition 4.3.10. Let (X,A) be a set system and let G = {G1, G2, . . . , Gs} be a partition

of X into subsets, called groups. The triple (X,G,A) is a group divisible design (GDD) when

every 2-subset of X not contained in a group appears in exactly one block, and |A∩G| ≤ 1
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A B

where A is the array

– – – – – 2, 13 3, 14 4, 15 5, 16 6, 17 7, 18 8, 19 9, 0

– – – – – 12, 16 13, 17 14, 18 15, 19 16, 0 17, 1 18, 2 19, 3

– – – – – 15, 18 16, 19 17, 0 18, 1 19, 2 0, 3 1, 4 2, 5

– – – – – 1, 3 2, 4 3, 5 4, 6 5, 7 6, 8 7, 9 8, 10

0, 10 2, 7 12, 17 4, 16 14, 6 4, 5, 11 i, 18 h, 1 g, 12 f, 18 e, 13 d, 16 c, 13

1, 11 3, 8 13, 18 5, 17 15, 7 a, 0 5, 6, 12 i, 19 h, 2 g, 13 f, 19 e, 14 d, 17

2, 12 4, 9 14, 19 6, 18 16, 8 b, 7 a, 1 6, 7, 13 i, 0 h, 3 g, 14 f, 0 e, 15

3, 13 5, 10 15, 0 7, 19 17, 9 c, 6 b, 8 a, 2 7, 8, 14 i, 1 h, 4 g, 15 f, 1

4, 14 6, 11 16, 1 8, 0 18, 10 d, 10 c, 7 b, 9 a, 3 8, 9, 15 i, 2 h, 5 g, 16

5, 15 7, 12 17, 2 9, 1 19, 11 e, 8 d, 11 c, 8 b, 10 a, 4 9, 10, 16 i, 3 h, 6

6, 16 8, 13 18, 3 10, 2 0, 12 f, 14 e, 9 d, 12 c, 9 b, 11 a, 5 10, 11, 17 i, 4

7, 17 9, 14 19, 4 11, 3 1, 13 g, 9 f, 15 e, 10 d, 13 c, 10 b, 12 a, 6 11, 12, 18

8, 18 10, 15 0, 5 12, 4 2, 14 h, 19 g, 10 f, 16 e, 11 d, 14 c, 11 b, 13 a, 7

9, 19 11, 16 1, 6 13, 5 3, 15 i, 17 h, 0 g, 11 f, 17 e, 12 d, 15 c, 12 b, 14

where B is the array

10, 1 11, 2 12, 3 13, 4 14, 5 15, 6 16, 7 17, 8 18, 9 19, 10 0, 11 1, 12

0, 4 1, 5 2, 6 3, 7 4, 8 5, 9 6, 10 7, 11 8, 12 9, 13 10, 14 11, 15

3, 6 4, 7 5, 8 6, 9 7, 10 8, 11 9, 12 10, 13 11, 14 12, 15 13, 16 14, 17

9, 11 10, 12 11, 13 12, 14 13, 15 14, 16 15, 17 16, 18 17, 19 18, 0 19, 1 0, 2

b, 15 a, 9 14, 15, 1 i, 8 h, 11 g, 2 f, 8 e, 3 d, 6 c, 3 b, 5 a, 19

c, 14 b, 16 a, 10 15, 16, 2 i, 9 h, 12 g, 3 f, 9 e, 4 d, 7 c, 4 b, 6

d, 18 c, 15 b, 17 a, 11 16, 17, 3 i, 10 h, 13 g, 4 f, 10 e, 5 d, 8 c, 5

e, 16 d, 19 c, 16 b, 18 a, 12 17, 18, 4 i, 11 h, 14 g, 5 f, 11 e, 6 d, 9

f, 2 e, 17 d, 0 c, 17 b, 19 a, 13 18, 19, 5 i, 12 h, 15 g, 6 f, 12 e, 7

g, 17 f, 3 e, 18 d, 1 c, 18 b, 0 a, 14 19, 0, 6 i, 13 h, 16 g, 7 f, 13

h, 7 g, 18 f, 4 e, 19 d, 2 c, 19 b, 1 a, 15 0, 1, 7 i, 14 h, 17 g, 8

i, 5 h, 8 g, 19 f, 5 e, 0 d, 3 c, 0 b, 2 a, 16 1, 2, 8 i, 15 h, 18

12, 13, 19 i, 6 h, 9 g, 0 f, 6 e, 1 d, 4 c, 1 b, 3 a, 17 2, 3, 9 i, 16

a, 8 13, 14, 0 i, 7 h, 10 g, 1 f, 7 e, 2 d, 5 c, 2 b, 4 a, 18 3, 4, 10

Fig. 4.3: An IGBTP1({2, 3}, 29, 14 × 25; 9, 4 × 5) (X,A), where X = Z20 ∪
{a, b, c, d, e, f, g, h, i} and W = {a, b, c, d, e, f, g, h, i}. For succinctness, a block
{x, y, z} is written x, y, z.

for A ∈ A and G ∈ G.

We denote a GDD (X,G,A) by K-GDD if (X,A) is K-uniform. The type of a GDD

(X,G,A) is the multiset 〈|G| : G ∈ G〉. For convenience, the exponential notation is used to
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A B

where A is the array

– – – 401070 411171 421272 603090 613191 623292

– – – 607280 617081 627182 809200 819001 829102

208110 218211 228012 – – – 4182∞4 4280∞3 4081∞5

627231 607032 617130 – – – 9112∞5 9210∞4 9011∞3

400130 410231 420032 113091 123192 103290 – – –

829251 809052 819150 426182 406280 416081 – – –

602150 612251 622052 8112∞0 8210∞1 8011∞2 315011 325112 305210

021271 001072 011170 2031∞1 2132∞2 2230∞0 628102 608200 618001

804170 814271 824072 2290∞2 2091∞0 2192∞1 0132∞0 0230∞1 0031∞2

223291 203092 213190 3241∞3 3042∞5 3140∞4 4051∞1 4152∞2 4250∞0

006190 016291 026092 2162∞4 2260∞3 2061∞5 4210∞2 4011∞0 4112∞1

425211 405012 415110 7192∞5 7290∞4 7091∞3 5261∞3 5062∞5 5160∞4

where B is the array

805010 815111 825212 007030 017131 027232 209050 219151 229252

001220 011021 021122 203240 213041 223142 405260 415061 425162

6230∞2 6031∞0 6132∞1 4172∞0 4270∞1 4071∞2 911071 921172 901270

7281∞3 7082∞5 7180∞4 8091∞1 8192∞2 8290∞0 224162 204260 214061

6102∞4 6200∞3 6001∞5 8250∞2 8051∞0 8152∞1 6192∞0 6290∞1 6091∞2

1132∞5 1230∞4 1031∞3 9201∞3 9002∞5 9100∞4 0011∞1 0112∞2 0210∞0

– – – 8122∞4 8220∞3 8021∞5 0270∞2 0071∞0 0172∞1

– – – 3152∞5 3250∞4 3051∞3 1221∞3 1022∞5 1120∞4

517031 527132 507230 – – – 0142∞4 0240∞3 0041∞5

820122 800220 810021 – – – 5172∞5 5270∞4 5071∞3

2152∞0 2250∞1 2051∞2 719051 729152 709250 – – –

6071∞1 6172∞2 6270∞0 022142 002240 012041 – – –

Fig. 4.4: An FGBTD1(3, 66) (X,G,A), where X = (Z10 × Z3) ∪ {∞i : i ∈ Z6} and G =
{{t0, t1, t2, (5 + t)0, (5 + t)1, (5 + t)2} : t ∈ Z5} ∪ {∞i : i ∈ Z6}. For succinctness, a
set {x, y, z} is written xyz.

describe the type of a GDD: a GDD of type gt11 g
t2
2 · · · gtss is a GDD with exactly ti groups

of size gi, i ∈ [s].

Definition 4.3.11. A transversal design TD(k, n) is a {k}-GDD of type nk.

The following result on the existence of transversal designs (see [?,1]) is sometimes used

without explicit reference throughout this chapter.
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Theorem 4.3.12. Let TD(k) denote the set of positive integers n such that there exists a

TD(k, n). Then, we have

(i) TD(4) ⊇ Z>0 \ {2, 6},

(ii) TD(5) ⊇ Z>0 \ {2, 3, 6, 10},

(iii) TD(6) ⊇ Z>0 \ {2, 3, 4, 6, 10, 14, 22},

(iv) TD(7) ⊇ Z>0 \ {2, 3, 4, 5, 6, 10, 14, 15, 20, 22, 26, 30, 34, 38, 46},

(v) TD(k) ⊇ {q : q ≥ k − 1 is a prime power}.

Definition 4.3.13. A doubly resolvable TD(k, n), denoted by DRTD(k, n), is a TD(k, n)

whose blocks can be arranged in an n× n array such that each point appears exactly once

in each row and once in each column.

Colbourn et al. [22] established the following.

Proposition 4.3.14 (Colbourn et al. [22]). There exists a TD(k+ 2, n) if and only if there

exists a DRTD(k, n).

Corollary 4.3.15. A DRTD(3, n) exists for all n ≥ 4 and n 6∈ {6, 10}.

Proof. A TD(5, n) exists if n ≥ 4 and n 6∈ {6, 10} by Theorem 4.3.12. �

4.3.4 Frame Generalized Balanced Tournament Design

Let (X,G,A) be a {k}-GDD with G = {G1, G2, . . . , Gs} and |Gi| ≡ 0 mod k(k − 1) for

all i ∈ [s]. Let R = 1
k

∑s
i=1 |Gi| and C = 1

k−1

∑s
i=1 |Gi|. Suppose there exists a partition

[R] =
⋃s
i=1Ri and a partition [C] =

⋃s
i=1Ci such that for each i ∈ [s], we have |Ri| = |Gi|/k

and |Ci| = |Gi|/(k − 1).

We say that (X,G,A) is a frame generalized balanced tournament design (FGBTD) if its

blocks can be arranged in an R× C array such that the following conditions hold:

(i) the cell (r, c) is empty when (r, c) ∈ Ri × Ci for i ∈ [s],

(ii) for any row r ∈ Ri, each point in X \Gi appears either once or twice and the points

in Gi do not appear,
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(iii) for any column c ∈ Ci, each point in X \Gi appears exactly once.

Denote this FGBTD by FGBTD(k, T ), where T = 〈|Gi| : i ∈ [s]〉.

Example 4.3.16. An FGBTD(3, 66) is given in Fig. 4.4.

4.4 Recursive Constructions

In this section, we develop the necessary recursive constructions.

4.4.1 Recursive Constructions for GBTPs

First, for block size three, we have the following tripling construction for GBTDs.

Proposition 4.4.1 (Tripling Construction). Suppose a 3-∗colorable RBIBD(m, 3, 1) and a

DRTD(3,m) exist. Then there exists a 2-∗colorable GBTD1(3,m). Suppose further that

the RBIBD(m, 3, 1) is 3-∗colorable with property Π. Then the GBTD1(3,m) is a special

GBTD1(3,m).

Proof. Consider a 3-∗colorable RBIBD(m, 3, 1) (X,A) with colors from Z3 and let

X ′ = {xi : x ∈ X and i ∈ Z3}.

Make three copies of the 3-∗colorable RBIBD(m, 3, 1) as follows: for the jth copy, j ∈

{1, 2, 3}, each block {x, y, z} of color i in the 3-∗colorable RBIBD(m, 3, 1) is replaced by block

{xi+j , yi+j , zi+j}, where arithmetic in the subscripts is performed modulo three. Stacking

these three m
3 × m−1

2 arrays together gives an m× m−1
2 array A with the property that

(i) each point in X ′ appears exactly once in each column,

(ii) each point in X ′ appears at most once in each row.

Now take a DRTD(3,m) (X ′,G,A), where

G = {{xi : x ∈ X} : i ∈ Z3},
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and adjoin it to A. This gives an m× 3m−1
2 array, which we claim is a GBTD1(3,m). Indeed

it is easy to see that in this array, each point in X ′ appears exactly once in each column and

either once or twice in each row. It remains to show that this array is a BIBD(3m, 3, 1). To

see this, observe that any pair of points contained in a group of the DRTD(3,m) is contained

in a block of one of the copies of the 3-∗colorable RBIBD(m, 3, 1). This GBTD1(3,m) is

2-∗colorable by giving the blocks from the DRTD(3,m) one color and the remaining blocks

(from the three copies of the RBIBD(m, 3, 1)) another color.

If, in addition, the RBIBD(m, 3, 1) is 3-∗colorable with property Π, and that in row r

of this RBIBD(m, 3, 1), the points x, y, z (not necessarily distinct) are witnesses for colors

0, 1, 2, respectively, then we assume that the DRTD(3,m) used has the block {x0, y1, z2}

and that this block can be made to appear in row r, by permuting rows if necessary. The

cell that contains {x0, y1, z2} is a special cell of the GBTD1(3,m). �

Corollary 4.4.2. Let m > 3 and suppose an RBIBD(m, 3, 1) that is 3-∗colorable with

property Π exists. Then there exists a special GBTD1(3, 3km), for all k ≥ 0.

Proof. First note that m ≡ 3 mod 6 since this is a necessary condition for the existence

of an RBIBD(m, 3, 1). Hence, there exists a DRTD(3,m) by Corollary 4.3.15. By Propo-

sition 4.4.1, there exists a 2-∗colorable special GBTD1(3,m), which may be regarded as

an RBIBD(3m, 3, 1) that is 3-∗colorable with property Π. The corollary then follows by

induction. �

The following is a simple, but useful construction.

Proposition 4.4.3. If an IGBTPλ(K, v,m × n;w,m′ × n′) and a GBTPλ(K,w,m′ × n′)

exists, then a GBTPλ(K, v,m× n) exists.

Proof. Let (X,A) be an IGBTPλ(K, v,m×n;w,m′×n′). Fill in the empty subarray of this

IGBTP with an a GBTPλ(K,w,m′×n′), (X ′,A′). The resulting array is a GBTPλ(K, v,m×

n), (X,A ∪A′). �

FGBTD is a useful tool to construct larger GBTPs from smaller ones.
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Proposition 4.4.4 (FGBTD Construction for GBTP). Let k ∈ K. Suppose there exists an

FGBTD(k, T ) (X,G,A), where G = {G1, G2, . . . , Gs}, and let ri = |Gi|/k and ci = |Gi|/(k−

1), for i ∈ [s]. If there exists an IGBTP1(K, |Gi|+ w, (ri +m)× (ci + n);w,m× n) for all

i ∈ [s], then there exists an IGBTP1(K,
∑s

i=1 |Gi|+w, (
∑s

i=1 ri+m)×(
∑s

i=1 ci+n);w,m×n).

Furthermore, if a GBTP1(K,w,m×n) exists, then an GBTP1(K,
∑s

i=1 |Gi|+w, (
∑s

i=1 ri+

m)× (
∑s

i=1 ci + n)) exists.

Proof. We use the notations as in the definition of FGBTD in Section 4.3.4, and assume

that the blocks of the FGBTD(k, T ) are arranged in an R×C array, with rows and columns

indexed by [R] and [C], respectively.

Let P and Q be two sets satisfying |P | = m, |Q| = n, P ∩ [R] = ∅, Q ∩ [C] = ∅.

For each i ∈ [s], consider an IGBTP1(K, |Gi|+w, (ri +m)× (ci +n);w,m×n) (Xi,Ai),

where Xi = Gi ∪ {∞1,∞2, · · · ,∞w}, and whose rows and columns are indexed by P ∪ Ri
and Q ∪ Ci, respectively. It can be verified that (X ′,A′), where

X ′ = X ∪ {∞1,∞2, · · · ,∞w},

A′ = A ∪
(

s⋃
i=1

Ai
)
,

is an IRP(
∑s

i=1 |Gi|+ w,K, 1).

Arrange the blocks of (X ′,A′) into an (R + m′) × (C + n′) array A, whose rows and

columns are indexed by P ∪ [R] and Q ∪ [C], respectively, such that each block in A that

appears in cell (i, j) of either the FGBTD or the IGBTP, is placed in cell (i, j) of A.

The definition of an FGBTD ensures that no cells are occupied by two blocks. It is also

easily checked that every point in X ′ appears exactly once in each column and either once

or twice in each row. In addition, the m × n subarray indexed by P × Q is empty. This

gives an IGBTP1(K,
∑s

i=1 |Gi|+ w, (
∑s

i=1 ri +m)× (
∑s

i=1 ci + n);w,m× n).

The last statement follows from Proposition 4.4.3. �

Since a GBTD is an instance of GBTP, we have the following recursive construction for

GBTDs.
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Corollary 4.4.5 (FGBTD Construction for GBTD). Suppose an FGBTD(k, T ) exists with

groups {G1, G2, . . . , Gs}. Let gi = |Gi|/k, for i ∈ [s]. If there exists a special GBTD1(k, gi+

1) for all i ∈ [s], then there exists a special GBTD1(k,
∑s

i=1 gi + 1).

When the groups are of the same size, we have the following corollary.

Corollary 4.4.6. If there exists an FGBTD(3, (3g)t) and a special GBTD1(3, g + 1), then

there exists a special GBTD1(3, gt+ 1).

For Proposition 4.4.3 and Corollary 4.4.5 to be useful, we require large classes of FG-

BTDs. We give three recursive constructions for FGBTDs next.

4.4.2 Recursive Constructions for FGBTDs

Proposition 4.4.7 (Inflation). Suppose an FGBTD(k, T ) and a DRTD(k, n) exists. Then

there exists an FGBTD(k, nT ).

Proof. Let (X,G,A) be an FGBTD(k, T ) arranged in an R × C array A, with rows and

columns indexed by [R] and [C], respectively. Define

X ′ = X × [n],

G′ = {G× [n] : G ∈ G},

and for each block A ∈ A, let

XA = A× [n],

GA = {{x} × [n] : x ∈ A}.

and let (XA,GA,BA) be a DRTD(k, n) whose blocks are arranged in an n×n array with rows

and columns both indexed by [n]. Let A′ = ⋃A∈A BA and the blocks in A′ can be arranged,

as follows, in an Rn×Cn array, whose rows and columns are indexed by [R]×n and [C]×n,

respectively: a block B ∈ BA is placed in cell ((i, a), (j, b)) if A appears in cell (i, j) of the

FGBTD(k, T ) and B appears in cell (a, b) of the DRTD(k, n). Hence, (X ′,G′,A′) gives an

FGBTD(k, nT ). �
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Input: (master) GDD D = (X,G,A);

weight function w → Z≥0;

(ingredient) FGBTD(k, TA) DA = (XA,GA,BA) for each A ∈ A, where

TA = 〈w(x) : x ∈ A〉,
XA =

⋃
x∈A({x} × [w(a)]),

GA = {{x} × [w(x)] : x ∈ A},
and the blocks in BA are arranged in a 1

k

∑
x∈A w(x)× 1

k−1
∑

x∈A w(x) array,

whose rows and columns are indexed by
⋃

x∈A({x} × [w(x)/k]) and⋃
x∈A({x} × [w(x)/(k − 1)]), respectively.

Output: FGBTD(k, 〈∑x∈G w(x) : G ∈ G〉) D∗ = (X∗,G∗,A∗), where

X∗ =
⋃

x∈X({x} × [w(x)]),

G∗ = {⋃x∈G({x} × [w(x)]) : G ∈ G},
A∗ =

⋃
A∈A BA, and

the blocks in A∗ are arranged in a 1
k

∑
x∈X w(x)× 1

k−1
∑

x∈X w(x) array,

whose rows and columns are indexed by
⋃

x∈X({x} × [w(x)/k]) and⋃
x∈X({x} × [w(x)/(k − 1)]), respectively,

by placing a block B ∈ BA in cell (i, j) of D∗ if it appears in cell (i, j) of DA.

Note: By convention, for x ∈ X, {x} × [w(x)] = ∅ if w(x) = 0.

Fig. 4.5: Fundamental Construction for FGBTDs

Wilson’s Fundamental Construction for GDDs [82] can also be modified to construct

FGBTDs. Fig. 4.5 describes this construction.

Proposition 4.4.8 (Fundamental Construction). Suppose there exists a (master) GDD

(X,G,A) of type T and let w : X → Z≥0 be a weight function. If for each A ∈ A, an

(ingredient) FGBTD(k, 〈w(a) : a ∈ A〉) exists, then an FGBTD(k, 〈∑x∈Gw(x) : G ∈ G〉)

exists.

Proof. The Fundamental Construction in Fig. 4.5 constructs the desired FGBTD from the

master GDD and ingredient FGBTDs. �

Proposition 4.4.8 admits the following specialization.

Proposition 4.4.9 (FGBTD from Truncated TD). Suppose there exists a TD(u + s,m),

and g1, g2, . . . , gs are nonnegative integers at most m. If there exists an FGBTD(k, gt) for

each t ∈ {u, u + 1, . . . , u + s}, then there exists an FGBTD(k, T ), where T = (g ·m)u(g ·

g1)(g · g2) · · · (g · gs).
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Proof. For each i ∈ [s], delete m− gi points from the ith group of the TD(u + s,m). This

results in a {u, u + 1, . . . , u + s}-GDD of type mug1g2 · · · gs. Use this as the master GDD

and apply the fundamental construction with weight function w that assigns weight g to all

points. �

4.5 Direct Constructions

This section constructs some small GBTDs and FGBTDs that are required to seed the

recursive constructions given in Section 4.4. The main tool in our constructions is the

method of differences.

Let Γ be an additive abelian group and let n be a positive integer. For a set system

(Γ,S), the difference list of S is the multiset

∆S = 〈x− y : x, y ∈ A, x 6= y, and A ∈ S〉.

For a set-system (Γ× [n],S) and i, j ∈ [n], the multiset

∆ijS = 〈x− y : xi, yj ∈ A, xi 6= yj , and A ∈ S〉

is called a list of pure differences when i = j, and called a list of mixed differences when

i 6= j.

4.5.1 Direct Constructions for GBTDs

We use the notion of starters to construct GBTDs of block size three.

Definition 4.5.1 (Starter for GBTD). Let m be an odd positive integer, Γ be an additive

abelian group of size m. Let T be an index set of size (m − 1)/2. Let (Γ × [3],S) be a

{3}-uniform set system of size (3m− 1)/2, where

S = {Aα : α ∈ Γ} ∪ {Bt : t ∈ T}.

S is called a (Γ× [3])-GBTD-starter if the following conditions hold:
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(i) ∆iiS = Γ \ {0}, for i ∈ [3],

(ii) ∆ijS = Γ, for i, j ∈ [3], i 6= j,

(iii)
⋃
α∈ΓAα = Γ× [3],

(iv) {j : αj ∈ Bt for some α ∈ Γ} = [3], for t ∈ T ,

(v) each element in Γ× [3] appears either once or twice in the multiset

R =

(⋃
α∈Γ

Aα − α
)
∪
(⋃
t∈T

Bt

)
.

Furthermore, S is said to be special if

(vi) each element in A0 appears exactly once in R.

Also, S is said to be 3-∗colorable with property Π if each of the blocks in

{Aα − α : α ∈ Γ} and {Bt : t ∈ T},

can be colored with one of three colors so that

(vii) blocks of the same color are pairwise disjoint,

(viii) for each color c, there exists a point (a witness for c) that is not contained in any block

assigned color c.

Proposition 4.5.2. If a (Γ× [k])-GBTD-starter exists, then a GBTD1(k,m) exists. Simi-

larly, if there exists a special (Γ×[3])-GBTD-starter, then there exists a special GBTD1(3,m);

and if there exists a 3-∗colorable (Γ× [3])-GBTD-starter with property Π, then there exists

a 3-∗colorable GBTD1(3,m) with property Π.

Proof. Let X = Γ× [k], and suppose S = {Aα : α ∈ Γ}∪{Bt : t ∈ T} is an (Γ× [k])-GBTD-

starter. Let

A =
⋃
A∈S
{A+ α : α ∈ Γ}.
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A B

where A is the array

A0 A−α1 + α1 A−α2 + α2 · · · A−αm−1 + αm−1

Aα1 A0 + α1 Aα1−α2 + α2 · · · Aα1−αm−1 + αm−1

...
...

...
. . .

...

Aαm−1 Aαm−1−α1 + α1 Aαm−1−α2 + α2 · · · A0 + αm−1

and B is the array

B1 B2 · · · B(m−1)/(k−1)

B1 + α1 B2 + α1 · · · B(m−1)/(k−1) + α1

...
...

. . .
...

B1 + αm−1 B2 + αm−1 · · · B(m−1)/(k−1) + αm−1

.

Fig. 4.6: A GBTD1(k,m) from (Γ × [k])-GBTD-starter S = {Aα : α ∈ Γ} ∪ {Bt : t ∈ T},
where Γ = {0, α1, . . . , αm−1} and T = [(m− 1)/(k − 1)].

Then (X,A) is a BIBD(km, k, 1), whose blocks can be arranged in an m × (km−1)
k−1 array,

whose rows and columns are indexed by Γ and Γ ∪ T , respectively, as follows:

• for α, β ∈ Γ, the block Aα + β is placed in cell (α+ β, β), and

• for t ∈ T and α ∈ Γ, the block Bt + α is placed in cell (α, t).

Fig. 4.6 depicts the placement of blocks in the array.

For β ∈ Γ, the set of blocks occupying column β is {Aα + β : α ∈ Γ}, which forms a

resolution class by condition (iii) of Definition 4.5.1. Similarly, for t ∈ T , the set of blocks

occupying column t is {Bt + α : α ∈ Γ}, which forms a resolution class by condition (iv) in

Definition 4.5.1.

The set of blocks occupying row 0 is given by R, and by condition (v) of Definition 4.5.1,

each point in X appears either once or twice in row 0. Since the blocks occupying row α

(α ∈ Γ) are exactly the translates of the blocks in R by α, every point in X also appears

either once or twice in row α.

Suppose S = {Aα : α ∈ Γ} ∪ {Bt : t ∈ T} is a special (Γ × [3])-GBTD-starter. Then

condition (vi) of 4.5.1 ensures that the cell (0, 0) is special.
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On the other hand, if S be a 3-∗colorable (Γ× [3])-GBTD-starter and let

ci be the color assigned to


Ai − i, if i ∈ Γ,

Bi, otherwise.

For α, β ∈ Γ and t ∈ T , assign the block Aα+β color cα and the block Bt+β color ct. Then

conditions (vii) and (viii) of Definition 4.5.1 ensure that the GBTD1(3,m) is 3-∗colorable

with property Π. �

Proposition 4.5.3. Let q ≡ 1 mod 6. Then there exists a special (Fq × [3])-GBTD starter

that is 3-∗colorable with property Π.

Proof. Let s = (q − 1)/6 and ω be a primitive element of Fq. Consider γ ∈ Fq that satisfies

the following conditions (note that ω2s has order three):

(A) γ /∈ {0,−1,−ω2s,−ω4s};

(B) γ /∈
{
ω2is − ωt+2js

ωt − 1
: i 6= j ∈ [3], t ∈ [s− 1]

}
.

The existence of γ is guaranteed since the cardinality of the union of sets in (A) and (B) is

at most 4 + 6(s− 1) < 6s+ 1 = q.

Define Λ to be
{
−γωt−1+2(j−1)s : t ∈ [s], j ∈ [3]

}
and construct the following q + 3s =

(3q − 1)/2 blocks. For α ∈ Fq, let

Aα =


{(
ωt−1+2(j−1)s

)
i

: j ∈ [3]
}
, if α = −γωt−1+2(i−1)s where t ∈ [s], i ∈ [3],{(

−α
γω

2(i−1)s
)
i

: i ∈ [3])
}
, otherwise.

For (t, j) ∈ [s]× [3], let

B(t,j) =
{(
ωt−1+2(j−1)s

(
ω2(i−1)s + γ

))
i

: i ∈ [3]
}

Let S = {Aα : α ∈ Fq} ∪ {B(t,j) : (t, j) ∈ [s] × [3]} and we claim that S is the desired

starter.
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Define

D = {{ωt−1+2(j−1)s : j ∈ [3]} : t ∈ [s]},

and Wilson [81] showed that the blocks in D are mutually disjoint and ∆D = Fq \ {0}.

Hence, for condition (i) of Definition 4.5.1, we check for i ∈ [3],

∆iiS = ∆ii{Aα : α = −γωt−1+2(i−1)s, t ∈ [s], i ∈ [3]}

= ∆D = Fq \ {0}.

For condition (ii), we verify for i 6= i′ ∈ [3],

∆ii′S =
⋃
α/∈Λ

(
−α
γ

(
ω2(i−1)s − ω2(i′−1)s

))
∪

⋃
(t,j)∈[s]×[3]

ωt−1+2(j−1)s
(
ω2(i−1)s − ω2(i′−1)s

)

=
(
ω2(i−1)s − ω2(i′−1)s

)⋃
α/∈Λ

−α
γ
∪

⋃
(t,j)∈[s]×[3]

ωt−1+2(j−1)s


=
(
ω2(i−1)s − ω2(i′−1)s

)
Fq = Fq.

For condition (iii) of Definition 4.5.1, since the number of points in
⋃
α∈Fq Aα is kq,

it suffices to check that each point βi ∈ Fq × [k] belongs to some block Aα. Indeed, if

β/ω2(i−1)s = ω(t−1)+2(j−1)s for some (t, j) ∈ [s] × [3], then let α = −γωt−1+2(i−1)s and so,

βi =
(
ωt−1+2(i+j−2)s

)
i

belongs to Aα. Otherwise, −γβ/ω2(i−1)s /∈ Λ. Let α = −γβ/ω2(i−1)s

and βi ∈ Aα as desired.

Condition (iv) of Definition 4.5.1 is clearly true from the definition of B(t,j). We establish

condition (v) of Definition 4.5.1 through the following claims:

Claim 4.5.4. The blocks in
⋃
α/∈Λ(Aα − α) ∪⋃(t,j)∈[s]×[3]B(t,j) form a resolution class.

As above, it suffices to check that each point βi ∈ Fq × [3] belongs to some block in⋃
α/∈Λ(Aα − α) ∪⋃(t,j)∈[s]×[k]B(t,j) as the total number of points is kq.

Indeed, if β/(ω2(i−1)s + γ) = ωt−1+2(j−1)s for some (t, j) ∈ [s] × [k], then βi ∈ B(t,j).

Otherwise, −γβ/(ω2(i−1)s+γ) /∈ Λ. Let α = −γβ/(ω2(i−1)s+γ) (note that α is well-defined
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by Condition (A)) and βi ∈ Aα − α.

Claim 4.5.5. Each point in Fq × [k] appears at most once in
⋃
α∈Λ (Aα − α).

Note that the blocks are of the form

{(
ωt−1+2(j−1)s + γωt−1+2(i−1)s

)
i

: j ∈ [3]
}

for (t, i) ∈ [s] × [3]. Suppose otherwise that a point appears twice. That is, there exist

j, j′ ∈ [3], (t, i), (t′, i) ∈ [s]× [3] with t > t′ such that

ωt−1+2(j−1)s + γωt−1+2(i−1)s = ωt
′−1+2(j′−1)s + γωt

′−1+2(i−1)s.

Hence,

γ =
ω2(j′−i)s − ω2(j−i)s+(t−t′)

ωt−t′ − 1
.

Since t 6= t′, we have t− t′ ∈ [s− 1]. If j 6= j′, this contradicts Condition (B). Otherwise

j = j′ implies γ = −ω2(j−i)s contradicting (A).

Next, observe that A0 = {(0, i) : i ∈ [3]}. By Claim 4.5.4, to establish condition (vi)

of Definition 4.5.1, it suffices to show that 0i /∈ Aα − α for α ∈ Λ and i ∈ [3]. Suppose

otherwise. Then there exists (t, j) ∈ [s]× [3] and i ∈ [3] such that

(ω(j−1)s + γ)ωt+(i−1)s = 0,

contradicting (A).

Finally, we exhibit that S is 3-∗colorable with property Π by assigning the block A0 color

♣, the blocks Aα − α for α /∈ Λ and Bt for t ∈ T color ♥ and the blocks Aα − α for α ∈ Λ

color ♦. Then this assignment satisfies condition (vii) of Definition 4.5.1. In addition, 01 is

a witness for both ♥ and ♦ and α1 is a witness for ♣ for some α 6= 0, satisfying condition

(viii) of Definition 4.5.1. �

Corollary 4.5.6. Let q ≡ 1 mod 6. Then a 3-∗colorable GBTD1(3,m) with property Π

exists.
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Proof. This follows from Proposition 4.5.2 and Proposition 4.5.3. �

Corollary 4.5.7. A special GBTD1(3,m) exists for m ∈ {1, 17, 29, 35, 47, 53, 55}, a 3-

∗colorable special GBTD1(3,m) with property Π for m ∈ {9, 11, 23} and a 3-∗colorable

RBIBD(15, 3, 1) with property Π.

Proof. A special GBTD1(3, 1) exists trivially. Also, a 3-∗colorable special GBTD1(3, 9) with

property Π is given by Example 4.3.9, and a 3-∗colorable RBIBD(15, 3, 1) with property Π

is given by Example 4.3.4.

For m ∈ {11, 17, 23, 29, 35, 47, 53, 55}, apply Proposition 4.5.2 with special (Zm × [3])-

GBTD-starters and 3-∗colorable special (Zm× [3])-GBTD-starters with property Π given in

[11]. �

4.5.2 Direct Constructions for IGBTPs

As with GBTDs, we use a set of starters to construct IGBTPs. To construct this starters,

we need the notion of infinity elements.

Given an abelian group Γ, we augment the point set with infinite elements, denoted by

∞i where i belongs to some index set I. The infinite elements are fixed under addition by

elements in Γ. That is,∞i+γ =∞i for γ ∈ Γ. Let w be a positive integer and Ww := {∞i :

i ∈ [w]}. So, given a block A ⊂ Γ∪Ww and γ ∈ Γ, A+γ = {a+γ : a ∈ A\Ww}∪ (A∩Ww).

We also extend the definition of difference lists. For a set system (Γ ∪Ww,S), then the

difference list of S is given by the multiset

∆S = 〈x− y : x, y ∈ A \Ww, x 6= y,A ∈ S〉.

Definition 4.5.8. Let m be an odd integer with m ≥ 11 Let ((Zm × Z2) ∪Ww,S) be a

{2, 3}-uniform set system of size w − 3 +m, where

S = {Ai : i ∈ [(w − 5)/2]} ∪ {Bi : i ∈ [(w − 1)/2]} ∪ {Ci : i ∈ Zm}.

satisfying |Ai| = 2 for i ∈ [(w− 5)/2], |Bi| = 2 for i ∈ [(w− 1)/2], |C0| = 3, and |Ci| = 2 for
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W B B + 01

A C C + 01

where W is a (w − 1)/2× (w − 4) empty array, A is an m× (w − 4) array,

{00, 01} A1 A1 + 01 A2 A2 + 01 · · · A(w−5)/2 A(w−5)/2 + 01

{10, 11} A1 + 10 A1 + 11 A2 + 10 A2 + 11 · · · A(w−5)/2 + 10 A(w−5)/2 + 11
...

...
...

...
...

. . .
...

...

{(m− 1)0, (m− 1)1} A1 − 10 A1 − 11 A2 − 10 A2 − 11 · · · A(w−5)/2 − 10 A(w−5)/2 − 11

,

B and C are the following (w − 1)/2×m and m×m arrays,

B1 B1 + 10 · · · B1 − 10

B2 B1 + 10 · · · B1 − 10
...

...
. . .

...

B(w−1)/2 B(w−1)/2 + 10 · · · B(w−1)/2 − 10

,

C0 Cm−1 + 10 · · · C1 − 10

C1 C0 + 10 · · · C2 − 10
...

...
. . .

...

Cm−1 Cm−2 + 10 · · · C0 − 10

.

Fig. 4.7: An IGBTP1({2, 3∗}, 2m+w, (m+(w−1)/2)× (2m+w−4);w, (w−1)/2× (w−4))
from a ((Zm × Z2) ∪Ww)-GBTP-starter.

i ∈ Zm \ {0}.

S is called a ((Zm × Z2) ∪Ww)-IGBTP-starter if the following conditions hold:

(i) ∆S = Zm × Z2 \ {00, 01},

(ii) {j : aj ∈ Ai} = Z2 for i ∈ [(w − 5)/2],

(iii) {Bi : i ∈ [(w − 1)/2]} ∪ {Cj : j ∈ Zm} = (Zm × Z2) ∪Ww,

(iv) |Ci ∩Ww| ≤ 1 for i ∈ Zm,

(v) each element in (Zm × Z2) ∪Ww appears either once or twice in the multiset

R = {00, 01} ∪

 ⋃
i∈[(w−5)/2]

j∈Z2

Ai + 0j

 ∪
 ⋃
ij∈Zm×Z2

Ci − ij

 .

Proposition 4.5.9. Suppose there exists a ((Zm × Z2) ∪Ww)-IGBTP-starter.Then there

exists an IGBTP1({2, 3∗}, 2m+w, (m+ (w− 1)/2)× (2m+w− 4);w, (w− 1)/2× (w− 4)).
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W B B + 01 B + 02 B + 03

A
C D + 01 C + 02 D + 03

D C + 01 D + 02 C + 03

where W is a 4× 5 empty array, A is a 2m× 5 array,

{00, 01} {x0, x2} {y0, y3} A A+ 02

{10, 11} {(x+ 1)0, x2} {(y + 1)0, (y + 1)3} A+ 10 A+ 12
...

...
...

...
...

{(m− 1)0, (m− 1)1} {(x− 1)0, x2} {(y − 1)0, (y − 1)3} A+ (m− 1)0 A+ (m− 1)2

{02, 03} {x1, x3} {y1, y2} A+ 01 A+ 03

{12, 13} {(x+ 1)1, x3} {(y + 1)1, (y + 1)2} A+ 11 A+ 13
...

...
...

...
...

{(m− 1)2, (m− 1)3} {(x− 1)1, x3} {(y − 1)1, (y − 1)2} A+ (m− 1)1 A+ (m− 1)3

,

B, C and D are the following 4×m, m×m and m×m arrays respectively,

B1 B1 + 10 · · · B1 − 10

B2 B2 + 10 · · · B2 − 10

B3 B3 + 10 · · · B3 − 10

B4 B4 + 10 · · · B4 − 10

,

C0 Cm−1 + 10 · · · C1 − 10

C1 C0 + 10 · · · C2 − 10
...

...
. . .

...

Cm−1 Cm−2 + 10 · · · C0 − 10

,

D0 Dm−1 + 10 · · · D1 − 10

D1 D0 + 10 · · · D2 − 10
...

...
. . .

...

Dm−1 Dm−2 + 10 · · · D0 − 10

.

Fig. 4.8: An IGBTP1({2, 3∗}, 4m+9, (2m+4)× (4m+5); 9, 4×5) from a ((Zm×Z4)∪W9)-
GBTP-starter.
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Proof. Let

X = Zm × Z2 ∪Ww,

A = {S + j : S ∈ S and j ∈ Zm × Z2} ∪ {{i0, i1} : i ∈ Zm}.

Then (X,Ww,A) is an IRP(2m+w,K, 1;w), whose blocks can be arranged in an (m+(w−

1)/2) × (2m + w − 4) array as in Figure 4.8. We index the rows by [(w − 1)/2] ∪ Zm and

the columns by [w − 4] ∪ (Zm × Z2).

First, check that the cell (r, c) is empty for (r, c) ∈ [(w − 1)/2]× [w − 4].

For j ∈ [w − 4], the set of blocks occupying column j is Zm × Z2 by condition (ii) of

Definition 4.5.8. For j ∈ Zm × Z2, first observe that the set of the blocks occupying the

column 00 by condition (iii) of Definition 4.5.8 is (Zm×Z2)∪Ww. Since the blocks of column

j are translates (by j) of the blocks in column 00, the union of the blocks in column j is

also (Zm × Z2) ∪Ww.

For i ∈ [(w−1)/2], each element in Zm×Z2 appears exactly twice in row i by construction.

For i ∈ Zm, let Ri denote the multiset containing all the points appearing in the blocks of

row i. Then R0 = R and Ri = R0 + i0, for all i ∈ Zm. Hence, it suffices each element

in X appears either once or twice in R, which follows immediately from conditions (v) in

Definition 4.5.8. �

Definition 4.5.10. Let m be an odd integer with m ≥ 11. Let ((Zm × Z4) ∪W9,S) be a

{1, 2, 3}-uniform set system of size 7 + 2m, where

S = {x0} ∪ {y0} ∪A ∪ {Bi : i ∈ [4]} ∪ {Ci : i ∈ Zm} ∪ {Di : i ∈ Zm}.

satisfying |A| = 2, |Bi| = 2 for i ∈ [4], |C0| = 3, |Ci| = 2 for i ∈ Zm \ {0} and |Di| = 2 for

i ∈ Zm.

S is called a ((Zm × Z4) ∪W9)-IGBTP-starter if the following conditions hold:

(i) ∆S = (Zm × Z4) \ {00, 01, 02, 03},

(ii) {j : aj ∈ A} = {0, 2},
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(iii) {Bi : i ∈ [(w − 1)/2]} ∪ {Ci : i ∈ Zm} ∪ {Di : i ∈ Zm} = (Zm × Z4) ∪W9,

(iv) |Ci ∩W9| ≤ 1 and |Di ∩W9| ≤ 1 for i ∈ Zm,

(v) each element in (Zm × Z4) ∪W9 appears either once or twice in the multisets

R◦ = {00, 01, x0, x2, y0, y3} ∪A ∪A+ 02 ∪

 ⋃
i∈Zm,j∈{0,2}

Ci − ij

 ∪
 ⋃

i∈Zm,j∈{1,3}

Di − ij

 ,

R• = {02, 03, x1, x3, y1, y2} ∪A+ 01 ∪A+ 03 ∪

 ⋃
i∈Zm,j∈{1,3}

Ci − ij

 ∪
 ⋃

i∈Zm,j∈{0,2}

Di − ij

 .

Proposition 4.5.11. Suppose there exists a (Zm × Z4 ∪W9)-IGBTP-starter. Then there

exists an IGBTP1({2, 3∗}, 4m+ 9, (2m+ 4)× (4m+ 5); 9, 4× 5).

Proof. Let

X = (Zm × Z4) ∪W9,

A = {S + j : S ∈ S, |S| 6= 1, j ∈ Zm × Z2} ∪ {{i0, i1} : i ∈ Zm} ∪ {{i2, i3} : i ∈ Zm}

∪ {{(x+ i)0, (x+ i)2} : i ∈ Zm} ∪ {{(x+ i)1, (x+ i)3} : i ∈ Zm}

∪ {{(y + i)0, (y + i)3} : i ∈ Zm} ∪ {{(y + i)1, (y + i)2} : i ∈ Zm}.

Then (X,W9,A) is an IRP(4m+ 9,K, 1; 9), whose blocks can be arranged in a (2m+ 4)×

(4m+ 5) array as in Figure 4.7. We index the rows by [4] ∪ (Zm × {◦, •}) and the columns

by [5] ∪ (Zm × Z4).

First, check that the cell (r, c) is empty for (r, c) ∈ [4]× [5].

For j ∈ [5], the set of blocks occupying column j is Zm×Z4 by condition (ii) of Definition

4.5.10. For j ∈ Zm × Z4, first observe that the set of the blocks occupying the column 00

by condition (iii) of Definition 4.5.10 is (Zm × Z4) ∪W9. Since the blocks of column j are

translates (by j) of the blocks in column 00, the union of the blocks in column j is also

(Zm × Z4) ∪W9.

For i ∈ [4], each element in Zm×Z4 appears exactly twice in row i by construction. For

(i, ∗) ∈ Zm ×{◦, •}, let R(i,∗) denote the multiset containing all the points appearing in the

blocks of row (i, ∗). Then R(0,∗) = R∗ and R(i,∗) = R(0,∗) + i0, for all i ∈ Zm. Hence, it
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suffices each element in X appears either once or twice in R∗, which follows immediately

from conditions (v) in Definition 4.5.10. �

Corollary 4.5.12. There exists an IGBTP1({2, 3∗}, 2m + 9, (m + 4) × (2m + 5); 9, 4 × 5)

exists for m ∈ {s : 10 ≤ s ≤ 45} ∪ {47, 49, 53, 57, 77} \ {16, 20, 24, 28, 36, 40, 44}, and an

IGBTP1({2, 3∗}, 2m+11, (m+5)×(2m+7); 11, 5×7) for m ∈ {15, 19, 23, 27, 31, 35, 45, 49}.

Proof. The required ((Zm × Z2) ∪W9)-IGBTP-starter for m ∈ {s : 11 ≤ s ≤ 49, s odd} ∪

{53, 57, 77} and ((Zm × Z4) ∪W9)-IGBTP starter for m ∈ {s : 5 ≤ s ≤ 21, s odd} is given

in [11] and we apply Proposition 4.5.9 and Proposition 4.5.11 to obtain the corresponding

IGBTP.

Similarly, to construct an IGBTP1({2, 3∗}, 2m + 11, (m + 5) × (2m + 7); 11, 5 × 7) for

m ∈ {15, 19, 23, 27, 31, 35, 45, 49}, we apply Proposition 4.5.9 to (Zm × Z2 ∪W11)-IGBTP

starters listed in [11].

It remains to construct an IGBTP1({2, 3∗}, 33, 16× 29; 9, 4× 5). Consider ((Z3 × Z8) ∪

W9,S), a {2, 3}-uniform set system of size 36, where S comprise the blocks below:

A1 = {10, 12} A2 = {11, 15} A3 = {00, 04} A4 = {13, 16}

A5 = {03, 05} A6 = {11, 13} A7 = {14, 17} A8 = {01, 06}

A9 = {00, 05} A10 = {02, 04} A11 = {14, 16} A12 = {10, 13}

A13 = {02, 05} A14 = {12, 17} A15 = {01, 07} A16 = {15, 17}

A17 = {02, 06} A18 = {03, 07} A19 = {11, 14} A20 = {10, 16}

B1 = {00, 01} B2 = {05, 15} B3 = {11, 24} B4 = {07, 13}

C1
0 = {10, 21, 26} C1

1 = {10, 21} C1
2 = {10, 21}

C2
0 = {02,∞1} C2

1 = {04,∞2} C2
2 = {12,∞3}

C3
0 = {20,∞4} C3

1 = {23,∞5} C3
2 = {16,∞6}

C4
0 = {27,∞7} C4

1 = {22,∞8} C4
2 = {25,∞9}.
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Let

X = (Z3 × Z8) ∪W

A = {S + j : S ∈ S, j ∈ Z3 × Z8}.

Then (X,W,A) is an IRP(33, {2, 3∗}, 1; 9), whose blocks can be arranged in a 16 × 29

array as in Figure 4.9. It can be readily verified that this arrangement results in an

IGBTP1({2, 3∗}, 33, 16× 29; 9, 4× 5). �

4.5.3 Direct Constructions for FGBTDs

Lemma 4.5.13. There exists an FGBTD(2, 2t) for t ∈ {4, 5}.

Proof. The desired FGBTDs are given in Fig. 4.10 and Fig. 4.11. �

Definition 4.5.14. Let t be a positive integer, and let I = [t − 1] × [2]. Let (Z3t × [2],S)

be a 3-uniform set system of size 2(t− 1), where S = {Ai : i ∈ I}. S is called a (Z3t × [2])-

FGBTD-starter if the following conditions hold:

(i) ∆ijS = Z3t \ {0, t, 2t} for i, j ∈ [2],

(ii) ∪i∈IAi = (Z3t \ {0, t, 2t})× [2],

(iii) for j ∈ [2], each element in (Zt \ {0})× [2] appears either once or twice in the multiset

Rj =

t−1⋃
i=1

A(i,j) − i mod t,

(iv) r ∈ (Zt \ {0})× [2] for each r ∈ R1 ∪R2.

Proposition 4.5.15. If a (Z3t×[2], 6t)-FGBTD-starter exists, then an FGBTD(3, 6t) exists.
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W B B + 01 B + 02 B + 03 B + 04 B + 05 B + 06 B + 07

A

C1 C4 + 01 C3 + 02 C2 + 03 C1 + 04 C4 + 05 C3 + 06 C2 + 07

C2 C1 + 01 C4 + 02 C3 + 03 C2 + 04 C1 + 05 C4 + 06 C3 + 07

C3 C2 + 01 C1 + 02 C4 + 03 C3 + 04 C2 + 05 C1 + 06 C4 + 07

C4 C3 + 01 C2 + 02 C1 + 03 C4 + 04 C3 + 05 C2 + 06 C1 + 07

where W is a 4× 5 empty array, A is a 12× 5 array,

A1 A2 A3 A4 A5

A1 + 10 A2 + 10 A3 + 10 A4 + 10 A5 + 10

A1 + 20 A2 + 20 A3 + 20 A4 + 20 A5 + 20

A6 A7 A8 A9 A10

A6 + 10 A7 + 10 A8 + 10 A9 + 10 A10 + 10

A6 + 20 A7 + 20 A8 + 20 A9 + 20 A10 + 20

A11 A12 A13 A14 A15

A11 + 10 A12 + 10 A13 + 10 A14 + 10 A15 + 10

A11 + 20 A12 + 20 A13 + 20 A14 + 20 A15 + 20

A16 A17 A18 A19 A20

A16 + 10 A17 + 10 A18 + 10 A19 + 10 A20 + 10

A16 + 20 A17 + 20 A18 + 20 A19 + 20 A20 + 20

,

B is a 4× 3 array,

B1 B1 + 10 B1 + 20

B2 B2 + 10 B2 + 20

B3 B3 + 10 B3 + 20

B4 B4 + 10 B4 + 20

,

Ci for i ∈ [4] is a 3× 3 array,

Ci0 C
i
2 + 10 C

i
1 + 20

Ci1 C
i
0 + 10 C

i
2 + 20

Ci2 C
i
1 + 10 C

i
0 + 20

.

Fig. 4.9: An IGBTP1({2, 3∗}, 33, 16× 29; 9, 4× 5).
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— — {2,7} {6,3} {7,1} {3,5} {5,6} {1,2}
{2,3} {6,7} — — {3,0} {7,4} {0,2} {4,6}
{5,7} {1,3} {3,4} {7,0} — — {4,1} {0,5}
{1,6} {5,2} {6,0} {2,4} {4,5} {0,1} — —

Fig. 4.10: An FGBTD1(2, 24) (X,G,A), where X = Z8 and G = {{i, 4 + i} : i ∈ Z4}.

— — {7,9} {2,4} {3,4} {8,9} {6,2} {1,7} {1,8} {6,3}
{7,4} {2,9} — — {8,0} {3,5} {4,5} {9,0} {7,3} {2,8}
{3,9} {8,4} {8,5} {3,0} — — {9,1} {4,6} {5,6} {0,1}
{1,2} {6,7} {4,0} {9,5} {9,6} {4,1} — — {0,2} {5,7}
{6,8} {1,3} {2,3} {7,8} {5,1} {0,6} {0,7} {5,2} — —

Fig. 4.11: An FGBTD1(2, 25) (X,G,A), where X = Z10 and G = {{i, 5 + i} : i ∈ Z5}.

Proof. Let

X = Z3t × [2],

G = {Gi = {i1, (t+ i)1, (2t+ i)1, i2, (t+ i)2, (2t+ i)2} : i ∈ Zt},

A = {Ai + j : i ∈ I and j ∈ Z3t}.

Then (X,G,A) is a {3}-GDD of type 6t, whose blocks can be arranged in a 2t×3t array, with

rows and columns indexed by Zt × [2] and Z3t, respectively, as follows: the block A(i,j) + k

is placed in cell ((i+ k, j), k).

The set of blocks occupying column zero are {Ai : i ∈ I} and by condition (ii) of

Definition 4.5.14,
⋃
i∈I Ai = X \ G0. For other j ∈ Z3t, observe that the blocks occupying

column j are translates (by j) of the blocks in column zero, and hence the union of the

blocks in column j is X \Gj′ , where j′ ≡ j mod t.

For (i, j) ∈ Zt × [2], let R(i,j) denote the multiset containing all the points appearing in

the blocks of row (i, j). Then R(i,j) = R(0,j) + i, for all i ∈ Zt. Hence, it suffices to check

that each element of X \G0 appears either once or twice in R(0,j) and the elements of R(0,j)

belong to X \ G0 for j ∈ [2]. This, however, follows immediately from conditions (iii) and

(iv) in Definition 4.5.14, since R(0,j) = Rj ∪ (Rj + t) ∪ (Rj + 2t) for j ∈ [2]. �

Corollary 4.5.16. There exist an FGBTD(3, 6t) for all t ∈ {5, 6, 7, 8}, an FGBTD(3, 24t)

for all t ∈ {5, 8} and an FGBTD(3, 30t) for all t ∈ {5, 7}.
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Proof. An FGBTD1(3, 66) is given by Example 4.3.16. An FGBTD(3, 6t) for t ∈ {5, 7}

exists by applying Proposition 4.5.15 with FGBTD-starters given in [11].

The existence of an FGBTD(3, 24t), t ∈ {5, 8} follows by applying Proposition 4.4.7 with

an FGBTD(3, 6t) (constructed in this proof) and a DRTD(3, 4), whose existence is provided

by Corollary 4.3.15. The existence of an FGBTD(3, 30t), t ∈ {5, 7} follows by applying

Proposition 4.4.7 similarly.

To prove the existence of an FGBTD(3, 68), consider (Z48,S), a {3}-uniform set system

of size seven, where S comprises the blocks below:

A1 = {2, 3, 5} A2 = {4, 14, 31} A3 = {9, 22, 45} A4 = {15, 34, 43}

A5 = {20, 35, 42} A6 = {13, 17, 47} A7 = {1, 6, 12}.

Observe that S satisfies the following conditions:

(i) ∆S = Z48 \ {0, 8, 16, 24, 32, 40},

(ii)
⋃
i∈[7]Ai mod 24 = Z24 \ {0, 8, 16},

(iii) each element in Z16 \ {0, 8} appears either once or twice in the multiset

R =
⋃
i∈[7]

Ai − i mod 16,

(iv) r ∈ Z16 \ {0, 8} for each r ∈ R.

Further, let

X = Z48,

G = {{i+ 8k : k ∈ Z6} : i ∈ Z8},

A = {Ai + j : i ∈ [7] and j ∈ Z48}.

Then (X,G,A) is a {3}-GDD of type 68, whose blocks can be arranged in a 16× 24 array,

with rows and columns are indexed by Z16 and Z24, respectively, as follows: the block Ai+j

is placed in cell (i+ j, j). This array can be verified to be an FGBTD(3, 68). �
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4.6 Existence of Two Classes of GBTPs

We apply recursive constructions in Section 4.4 with small designs directly constructed in

Section 4.5 to completely settle the existence of GBTD1(3,m) and GBTP1({2, 3∗}; 2m +

1,m× (2m− 3)).

4.6.1 Existence of GBTD1(3,m)

Lemma 4.6.1. There exists a special GBTD1(3, 3rq) for all r ≥ 0 and q ∈ Q, where

Q = {q : q ≡ 1 mod 6 is a prime power} ∪ {5, 9, 11, 23}, except when (r, q) = (0, 5).

Proof. Existence of a special GBTD1(3, q) for all q ∈ Q \ {5} is provided by Corollary 4.5.6

and 4.5.7. These GBTDs are all 3-∗colorable with property Π. The lemma then follows by

considering these GBTDs as RBIBDs and applying Corollary 4.4.2. �

Lemma 4.6.2. Let s ∈ [2] and suppose there exists a TD(5 + s, n). If 0 ≤ gi ≤ n, i ∈ [s]

and that there exists a special GBTD1(3,m) for all m ∈ {2n+ 1} ∪ {2gi + 1 : i ∈ [s]}, then

there exists a special GBTD1(3, 10n+ 1 + 2
∑s

i=1 gi).

Proof. By Corollary 4.5.16, there exists an FGBTD(3, 6t) for all t ∈ {5, 6, 7}. By Proposition

4.4.9, there exists an FGBTD(3, (6n)5(6g1) · · · (6gs)). Now apply Corollary 4.4.5 to obtain

a special GBTD1(3, 10n+ 1 + 2
∑s

i=1 gi). �

Lemma 4.6.3. A special GBTD1(3,m) exists for odd m ≥ 7.

Proof. First, a special GBTD1(3,m) can be constructed for odd m, 7 ≤ m ≤ 95. Details

are provided in Table 4.1.

We then prove the lemma by induction on m ≥ 97.

Let E = {t : t ≥ 9}\{10, 14, 15, 20, 22, 26, 30, 34, 38, 46}. By Theorem 4.3.12, a TD(7, n)

exists for any n ∈ E. Hence, if there exists a special GBTD1(3,m′) for odd m′, 7 ≤ m′ ≤

2n + 1, then applying Lemma 4.6.2 with 3 ≤ g1, g2 ≤ n yields a special GBTD1(3,m) for

odd m, 10n+ 7 ≤ m ≤ 14n+ 1.

Suppose there exists a GBTD1(3,m′) for all odd m′ < m. We claim there exists n ∈ E

with 10n+ 7 ≤ m ≤ 14n+ 1. Suppose otherwise. In other words, there exists n1 ∈ E such
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Tab. 4.1: Existence of special GBTD1(3,m)

Authority m
Corollary 4.5.7 9, 11, 17, 23, 29, 35, 47, 53, 55
Lemma 4.6.1 7, 13, 15, 19, 21, 25, 27, 31, 33, 37, 39,

43, 45, 49, 57, 61, 63, 67, 69, 73, 75
Corollary 4.4.6 with (g, t) in {(8, 5), (5, 10),
(8, 8), (7, 10)}

41, 51, 65, 71

Lemma 4.6.2 with n = 5, g1 = 4 59
Lemma 4.6.2 with n = 7, g1, g2 ∈ {0} ∪ {t : 3 ≤ t ≤ 7} {s : 77 ≤ s ≤ 95, s odd}

Tab. 4.2: Existence of IGBTP1({2, 3∗}, 2m+ 9, (m+ 4)× (2m+ 5); 4× 5)

Authority m
Corollary 4.5.12 {s : 10 ≤ s ≤ 57} \ {16, 20, 24, 28, 32, 36,

40, 44, 48, 50, 52, 54, 55, 56}
Lemma 4.6.4 with (n, g) ∈ {(10, 0), (11, 0), (12, 0),
(13, 0), (11, 10), (11, 11), (14, 0)}

40, 44, 48, 52, 54, 55, 56

that 14n1 + 1 < 10n2 + 7 for all n2 > n1 and n2 ∈ E. This, together with the fact that

n1 ≥ 9, implies that n2 − n1 > 3 for all n2 ∈ E and n2 > n1. However, a quick check on E

gives a contradiction.

Since n ∈ E and there exists a special GBTD1(3,m′) for all m′ ≤ 2n+ 1 < 10n+ 7 ≤ m

(induction hypothesis), there exists a special GBTD1(3,m), completing the induction. �

Lemma 4.6.3 shows that a GBTD1(3,m) exists for all odd m 6= 3, 5. Theorem 3.3.1(vi)

now follows.

4.6.2 Existence of GBTP1({2, 3∗}; 2m+ 1,m× (2m− 3))

Lemma 4.6.4. Suppose there exists a TD(5, n). Suppose 0 ≤ g ≤ n and that there exists

an IGBTP1({2, 3∗}, 2m+ 9, (m+ 4)× (2m+ 5); 9, 4× 5) for m ∈ {n, g}. Then there exists

an IGBTP1({2, 3∗}, 2M + 9, (M + 4)× (2M + 5); 9, 4× 5), where M = 4n+ g.

Proof. By Lemma 4.5.13, there exists an FGBTD(2, 2t) for all t ∈ {4, 5}. By Proposition

4.4.9, there exists an FGBTD(2, (2n)4(2g)). Now apply Proposition 4.4.4 to obtain an

IGBTP1({2, 3∗}, 2M + 9, (M + 4)× (2M + 5); 9, 4× 5). �

Lemma 4.6.5. There exists an IGBTP1({2, 3∗}, 2m + 9, (m + 4) × (2m + 5); 9, 4 × 5) for

any m ≥ 10, except possibly for m ∈ {16, 20, 24, 28, 32, 36, 46, 50}.
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Proof. Let E = {16, 20, 24, 28, 32, 36, 46, 50}. An IGBTP1({2, 3∗}, 2m+ 9, (m+ 4)× (2m+

5); 9, 4 × 5) can be constructed for 10 ≤ m ≤ 57 and m /∈ E, except possibly for m =

51. Details are provided in Table 4.2. When m = 51, consider a TD(5, 11) and delete

four points from a block to form a {4, 5}-GDD of type 10411. Proposition 4.4.8 yields an

FGBTD(2, 20422) and hence, Proposition 4.4.4 yields an IGBTP1({2, 3∗}, 2m+ 9, (m+ 4)×

(2m+ 5); 9, 4× 5) with m = 51.

We then prove the lemma by induction on m ≥ 57. Let E′ = {4n+ g : n ∈ E, 10 ≤ g ≤

13} and assume the lemma is true for n < m.

When m /∈ E′, then write m = 4n+ g with 13 ≤ n < m, n /∈ E and g ∈ {10, 11, 12, 13}.

Since a TD(5, n) which exists by Theorem 4.3.12, applying Lemma 4.6.4 with the corre-

sponding n and g, we obtain the desired IGBTP.

When m ∈ E′, we have two cases.

• If m = 77, the required IGBTP is given by Corollary 4.5.12.

• Otherwise, apply Lemma 4.6.4 with (n, g) taking values in {(15, 14), (15, 15),

(19, 0), (18, 18), (19, 15), (23, 0), (19, 17), (22, 18), (22, 19), (27, 0), (22, 21),

(25, 22), (25, 23), (31, 0), (25, 25), (29, 22), (29, 23), (35, 0), (29, 25), (31, 30),

(31, 31), (39, 0), (33, 25), (39, 38), (39, 39), (49, 0), (40, 37), (42, 42), (43, 39),

(43, 40), (43, 41)}.

This completes the induction. �

Lemma 4.6.6. A GBTP1({2, 3∗}, 2m+ 1,m× (2m− 3)) exists for m ≥ 4, except possibly

for m ∈ {12, 13}.

Proof. A GBTP1({2, 3∗}; 2m + 1,m × (2m − 3)) can be found via computer search for

4 ≤ m ≤ 11. The GBTPs are listed in [11].

For m ∈ {20, 24, 28, 32, 36, 40, 50, 54}, set M = m−5 and we apply Proposition 4.4.3 with

the GBTP1({2, 3∗}, 11, 5×7) and the IGBTP1({2, 3∗}, 2M+11, (M+5)×(2M+7); 11, 5×7)

constructed in Corollary 4.5.12.

Finally, for m ≥ 14 and m /∈ {20, 24, 28, 32, 36, 40, 50, 54}, set M = m − 4 and apply

Proposition 4.4.3 with GBTP1({2, 3∗}, 9, 4× 5) and the IGBTP1({2, 3∗}, 2M + 9, (M + 4)×
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(2M + 5); 9, 4× 5) constructed in Lemma 4.6.5. �

Lemma 4.6.6 shows that a GBTP1({2, 3∗}, 2m + 1,m × (2m − 3)) exists for all m ≥ 4,

except possibly for m ∈ {12, 13}. Theorem 3.3.1(vii) now follows.

4.7 Concluding Remarks

Using methods from combinatorial design theory, we establish infinite families of optimal eq-

uitable symbol weight codes and also reveal interesting interplays with generalized balanced

tournament packings. In particular, we exploit the construction due to Semakov and Zi-

noviev [70] to construct equitable symbol weight codes from designs. Hence, it is interesting

to ask if equitable symbol weight codes offer new problems to other areas of combinatorial

design theory.

We determine completely the existence of GBTDλ(k,m) for the case where (k, λ) =

(3, 1). In general, it would be difficult to completely determine the existence of GBTDλ(k,m)

for all k and λ. Instead, for fixed k and λ, we would like to determine if a GBTDλ(k,m)

exists provided that m is sufficiently large and m satisfies certain necessary conditions. This

problem is addressed in our future work.



5. MATRIX CODES FOR MULTITONE FREQUENCY

SHIFT KEYING

In Chapters 2 to 4 we consider a coded modulation scheme that uses an FSK system to

transmit one information symbol at each time instance. We demonstrate the importance

of symbol equity in combating narrowband noise under this scheme and this motivates

our study of equitable symbol weight codes. Unfortunately, the codes constructed usually

involve the use of codebooks and do not have efficient decoding algorithms.

In this chapter, we propose a modification to this FSK scheme, so as to achieve efficient

decodability. In particular, we propose the use of a multitone FSK system to transmit a

combination of information symbols are at each time instance.

For multitone FSK, various authors have studied its applications. Luo et al. [55] an-

alyzed and compared the performance of multitone FSK and single-tone FSK schemes in

which the signal energy is peaky both in time and frequency. Their results show that both

single-tone FSK and multitone FSK, with simple hard-decision decoding, have comparable

error performance, and furthermore, both approach the wideband capacity limit at large

but finite bandwidths. Verdú [77] also showed that in order to achieve the capacity of a

wideband noncoherent fading channel, the signaling must be peaky. Oshinomi et al. [59]

studied a specific implementation of multitone FSK to demonstrate the spectral efficiency

of the model. These results are encouraging with respect to the use of multitone FSK for

narrowband PLC.

Hence, we adopt the use of multitone FSK modulation scheme with the understanding

that the energy is concentrated on only a small fraction of the available frequencies. We

consider the special case of using a combination of exactly w frequencies at any time instance.
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Thus, to determine the set of frequencies to transmit, we use binary matrices as codewords,

instead of q-ary vectors. Since these binary matrices are required to have the same number

of ones in each column, we are unable to employ general burst-error correcting codes such

as array codes [68] or Gabidulin codes [34].

Instead, we construct matrix codes meeting our requirements through concatenation

and a simple modification of Gabidulin codes. As a result, we establish infinite families of

efficiently decodable codes whose rate and relative distance are bounded away from zero. In

addition, whenever possible, we use a logarithmic number of frequencies in the length of the

code. Simulation results show our multitone modulation schemes outperform single-tone

modulation schemes. This chapter has been presented in part at the IEEE International

Symposium on Information Theory, 2013 [14].

5.1 Preliminaries

Let Σ be a set of q symbols. Recall that an (n, q)q-code denotes a q-ary code of length

n with distance d. For a codeword u ∈ Fn2 , the weight of a vector u is the number of

nonzero components in u. An (n, d)2-code whose codewords are all of weight w is called an

(n, d, w)2-constant weight code, and is denoted by CW(n, d, w)2.

5.1.1 Binary Matrix Codes

Let m,n be positive integers and let Fm×n2 denote the set of m × n matrices over F2. Let

M ∈ Fm×n2 . We index the rows of M by [m], the columns by [n], and let Mi,j be the (i, j)-th

entry of M. We denote the ith row by Mi,∗ and the jth column by M∗,j . A binary (m× n)-

matrix code C is hence a subset of Fm×n2 . The code C is said to have constant column weight

w if each column of a matrix in C has weight w.

5.1.2 Concatenated Codes

Let B be an (n, dB)q-code over Σ and A be an (m, dA)2-code with |A| ≥ q. Let ψ : Σ→ A

be any injective mapping and we write ψ(σ) as a binary column vector of length m. Then

the concatenated code A ◦ B defined by inner code A, outer code B and mapping ψ is the
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following set of m× n matrices over F2:

A ◦ B = {M : M∗,j = ψ(uj), j ∈ [n], u ∈ B}.

The inner distance of A◦B is dA and its outer distance is dB. The size of A◦B is |B|. Note

that elements of A ◦ B are binary m × n matrices, so A ◦ B is a binary matrix code. If in

addition, A is a constant weight code of weight w, then A ◦ B has constant column weight

w and A ◦ B is called an (m× n, dA, dB, w)-concatenated constant column weight code, and

is denoted by CCW(m× n, dA, dB, w).

5.2 Coded Modulation with Multitone FSK

We modify the coded modulation scheme in Chapter 2 to use a binary matrix code in

conjunction with multitone FSK, where each symbol is signaled by a combination of w

different tones from an set of m tones. We call such a multitone FSK an
(
m
w

)
-FSK. An(

m
1

)
-FSK corresponds to the single-tone FSK described in Chapter 2.

Consider a binary (m×n)-matrix code C with constant column weight w. Each codeword

in C corresponds to a message. We use an
(
m
w

)
-FSK with the frequency set {f1, f2, . . . , fm}.

To transmit a message corresponding to M ∈ C, we transmit n symbols, each of which is

signaled by a combination of w tones, {fi : i ∈ [m],Mi,j = 1}, j ∈ [n], over n discrete time

instances. We can therefore think of each codeword in C as having rows indexed by tones

and columns indexed by time instances.

We note that in case where w = 1, a binary (m×n)-matrix code C with constant column

weight one is equivalent to a m-ary code over alphabet Σ = {f1, f2, . . . , fm}. The rate of C

is then given by logm |C|/n = log |C|/(n logm). In particular, in the case for permutation

codes, this definition corresponds to the rate defined by Blake, Cohen and Deza [6]. Hence,

for a general w, a binary (m×n)-matrix code C with constant column weight w is equivalent

to a
(
m
w

)
-ary code over alphabet

(
Σ
w

)
and its rate is given by

R(C) =
log |C|
n log

(
m
w

) .
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This definition of the rate hence captures the size of the “space” when we use w fre-

quencies in n time instances. In addition, this definition “penalizes” the use of additional

frequencies and makes it possible to compare between
(
m
w

)
-FSK schemes with different w.

We note that this differs from the definition in [19, 31] where the rate is defined as the

number of bits transmitted per channel use.

Example 5.2.1. The message corresponding to the codeword

M =



0 0 0 1 1

0 1 1 0 0

1 0 1 0 1

1 1 0 1 0


is transmitted via the sets of tones {f3, f4}, {f2, f4}, {f2, f3}, {f1, f4}, and {f1, f3} over five

discrete time steps.

Assuming a hard-decision threshold detector, the received signal (which may contain

errors caused by noise) is demodulated to an output N ∈ Fm×n2 . As with the case of single-

tone FSK, we consider the effects on the detector output that arises from the different types

of noise described in Section 2.2.

1. Narrowband noise introduces a tone over a prolonged period. For simplicity, we assume

that this (unwanted) tone is present at all time instances. If e ∈ [m] and e narrowband

noise errors occur, then there is a set Γ ∈
(

[m]
e

)
of e rows, such that Ni,j = 1 for i ∈ Γ,

j ∈ [n].

2. A channel fade event erases a particular tone. If e ∈ [m], and e signal fading errors

occur then there is a set Γ ∈
(

[m]
e

)
of e rows such that Ni,j = 0 for all j ∈ [n].

3. Impulse noise results in the entire set of tones being received at a certain time instance.

If e ∈ [n] and e impulse noise errors occur, then there is a set Π ∈
(

[n]
e

)
of e columns

such that Ni,j = 1 for i ∈ [m], j ∈ Π.

4. Background noise flips the bit value at a particular tone and time instance. If e
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background noise occurs then there exists a set Ω ∈
(

[n]×[m]
e

)
such that Ni,j = Mi,j + 1,

for all (i, j) ∈ Ω.

In other words, a narrowband noise error turns an entire row of N to ones, an impulse noise

error turns an entire column of N to ones, a channel fade event turns an entire row of N to

zeros, and a background noise flips an entry of N.

Example 5.2.2. Continuing Example 5.2.1, if one narrowband noise error occur at fre-

quency 1 and one impulse noise occur at time instance 2, the resulting demodulated matrix

is

N =



1 1 1 1 1

0 1 1 0 0

1 1 1 0 1

1 1 0 1 0


.

The following sections adapt some well-known matrix codes to this coded modulation

scheme to achieve efficient decoding with asymptotically good parameters.

5.3 Concatenated Codes - Construction and Decoding

First, we consider the classical concatenation methods [29,32] using a constant weight code

as the inner code and a q-ary code as the outer code. We follow the usual method of decoding

concatenated codes by decoding the inner code, followed by decoding the outer code. Below,

we present the sufficient conditions under which correct decoding can be performed.

Let A ◦ B be an (m × n, dA, dB, w)-concatenated constant column weight code. Let Σ

be the alphabet for B and ψ : Σ → A be the injective map defining A ◦ B. For the code B

we use a bounded distance decoder that corrects both errors and erasures, and for the code

A we use a minimum distance decoder which corrects errors. Suppose the detector output

is N ∈ Fm×n2 . We decode N to N′ ∈ A ◦ B in two steps. First, we decode N to a codeword

v ∈ (Σ ∪ {?})n, where ? is the erasure symbol. For j ∈ [n], if the column N∗,j is an all-one

vector, we set the vj to be ?. Otherwise, we decode the column N∗,j to a codeword in A,

and using ψ, convert this codeword to vj ∈ Σ. Next, we decode v to a codeword u ∈ B.
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Input: detector output N ∈ Fm×n2

Output: N′ ∈ A ◦ B
for j ∈ [n] do

if Ni,j = 1 for all i ∈ [m] then
vj ← ?

else
decode N∗,j to cj ∈ A
vj ← ψ−1(cj)

end

end
decode v to u ∈ B
for j ∈ [n] do

N′∗,j ← ψ(uj)

end
return N′

Fig. 5.1: decoder for concatenated codes

Using ψ again, we represent the codeword u as a matrix N′ ∈ A ◦ B. See Algorithm 5.1 for

details.

The conditions for correct decoding are given in the following proposition. For simplicity,

consider the case where only narrowband noise and impulse noise are present. The sufficient

conditions can be readily extended to the case when background noise and fading are also

present.

Proposition 5.3.1. Let A◦B be an (m×n, dA, dB, w)-concatenated constant column weight

code. Then A◦B is able to correct eN narrowband noise errors and eIMP impulse noise errors

if 2eN < dA, eN + w < m, and eIMP < dB.

The inequality eN + w < m captures the situation where a column of all ones is not

introduced by the presence of narrowband noise errors.

We emphasize that we do not introduce erasure symbols in Algorithm 5.1 prior to the

decoding of the inner code A. There is no algorithm to “detect” narrowband noise as the

codewords of A◦B may contain an all-one row. Indeed, a more careful construction of A◦B

could restrict the weights of both rows and columns and hence, introduce erasure symbols

at the decoding stage of the inner code.
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5.3.1 Code Construction

We are after concatenated codes with relative outer and/or inner distances bounded away

from zero (to guarantee good error-correcting capabilities implied by Proposition 5.3.1), have

efficient decoding algorithms for decoding of outer and inner codes, and have rates bounded

away from zero. To achieve this, we use Reed-Solomon codes as outer codes. Denote a

q-ary Reed-Solomon code of length n, dimension k and minimum distance d by RS[n, k, d]q.

The following theorem gives a general construction of an efficiently decodable concatenated

constant column weight code.

Theorem 5.3.2. Let n + 1 be a prime power with n + 1 ≤ |A|. Let the outer code B

be an RS[n, n − dB + 1, dB]n+1 and inner code A be a CW(m, dA, w)2. Then A ◦ B is a

CCW(m×n, dA, dB, w) of rate (1−(dB−1)/n) log n/ log
(
m
w

)
and decoding complexity O(n2)

+ O(n|A|).

We specialize Theorem 5.3.2 in the following ways to give families of asymptotically good

codes.

Codes from Block Designs. Our first specialization of Theorem 5.3.2 comes from

application of combinatorial designs. Recall that a (v, k, 1)-BIBD (balanced incomplete block

design) is a {k}-uniform set system (X,S) with the property that every pair of distinct

points in X is contained in exactly one block. Wilson [83] showed that for every fixed k,

there exists a (v, k, 1)-BIBD for all sufficiently large v satisfying the congruences v(v− 1) ≡

0 mod k(k−1) and v−1 ≡ 0 mod k−1. The blocks of an (n,w, 1)-BIBD form the supports

of a CW(n, 2(w − 1), w)2 of size n(n− 1)/(w(w − 1)).

Corollary 5.3.3 (Block Design Construction). Fix w ≥ 2 and let 0 < δB < 1. Then

there exists a CCW(m× n, dA, dB, w) Cm, for all sufficiently large m satisfying m(m− 1) ≡

0 mod w(w − 1) and m− 1 ≡ 0 mod w − 1, where

(i) n = Θ(m2),

(ii) dA = 2(w − 1),

(iii) dB = dδBne.
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Furthermore, this code family has the property that

lim
m→∞

R(Cm) ≥ 2

w
(1− δB).

Proof. For sufficiently large m satisfying m(m−1) ≡ 0 mod w(w−1) and m−1 ≡ 0 mod w−

1, take a CW(m, 2(w − 1), w)2 of size m(m− 1)/(w(w − 1)) as inner code A. Let n+ 1 be

a prime power such that m(m − 1)/(2w(w − 1)) ≤ n + 1 ≤ m(m − 1)/(w(w − 1)), and let

dn = dδBne. Take an RS[n, n − dB + 1, dB]n+1 as outer code B. Then A ◦ B is the desired

CCW(m× n, dA, dB, w).

Conditions (i)–(iii) are immediate. The asymptotic rate of the code family can be verified

as follows:

lim
m→∞

(
1− dB − 1

n

)
log n

log
(
m
w

) ≥ (1− δB) lim
m→∞

log(m2/(2w(w − 1)))

logmw

≥ 2(1− δB)/w.

�

Codes via Rödl’s Nibble. The next specialization is based on Rödl’s construction of

constant weight codes. In particular, Rödl [67] showed that for fixed w and s, there exists

a CW(n,w, 2(w − s+ 1))2 of size (1− o(1))
(
n
s

)
/
(
w
s

)
.

Corollary 5.3.4 (Rödl’s Nibble Construction). Fix 1 ≤ s < w and let 0 < δB < 1. Then

there exists a CCW(m× n, dA, dB, w) Cm, for all sufficiently large m, where

(i) n = Θ(ms),

(ii) dA = 2(w − s+ 1),

(iii) dB = dδBne.

Furthermore, this code family has the property that

lim
m→∞

R(Cm) ≥ s

w
(1− δB).
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Proof. Take a CW(m, 2(w − s), w)2 of size M = (1 − o(1))
(
m
s

)
/
(
w
s

)
as inner code A. Let

n + 1 be a prime power such that M/2 ≤ n + 1 ≤ M , and let dn = dδBne. Take an

RS[n, n− dB+ 1, dB]n+1 as outer code B. Then A◦B is the desired CCW(m×n, dA, dB, w).

Conditions (i)–(iii) are immediate. The asymptotic rate of the code family can be verified

as follows:

lim
m→∞

(
1− dB − 1

n

)
log n

log
(
m
w

) ≥ (1− δB) lim
m→∞

log(1− o(1))
(
m
s

)
/(2
(
w
s

)
)

logmw

≥ s(1− δB)/w.

�

Codes via GV Construction. Our final specialization is based on the GV construc-

tion. Levenshtĕın [51] showed that when applied to the space of constant weight vectors,

the GV construction gives, for fixed positive δ, κ < 1, a CW(m, δm, κm)2 of size at least

2m(H(κ)−s(δ,κ)), where

s(δ, κ) = max
0≤σ≤δ/2

κH(σ/κ) + (1− κ)H(σ/(1− κ)).

Corollary 5.3.5 (GV Construction). Fix 0 < δA < κ < 1/2, 0 < δB < 1. Then for m

sufficiently large, there exists a CCW(m× n, dA, dB, w) Cm such that

(i) n = Θ
(
2m(H(κ)−s(δA,κ))

)
,

(ii) dA = dδAme,

(iii) dB = dδBne,

(iv) w = dκme.

Furthermore, this code family has the property that

lim
m→∞

R(Cm) ≥
(

1− s(δA, κ)

H(κ)

)
(1− δB).
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Proof. Take a CW(m, δAm,κm)2 of size M , with M = 2m(H(κ)−s(δA,κ)), as inner code A,

and choose a prime power n+ 1 such that M/2 ≤ n+ 1 ≤M . Let dB = dδBne and take an

RS[n, n−dB +1, dB]n+1 as outer code B. Then A◦B is the desired CCW(m×n, dA, dB, w).

Conditions (i)–(iv) are immediate. The asymptotic rate of the code family can be verified

as follows:

lim
m→∞

(
1− dB − 1

n

)
log n

log
(
m
w

) ≥ (1− δB) lim
m→∞

logM − o(1)

log 2mH(w/m)

≥ (1− δB) lim
m→∞

m(H(κ)− s(δA, κ)− o(1))

m(H(κ)− o(1))

= (1− δB)

(
1− s(δA, κ)

H(κ)

)
.

�

5.3.2 Simulations

We simulate the performance of concatenated constant column weight codes in the presence

of narrowband noise. The setup is similar to that in Section 2.4. Let m be the number

of instances used, n be the number of discrete time steps taken to transmit a symbol,

L = {bn : b ∈ [10]} and 0 < p < 1. We simulate a PLC channel with the following

independent error characteristics:

1. for each i ∈ [m], a narrowband noise error of duration l ∈ L occurs at tone i with

probability p,

2. for each j ∈ [n], an impulse noise error occurs at time instance j with probability 0.05,

3. for each i ∈ [m], a signal fading error occurs at frequency i with probability 0.05, and

4. for each (i, j) ∈ [m]× [n], a background noise occurs at frequency i and time instance

j with probability 0.05.

We choose random codewords M from each code under comparison to transmit through

the simulated PLC channel. At the receiver, we decode the detector output N to the

codeword N′ using Algorithm 5.1. The number of symbols in error when transmitting a
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codeword is then |{j ∈ [n] : M∗,j 6= N′∗,j}|, and in this cases, the error rate is the fraction of

time instances in error.

We compare with the low symbol weight cosets of Reed-Solomon codes studied by Vers-

feld et al. [78,79]. In particular, we observe the error rates of concatenated constant column

weight codes with symbol weight cosets of similar rates.

Recall that a (n, d, r)q-symbol weight code is a q-ary code of length n with distance d

and bounded symbol weight r. Versfeld et al. [78, 79] showed that there exists a coset of

the Reed-Solomon code RS[n, k, n− k + 1]q with bounded symbol weight k. Denote such a

code by RSC(n, d, k)q.

Consider an RSC(n, d, k)q. Identify the elements in Fq with elements in [q] and for

codeword u we transmit the matrix M ∈ Fq×n2 , where

Mi,j =


1 if uj = i

0 otherwise.

At the receiver, we decode the detector output N to a codeword u′ using the algorithm

described in Figure 2.2. The number of symbols in error is then d(u, u′) and in this case

the error rate is the ratio of the total number of symbols in error to the total number of

symbols transmitted.

We compare concatenated constant column weight codes and low weight cosets of Reed-

Solomon codes of similar rates. The parameters of the codes under comparison are given in

Table 5.1 and the results of the simulations are given in Fig. 5.2. Observe that concatenated

constant column weight codes achieve significantly lower error rates as compared to the low

weight cosets of Reed-Solomon codes.

5.4 Gabidulin Codes and Decoding

In this section, we modify Gabidulin codes so that the matrix codes can be used in conjunc-

tion with a multitone FSK. Gabidulin introduced these matrix codes [34] with the purpose

of correcting “rank errors” and many efficient decoding algorithms have been studied since
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Tab. 5.1: Comparing low symbol weight cosets of Reed-Solomon codes and concatenated
constant column weight codes

Code
Num-
ber of
tones

Rate Remarks

RSC(15, 8, 8)16 16 ≈ 0.533 coset of RS[15, 8, 8]16
CW(9, 4, 4)2◦RS[15, 14, 2]16 9 ≈ 0.535 concatenated constant column weight code

RSC(15, 11, 5)16 16 ≈ 0.333 coset of RS[15, 5, 11]16
CW(13, 6, 5)2◦RS[15, 14, 2]16 13 ≈ 0.361 concatenated constant column weight code

10-210-1100

Probability of narrowband noise

10-1

100

S
y
m
b
o
l 
e
rr
o
r/
e
ra
su

re
 r
a
te

Codes of rate about 0.53 and 0.33

RSC(15,8,8)16 (R=0.533)
CW(9,4,4)2 ◦ RS[15,14,2]16 (R=0.535)
RSC(15,11,5)16 (R=0.333)
CW(13,6,5)2 ◦ RS[15,14,2]16 (R=0.361)

Fig. 5.2: Comparing concatenated and Reed Solomon codes of similar rates

(see for example [34,35,54,68,72]). For our purposes we look at the works of Gabidulin et al.

[36] and Gabidulin and Pilipchuk [37] where row and column erasure-correction is addressed.

In addition, Gabidulin and Pilipchuk [37] pointed to applicability of Gabidulin codes in ad-

dressing “narrowband” and “wideband impulse” noise in a multi-channel communication

system.

Consider a binary (m×n)-matrix code. Suppose N is a received code matrix. If e ∈ [m]

and e row erasures occur, then there is a set Γ ∈
(

[m]
e

)
of e rows, such that Ni,j = ? for

i ∈ Γ, j ∈ [n]. Similarly, if e ∈ [n] and e column erasures occur, then there is a set Π ∈
(

[n]
e

)
of e columns, such that Ni,j = ? for i ∈ [m], j ∈ Π.

Gabidulin and Pilipchuk then established the following.

Proposition 5.4.1. Let d ≤ n ≤ m and k = n − d + 1. Then there exists a binary

(m×n)-matrix code of size 2mk that corrects r row erasures and c column erasures provided
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that

r + c < d. (5.1)

Furthermore, there exist efficient decoding algorithms that do so.

Unfortunately, the binary matrices given by Proposition 5.4.1 do not meet the require-

ment of having the same number of ones in each column. As such, we propose a simple

modification to these matrices to obtain a binary (m × n)-matrix code C with constant

column weight.

Proposition 5.4.2. Let d ≤ n ≤ m and k = n−d+1. Then there exists a binary (2m×2n)-

matrix code of size 2mk with constant column weight m that corrects eN narrowband noise

and eIMP impulse noise errors provided that eN < m, eIMP < n and

⌊eN
2

⌋
+
⌊eIMP

2

⌋
< d. (5.2)

Proof. Let C be the binary (m×n)-matrix code of size 2mk guaranteed by Proposition 5.4.1.

Consider the following binary (2m× 2n)-matrix code of size 2mk,

C∗ =


 M M + J

M + J M

 : M ∈ C

 .

Then clearly, C∗ is a binary (2m× 2n)-matrix code with constant column weight m. Also,

each row of a matrix in C∗ has weight exactly n.

Suppose  M M + J

M + J M

 ∈ C∗
is transmitted and for brevity, let M1,1 = M, M1,2 = M + J, M2,1 = M + J and M2,2 = M.

Suppose N is received with eN narrowband noise and eIMP impulse noise errors. Then

for j ∈ [n], if the column N∗,j is an all-one vector, we set Ni,j = ? for all i ∈ [m]. Similarly,

for i ∈ [m], if the column Ni,∗ is an all-one vector, we set Ni,j = ? for all j ∈ [n].

Since eN < m and eIMP < n, exactly eN rows and eIMP columns are set to ?. Without
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loss of generality, we can assume M1,1 and M1,2 have at most beIMP/2c column erasures.

Similarly, we can then assume that M1,1 has at most beN/2c row erasures. Therefore, since

beN/2c+ beIMP/2c < d, we are able to decode to M correctly. �

Proposition 5.4.2 can be specialized to give a family of asymptotically good codes that

are efficiently decodable.

Corollary 5.4.3 (Gabidulin Construction). Fix 0 < δ < 1. Then for all m, there exists a

binary (2m × 2m)-matrix code Cm with constant column weight m, which is able to correct

eN narrowband noise and eIMP impulse noise errors provided that eN < m, eIMP < m and

⌊eN
2

⌋
+
⌊eIMP

2

⌋
< dδme . (5.3)

Furthermore, this code family has the property that

lim
m→∞

R(Cm) ≥ 1

4
(1− δ).

Proof. Set m = n and d = dδme for Proposition 5.4.2 to obtain Cm. The asymptotic rate of

the code family is given by:

lim
m→∞

log 2mk

2m log
(

2m
m

) ≥ lim
m→∞

mk

4m2

=
1

4
lim
m→∞

m− d+ 1

m

=
1

4
(1− δ).

�

5.5 Concluding Remarks

We propose a coded modulation scheme for PLC based on multitone FSK and binary matrix

codes. Using concatenation and a simple modification of Gabidulin codes, we construct

families of efficiently decodable constant column weight codes for this scheme with rates

and relative distances bounded away from zero. Simulation results show that concatenated
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constant column weight codes achieve lower error rates compared to low weight cosets of

Reed-Solomon codes of similar rates. In this work the lengths are chosen with respect to

the previous literature, and in our future work we examine simulations at longer lengths.

We observe that our proposal bears similarities with a current proposal for communica-

tion of narrowband power line channels that uses Orthogonal Frequency Division Multiplex-

ing (OFDM) [58]. The transmission of the data can also be adaptively modulated depending

on the channel characteristics. In this chapter, we do not assume that the channel state

information is known to the transmitter or the receiver. Comparisons of our work with

OFDM, and other extensions to include coherent demodulation and adaptive modulation

techniques is an interesting avenue for future research.

Finally, we observe that Algorithm 5.1 does not attempt to “detect” narrowband noise

as we do not exclude the possibility of an all-one row in the matrix codewords. Hence, a

more careful construction could restrict the weights of both rows and columns and enable

the introduction of the erasure symbol in the decoding of both inner and outer codes. This

construction is addressed in our future work.
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