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Motivation

Design Objective

We construct codes over matrices.
Fix ‘good’ codes C and D that satisfy certain constraints.
We construct a code such that for each matrix codeword,

(i) each row belongs to C, and

(i) each column belongs to D.
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Classical Solution: If C and D are linear codes, use Product Construction!
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Design Objective

We construct codes over matrices.
Fix ‘good’ codes C and D that satisfy certain constraints.
We construct a code such that for each matrix codeword,

(i) each row belongs to C, and

(i) each column belongs to D.

eD €D €D €D

A A A A eC
A A A A eC
A A A A eC
A A A A eC

Classical Solution: If C and D are linear codes, use Product Construction!

Question: What if C and D are not linear?
This talk gives a partial solution...
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Practical Applications for nonlinear constraints

Codes over matrices with weight constraints on both rows and columns
and with “good” error-correcting capabilities:

(i) coded modulation schemes for power line channels [Chee et al. 2013]
(considered only columns with weight constraints),

(ii) crossbar arrays of resistive devices [Ordentlich Roth 2000, 2011]
(considered only efficient encoding without error correction).
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Practical Applications for nonlinear constraints

Codes over matrices with weight constraints on both rows and columns
and with “good” error-correcting capabilities:

(i) coded modulation schemes for power line channels [Chee et al. 2013]
(considered only columns with weight constraints),

(ii) crossbar arrays of resistive devices [Ordentlich Roth 2000, 2011]
(considered only efficient encoding without error correction).

Potential for other applications with “nonlinear”’ constraints...
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(i) Product codes retain the good rates and good decoding complexity from
the smaller component codes
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Motivation

Motivation

Why Product Codes?

(i) Product codes retain the good rates and good decoding complexity from
the smaller component codes

(ii) Component codes — affine codes = translates of linear codes

> Amrani '07: guarantees that all the columns belong to the column code;
however only the first few rows are guaranteed to belong to the row code.
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Toy Problem

A Toy Problem

Consider the two codes,

C* = {0060,0011,0101,0110, 1001, 1010, 1100, 111}
= span{0011,0101,1001} ~ {0000, 1111},

D* = {0060, 0011,0101,0110, 1001, 1010, 1100, 1311}
= span{0011,0101, 1001} \ {0000, 1111}.
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A Toy Problem

Consider the two codes,

C* = {0060,0011,0101,0110, 1001, 1010, 1100, 111}
= span{0011,0101,1001} ~ {0000, 1111},

D* = {0060, 0011,0101,0110, 1001, 1010, 1100, 1311}
= span{0011,0101, 1001} \ {0000, 1111}.

Let us construct a code such that for any matrix codeword
(i) each row belongs to C*, and

(ii) each column belongs to D*.
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In other words, each row and column has weight exactly two.



Toy Problem

Attempt: Constrain the Information Array?

Recall that C*, D* come from linear codes of dimension three, say C’, D’.
Then a typical codeword from the product code of C’ and D’ is of the form:

x x X A
x T A
T x T A
A AN A A
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(i) Observation: the ‘bad’ codewords 0000 and 1111 have systematic parts
000 and 111.

(i) Set the information array such that it consists of no all-zero or all-one row
or column.



Toy Problem

Attempt: Constrain the Information Array?

Recall that C*, D* come from linear codes of dimension three, say C’, D’.
Then a typical codeword from the product code of C’ and D’ is of the form:

x x X A
x T A
T x T A
A AN A A

(i) Observation: the ‘bad’ codewords 0000 and 1111 have systematic parts
000 and 111.

(i) Set the information array such that it consists of no all-zero or all-one row
or column.

Bad Idea

Consider the following example:

1 0 0 & 1 0 0 1
0O 1 0 & " 0 1 0 1
0O 0 1 A 0 0 1 1
A A A A 1 1 1 1
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Classical Product Construction of Linear Codes

Consider linear codes:

C - length n, dimension k, with generator matrix (I, A),

D - length m, dimension ¢, with generator matrix (I, B).
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Classical Product Construction of Linear Codes

Consider linear codes:

C - length n, dimension k, with generator matrix (I, A),

D - length m, dimension ¢, with generator matrix (I, B).

Then codewords (of the product code C ® D) are of the form:

M | MA

)

B’™M | BTMA

where M is an £ x k matrix.
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Systematic Representation of Affine Codes

Affine code

» Of the form C + u, where C is linear and u any vector of length n.
» WLOG, assume u = (0, a).
» Let C have generator matrix (I, A).

» Any codeword in C + u may be written as

(x,xA +a).




Construction |

Systematic Representation of Affine Codes

Affine code

» Of the form C + u, where C is linear and u any vector of length n.
» WLOG, assume u = (0, a).
» Let C have generator matrix (I, A).

» Any codeword in C + u may be written as

(x,xA +a).

Consider affine codes:

C +u - length n, size 2’“, with codewords (x,xA +a),

D +v - length m, size 2, with codewords (x,xB + b).
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Product Construction of Affine Codes

C+u - length n, size 2%, with codewords (x,xA +a),

D +v - length m, size 2, with codewords (x,xB + b).
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Product Construction of Affine Codes

C+u - length n, size 2%, with codewords (x,xA +a),

D +v - length m, size 2, with codewords (x,xB + b).

M
Def 1:
BT™™M + b1,

- |
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Product Construction of Affine Codes

C+u - length n, size 2%, with codewords (x,xA +a),

D +v - length m, size 2, with codewords (x,xB + b).

M MA +17a
Def 1:
B"M+b 1, | (B"M+b"1,)A+1] ,a

- |

Definition 1 guarantees all rows belong to C + u.
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Product Construction of Affine Codes

C+u - length n, size 2%, with codewords (x,xA +a),

D +v - length m, size 2, with codewords (x,xB + b).

M MA +17a
Def 1:
B"M+b 1, | (B"M+b"1,)A+1] ,a

M MA +17a
Def 2:

Definition 1 guarantees all rows belong to C + u.
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Product Construction of Affine Codes

C+u - length n, size 2%, with codewords (x,xA +a),

D +v - length m, size 2, with codewords (x,xB + b).

M MA +17a
Def 1:
B"M+b 1, | (B"M+b"1,)A+1] ,a
M MA +17a
Def 2:
B"M+b"1, | B"(MA+1;a)+b" 1,

Definition 1 guarantees all rows belong to C + u.
Definition 2 guarantees all columns belong to D + v.
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Product Construction of Affine Codes

C+u - length n, size 2%, with codewords (x,xA +a),

D +v - length m, size 2, with codewords (x,xB + b).

M MA +17a
Def 1:
B"M+b 1, | (B"M+b"1,)A+1] ,a

M MA +17a
Def 2:
B"M+b"1, | B"(MA+1;a)+b" 1,

Definition 1 guarantees all rows belong to C + u.
Definition 2 guarantees all columns belong to D + v.

Proposition (Sufficient Condition)

If1, €C and 1,, € D, then both definitions coincide!
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Product Construction of Affine Codes

C - length n, dimension k, with generator matrix (I, A),

D - length m, dimension ¢, with generator matrix (I,,B).

Pick u = (0x,a) and v = (0¢, b).

Theorem (Construction )
If 1, € C and 1,, € D, then the code

M | MA +17a
: M is a £ x k matrix
B™M +bT1, | (BTM+b"1;)A+17_a

is a systematic code of size 2¥' and is a coset of C ® D with coset leader

a

. O¢xr ‘ lza
b1, | bT1, 5 +17 a |

For any codeword N,
(i) each row of N belongs to C +u, and

(ii) each column of N belongs to D + v.
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Product Construction of Affine Codes

» Encoding and decoding complexities are very similar to usual product
codes.

Theorem (Construction )
If 1, €C and 1, € D, then the code

M | MA +17a
: M is a £ x k matrix

B™M+b"1; | (BTM+bT1,)A+17_,a

is a systematic code of size 2*° and is a coset of C ® D with coset leader

f Oux ‘ 1Ta
bT1, ‘ bT1, ,+17 ,a |

For any codeword N,

(i) each row of N belongs to C +u, and

(i1) each column of N belongs to D +v.
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Product Construction of Affine Codes

» Many well-known codes contain 1. Examples: primitive narrow-sense
BCH, Reed-Muller, extended Golay.

Theorem (Construction I)
If 1, €C and 1,, € D, then the code

M | MA +17a _ ,
: M is a £ x k matrix
B"M+b"1; | (BTM+bT1,)A+17 _ja

is a systematic code of size 2¥° and is a coset of C ® D with coset leader

a

. Oyxi ‘ lza
b1, | b7, +17 a |

For any codeword N,
(i) each row of N belongs to C +u, and

(ii) each column of N belongs to D +v.
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Toy Problem - Continued

Recall the two codes,

C* = {0060,0011,0101,0110,1001,1010, 1100, LT},
D* = {0060,0011,0101,0110, 1001, 1010, 1100, 1311}
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Toy Problem - Continued

Recall the two codes,

C* ={0860,0011,0101,0110,1001,1010, 1100, 1++1},
D* = {0060, 0011, 0101, 0110, 1001, 1010, 1100, 111}
Let C = D = span{0101,1010} and u =v = 0011.

Then
C+ucC’, D+vcD".
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Recall the two codes,

,0101,0110,1001, 1010, 1100, 1341},
,0101,0110,1001, 1010, 1100, 1341},
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D+vcD".

C+uccCr,

Applying Construction I, we have
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Matrices with Bounded Row and Column Weights

We generalize the previous construction.

Proposition

Let C, D be binary linear [n,k,dc], and [m,£,dp] codes respectively. Suppose
1, €C, and 1,, € D. Then we have a systematic code over binary m xn
matrices of size 2* V(") ywhose codeword matrices have

(i) row weight bounded between d¢ and n —dc,

(i) column weight bounded between dp and m — dp.

column weight bounded between dp and m — dp

A A A A

row weight bounded between d¢ and n — d¢

> D> D>
> D> D>
> D> D>
> D> D>
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Variants of Construction |

Construction | can be modified so that
(a) the component codes are unions of affine codes; i.e.
C'=JC+u, and D" =D +v,

where C and D are linear codes.

(b) the component code is an expurgated code; i.e.
C* =C1 \Cz7 and ’D* =D1 \2)27

where C1,C2, D1, D2 are linear codes such that C2 € C; and D3 € D;.

eC”
eC”
eC”
eC”

D> D> Y
DD D>
D> D>
D> D9
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Variants of Construction |

Construction | can be modified so that

(c) each row (column) belongs to a different component affine code
(a /a Alipour et al. '12: Irregular product codes).

N

eCy
eCs
eCs
eCy

DD DY
D> DY
DD D>
DD DY



Conclusion

(i) Construction of systematic affine matrix codes that are obtained by taking
product of affine codes.
e Property: every row and every column belongs to the row code and

column code, respectively.
o Construct matrix codes with restricted column and row weights and

with error-correcting capabities.
(ii) Potential applications in array codes with “affine-like” constraints.

Variants



QUESTIONS?
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