▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - わんぐ

Product Construction of Affine Codes

Han Mao Kiah

joint work with Yeow Meng Chee, Punarbasu Purkayasatha, Patrick Solé

Coordinated Science Lab, University of Illinois at Urbana-Champaign

Jul 1, 2014

м	OTIN	/at	101	٦

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

Motivation

Design Objective

We construct codes over matrices.

Fix 'good' codes ${\mathcal C}$ and ${\mathcal D}$ that satisfy certain constraints.

We construct a code such that for each matrix codeword,

- (i) each row belongs to C, and
- (ii) each column belongs to \mathcal{D} .

м	OTIN	/at	101	٦

Motivation

Design Objective

We construct codes over matrices.

Fix 'good' codes ${\mathcal C}$ and ${\mathcal D}$ that satisfy certain constraints.

We construct a code such that for each matrix codeword,

- (i) each row belongs to \mathcal{C} , and
- (ii) each column belongs to \mathcal{D} .

Classical Solution: If C and D are linear codes, use **Product Construction**!

・ロト・雪 ・ 山 ・ 山 ・ 山 ・ 山 ・ 山 ・ 山 ・

м	OTIN	/at	101	٦

Motivation

Design Objective

We construct codes over matrices.

Fix 'good' codes ${\mathcal C}$ and ${\mathcal D}$ that satisfy certain constraints.

We construct a code such that for each matrix codeword,

- (i) each row belongs to C, and
- (ii) each column belongs to \mathcal{D} .

Classical Solution: If C and D are linear codes, use **Product Construction**!

Question: What if C and D are **not linear**? This talk gives a partial solution...

Motivation

Practical Applications for nonlinear constraints

Codes over matrices with weight constraints on **both** rows and columns and with "good" error-correcting capabilities:

- (i) coded modulation schemes for power line channels [Chee *et al.* 2013] (considered only columns with weight constraints),
- (ii) crossbar arrays of resistive devices [Ordentlich Roth 2000, 2011] (considered only efficient encoding without error correction).

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

Motivation

Practical Applications for nonlinear constraints

Codes over matrices with weight constraints on **both** rows and columns and with "good" error-correcting capabilities:

- (i) coded modulation schemes for power line channels [Chee *et al.* 2013] (considered only columns with weight constraints),
- (ii) crossbar arrays of resistive devices [Ordentlich Roth 2000, 2011] (considered only efficient encoding without error correction).

Potential for other applications with "nonlinear" constraints...

Motivation	Toy Problem	Construction I	
Motivation			

Why Product Codes?

(i) Product codes retain the good rates and good decoding complexity from the smaller component codes

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めへぐ

VIOTIVATION	Toy Problem	Construction 1	variants
Motivation			

Why Product Codes?

(i) Product codes retain the good rates and good decoding complexity from the smaller component codes

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

(ii) Component codes – affine codes = translates of linear codes

Motivation	Toy Problem	Construction I	
Motivation			

Why Product Codes?

- (i) Product codes retain the good rates and good decoding complexity from the smaller component codes
- (ii) Component codes affine codes = translates of linear codes

Previous Work

 Amrani '07: guarantees that all the columns belong to the column code; however only the first few rows are guaranteed to belong to the row code.

Motivation	Toy Problem	Construction I	Variants
A Toy Problem			

Consider the two codes,

$$\begin{split} \mathcal{C}^* &= \{0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111\} \\ &= \operatorname{span}\{0011, 0101, 1001\} \smallsetminus \{0000, 1111\}, \\ \mathcal{D}^* &= \{0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111\} \\ &= \operatorname{span}\{0011, 0101, 1001\} \smallsetminus \{0000, 1111\}. \end{split}$$

・ロト・日本・モート モー うへぐ

Consider the two codes,

$$\begin{split} \mathcal{C}^* &= \{ 0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111 \} \\ &= \mathrm{span}\{ 0011, 0101, 1001 \} \smallsetminus \{ 0000, 1111 \}, \\ \mathcal{D}^* &= \{ 0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111 \} \\ &= \mathrm{span}\{ 0011, 0101, 1001 \} \smallsetminus \{ 0000, 1111 \}. \end{split}$$

Let us construct a code such that for any matrix codeword

- (i) each row belongs to \mathcal{C}^* , and
- (ii) each column belongs to \mathcal{D}^* .

In other words, each row and column has weight exactly two.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Attempt: Constrain the Information Array?

Recall that \mathcal{C}^* , \mathcal{D}^* come from linear codes of dimension three, say \mathcal{C}' , \mathcal{D}' . Then a typical codeword from the product code of \mathcal{C}' and \mathcal{D}' is of the form:

(x	x	x	\triangle	
	x	x	x	\bigtriangleup	
	x	x	x	\bigtriangleup	
	\triangle	\triangle	\bigtriangleup	Δ	J

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Attempt: Constrain the Information Array?

Recall that \mathcal{C}^* , \mathcal{D}^* come from linear codes of dimension three, say \mathcal{C}' , \mathcal{D}' . Then a typical codeword from the product code of \mathcal{C}' and \mathcal{D}' is of the form:

(x	x	x	Δ	
	x	x	x	\triangle	
	x	x	x	\triangle	
	Δ	Δ	\bigtriangleup	\triangle	J

- (i) Observation: the 'bad' codewords 0000 and 1111 have systematic parts 000 and 111.
- (ii) Set the information array such that it consists of no all-zero or all-one row or column.

Attempt: Constrain the Information Array?

Recall that \mathcal{C}^* , \mathcal{D}^* come from linear codes of dimension three, say \mathcal{C}' , \mathcal{D}' . Then a typical codeword from the product code of \mathcal{C}' and \mathcal{D}' is of the form:

(x	x	x	Δ	
	x	x	x	\triangle	
	x	x	x	Δ	
	Δ	Δ	\bigtriangleup	\triangle	J

- (i) Observation: the 'bad' codewords 0000 and 1111 have systematic parts 000 and 111.
- (ii) Set the information array such that it consists of no all-zero or all-one row or column.

Bad Idea

Consider the following example:

an

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Classical Product Construction of Linear Codes

Consider linear codes:

- \mathcal{C} length n, dimension k, with generator matrix $(\mathbf{I}_k, \mathbf{A})$,
- \mathcal{D} length m, dimension ℓ , with generator matrix $(\mathbf{I}_{\ell}, \mathbf{B})$.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

Classical Product Construction of Linear Codes

Consider linear codes:

- ${m {\cal C}}$ length n, dimension k, with generator matrix $({f I}_k,{f A})$,
- ${\mathcal D}$ length ${\it m}$, dimension ℓ , with generator matrix $({\bf I}_\ell,{\bf B}).$

Then codewords (of the product code $\mathcal{C} \otimes \mathcal{D}$) are of the form:

M	MA	
$\mathbf{B}^T \mathbf{M}$	$\mathbf{B}^T \mathbf{M} \mathbf{A}$	ľ

where \mathbf{M} is an $\ell \times k$ matrix.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

Systematic Representation of Affine Codes

Affine code

- Of the form C + u, where C is linear and u any vector of length n.
- WLOG, assume $\mathbf{u} = (\mathbf{0}_k, \mathbf{a})$.
- Let C have generator matrix (I_k, A) .
- Any codeword in C + u may be written as

 $(\mathbf{x}, \mathbf{x}\mathbf{A} + \mathbf{a}).$

▲ロ ▶ ▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○

Systematic Representation of Affine Codes

Affine code

- Of the form $C + \mathbf{u}$, where C is linear and \mathbf{u} any vector of length n.
- WLOG, assume $\mathbf{u} = (\mathbf{0}_k, \mathbf{a})$.
- Let C have generator matrix (I_k, A) .
- Any codeword in C + u may be written as

 $(\mathbf{x}, \mathbf{x}\mathbf{A} + \mathbf{a}).$

Consider affine codes:

 $C + \mathbf{u}$ - length *n*, size 2^k , with codewords $(\mathbf{x}, \mathbf{xA} + \mathbf{a})$,

 $\mathcal{D} + \mathbf{v}$ - length m, size 2^{ℓ} , with codewords $(\mathbf{x}, \mathbf{xB} + \mathbf{b})$.

Construction I

Variants

Product Construction of Affine Codes

 $C + \mathbf{u}$ - length n, size 2^k , with codewords $(\mathbf{x}, \mathbf{xA} + \mathbf{a})$, $\mathcal{D} + \mathbf{v}$ - length m, size 2^ℓ , with codewords $(\mathbf{x}, \mathbf{xB} + \mathbf{b})$.

Construction I

Variants

Product Construction of Affine Codes

 $C + \mathbf{u}$ - length n, size 2^k , with codewords $(\mathbf{x}, \mathbf{xA} + \mathbf{a})$, $D + \mathbf{v}$ - length m, size 2^ℓ , with codewords $(\mathbf{x}, \mathbf{xB} + \mathbf{b})$.

Def 1:
$$\left(\begin{array}{c|c} \mathbf{M} & \\ \hline \mathbf{B}^T \mathbf{M} + \mathbf{b}^T \mathbf{1}_k \end{array} \right)$$

Def 2: $\left(\begin{array}{c|c} \mathbf{M} & \\ \hline \end{array} \right)$

Construction I

Variants

Product Construction of Affine Codes

 $C + \mathbf{u}$ - length n, size 2^k , with codewords $(\mathbf{x}, \mathbf{x}\mathbf{A} + \mathbf{a})$, $D + \mathbf{v}$ - length m, size 2^ℓ , with codewords $(\mathbf{x}, \mathbf{x}\mathbf{B} + \mathbf{b})$.

Def 1:
$$\left(\begin{array}{c|c} \mathbf{M} & \mathbf{M}\mathbf{A} + \mathbf{1}_{\ell}^{T}\mathbf{a} \\ \hline \mathbf{B}^{T}\mathbf{M} + \mathbf{b}^{T}\mathbf{1}_{k} & (\mathbf{B}^{T}\mathbf{M} + \mathbf{b}^{T}\mathbf{1}_{k})\mathbf{A} + \mathbf{1}_{m-\ell}^{T}\mathbf{a} \end{array} \right)$$

Def 2: $\left(\begin{array}{c|c} \mathbf{M} & \\ \hline \end{array} \right)$

Definition 1 guarantees all rows belong to $C + \mathbf{u}$.

Construction I

Variants

Product Construction of Affine Codes

 $C + \mathbf{u}$ - length n, size 2^k , with codewords $(\mathbf{x}, \mathbf{xA} + \mathbf{a})$, $D + \mathbf{v}$ - length m, size 2^ℓ , with codewords $(\mathbf{x}, \mathbf{xB} + \mathbf{b})$.

Def 1:
$$\left(\begin{array}{c|c} \mathbf{M} & \mathbf{M}\mathbf{A} + \mathbf{1}_{\ell}^{T}\mathbf{a} \\ \hline \mathbf{B}^{T}\mathbf{M} + \mathbf{b}^{T}\mathbf{1}_{k} & (\mathbf{B}^{T}\mathbf{M} + \mathbf{b}^{T}\mathbf{1}_{k})\mathbf{A} + \mathbf{1}_{m-\ell}^{T}\mathbf{a} \end{array} \right)$$

Def 2: $\left(\begin{array}{c|c} \mathbf{M} & \mathbf{M}\mathbf{A} + \mathbf{1}_{\ell}^{T}\mathbf{a} \\ \hline \end{array} \right)$

Definition 1 guarantees all rows belong to $C + \mathbf{u}$.

Construction I

Variants

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

Product Construction of Affine Codes

 $C + \mathbf{u}$ - length n, size 2^k , with codewords $(\mathbf{x}, \mathbf{xA} + \mathbf{a})$, $D + \mathbf{v}$ - length m, size 2^ℓ , with codewords $(\mathbf{x}, \mathbf{xB} + \mathbf{b})$.

Def 1:
$$\left(\begin{array}{c|c} \mathbf{M} & \mathbf{M}\mathbf{A} + \mathbf{1}_{\ell}^{T}\mathbf{a} \\ \hline \mathbf{B}^{T}\mathbf{M} + \mathbf{b}^{T}\mathbf{1}_{k} & (\mathbf{B}^{T}\mathbf{M} + \mathbf{b}^{T}\mathbf{1}_{k})\mathbf{A} + \mathbf{1}_{m-\ell}^{T}\mathbf{a} \end{array} \right)$$

Def 2: $\left(\begin{array}{c|c} \mathbf{M} & \mathbf{M}\mathbf{A} + \mathbf{1}_{\ell}^{T}\mathbf{a} \\ \hline \mathbf{B}^{T}\mathbf{M} + \mathbf{b}^{T}\mathbf{1}_{k} & \mathbf{B}^{T}\left(\mathbf{M}\mathbf{A} + \mathbf{1}_{\ell}^{T}\mathbf{a}\right) + \mathbf{b}^{T}\mathbf{1}_{n-k} \end{array} \right)$

 $\begin{array}{l} \mbox{Definition 1 guarantees all rows belong to \mathcal{C}+u.} \\ \mbox{Definition 2 guarantees all columns belong to \mathcal{D}+v.} \end{array}$

Construction I

Variants

▲ロ ▶ ▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○

Product Construction of Affine Codes

 $C + \mathbf{u}$ - length n, size 2^k , with codewords $(\mathbf{x}, \mathbf{xA} + \mathbf{a})$, $\mathcal{D} + \mathbf{v}$ - length m, size 2^ℓ , with codewords $(\mathbf{x}, \mathbf{xB} + \mathbf{b})$.

Def 1:
$$\left(\begin{array}{c|c} \mathbf{M} & \mathbf{M}\mathbf{A} + \mathbf{1}_{\ell}^{T}\mathbf{a} \\ \hline \mathbf{B}^{T}\mathbf{M} + \mathbf{b}^{T}\mathbf{1}_{k} & (\mathbf{B}^{T}\mathbf{M} + \mathbf{b}^{T}\mathbf{1}_{k})\mathbf{A} + \mathbf{1}_{m-\ell}^{T}\mathbf{a} \end{array} \right)$$
Def 2:
$$\left(\begin{array}{c|c} \mathbf{M} & \mathbf{M}\mathbf{A} + \mathbf{1}_{\ell}^{T}\mathbf{a} \\ \hline \mathbf{B}^{T}\mathbf{M} + \mathbf{b}^{T}\mathbf{1}_{k} & \mathbf{B}^{T}\left(\mathbf{M}\mathbf{A} + \mathbf{1}_{\ell}^{T}\mathbf{a}\right) + \mathbf{b}^{T}\mathbf{1}_{n-k} \end{array} \right)$$

Definition 1 guarantees all rows belong to $C + \mathbf{u}$. Definition 2 guarantees all columns belong to $D + \mathbf{v}$.

Proposition (Sufficient Condition)

If $\mathbf{1}_n \in \mathcal{C}$ and $\mathbf{1}_m \in \mathcal{D}$, then both definitions coincide!

Construction I

Variants

Product Construction of Affine Codes

- ${m {\cal C}}$ length n, dimension k, with generator matrix $({f I}_k,{f A})$,
- ${\mathcal D}$ length ${\it m}$, dimension $\ell,$ with generator matrix $({\bf I}_\ell,{\bf B}).$

Pick
$$\mathbf{u} = (\mathbf{0}_k, \mathbf{a})$$
 and $\mathbf{v} = (\mathbf{0}_\ell, \mathbf{b})$.

Theorem (Construction I)

If $\mathbf{1}_n \in \mathcal{C}$ and $\mathbf{1}_m \in \mathcal{D}$, then the code

is a systematic code of size 2^{kl} and is a coset of $\mathcal{C}\otimes\mathcal{D}$ with coset leader

$$\mathbf{U} \triangleq \left(\begin{array}{c|c} \mathbf{0}_{\ell \times k} & \mathbf{1}_{\ell}^{T} \mathbf{a} \\ \hline \mathbf{b}^{T} \mathbf{1}_{k} & \mathbf{b}^{T} \mathbf{1}_{n-k} + \mathbf{1}_{m-\ell}^{T} \mathbf{a} \end{array} \right)$$

- (i) each row of N belongs to $\mathcal{C} + \mathbf{u}$, and
- (ii) each column of N belongs to $\mathcal{D} + \mathbf{v}$.

Construction I

Variants

Product Construction of Affine Codes

- ${m {\cal C}}$ length n, dimension k, with generator matrix $({f I}_k,{f A})$,
- ${\mathcal D}$ length ${\it m}$, dimension $\ell,$ with generator matrix $({\bf I}_\ell,{\bf B}).$

Pick
$$\mathbf{u} = (\mathbf{0}_k, \mathbf{a})$$
 and $\mathbf{v} = (\mathbf{0}_\ell, \mathbf{b})$.

Theorem (Construction I)

If $\mathbf{1}_n \in \mathcal{C}$ and $\mathbf{1}_m \in \mathcal{D}$, then the code

is a systematic code of size $2^{k\ell}$ and is a coset of $\mathcal{C}\otimes\mathcal{D}$ with coset leader

$$\mathbf{U} \triangleq \left(\begin{array}{c|c} \mathbf{0}_{\ell \times k} & \mathbf{1}_{\ell}^{T} \mathbf{a} \\ \hline \mathbf{b}^{T} \mathbf{1}_{k} & \mathbf{b}^{T} \mathbf{1}_{n-k} + \mathbf{1}_{m-\ell}^{T} \mathbf{a} \end{array} \right)$$

- (i) each row of N belongs to $C + \mathbf{u}$, and
- (ii) each column of N belongs to $\mathcal{D} + \mathbf{v}$.

Product Construction of Affine Codes

Remar<u>ks</u>

 Encoding and decoding complexities are very similar to usual product codes.

Theorem (Construction I)

If $\mathbf{1}_n \in \mathcal{C}$ and $\mathbf{1}_m \in \mathcal{D}$, then the code

is a systematic code of size $2^{k\ell}$ and is a coset of $\mathcal{C}\otimes\mathcal{D}$ with coset leader

$$\mathbf{U} \triangleq \left(\begin{array}{c|c} \mathbf{0}_{\ell \times k} & \mathbf{1}_l^T \mathbf{a} \\ \hline \mathbf{b}^T \mathbf{1}_k & \mathbf{b}^T \mathbf{1}_{n-k} + \mathbf{1}_{m-\ell}^T \mathbf{a} \end{array} \right)$$

- (i) each row of ${\bf N}$ belongs to ${\mathcal C}+{\bf u},$ and
- (ii) each column of N belongs to $\mathcal{D} + \mathbf{v}$.

Product Construction of Affine Codes

Remarks

 Many well-known codes contain 1. Examples: primitive narrow-sense BCH, Reed-Muller, extended Golay.

Theorem (Construction I)

If $\mathbf{1}_n \in \mathcal{C}$ and $\mathbf{1}_m \in \mathcal{D}$, then the code

is a systematic code of size $2^{k\ell}$ and is a coset of $\mathcal{C}\otimes\mathcal{D}$ with coset leader

$$\mathbf{U} \triangleq \left(\begin{array}{c|c} \mathbf{0}_{\ell \times k} & \mathbf{1}_{\ell}^{T} \mathbf{a} \\ \hline \mathbf{b}^{T} \mathbf{1}_{k} & \mathbf{b}^{T} \mathbf{1}_{n-k} + \mathbf{1}_{m-\ell}^{T} \mathbf{a} \end{array} \right),$$

- (i) each row of N belongs to $\mathcal{C} + \mathbf{u}$, and
- (ii) each column of N belongs to $\mathcal{D} + \mathbf{v}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Toy Problem - Continued

Recall the two codes,

 $\mathcal{C}^* = \{0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111\}, \\ \mathcal{D}^* = \{0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111\}.$

Toy Problem - Continued

Recall the two codes,

 $\mathcal{C}^* = \{0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111\}, \\ \mathcal{D}^* = \{0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111\}.$

Let $C = D = \operatorname{span}\{0101, 1010\}$ and $\mathbf{u} = \mathbf{v} = 0011$. Then

 $\mathcal{C} + \mathbf{u} \subseteq \mathcal{C}^*, \quad \mathcal{D} + \mathbf{v} \subseteq \mathcal{D}^*.$

Toy Problem - Continued

Recall the two codes,

 $\mathcal{C}^* = \{0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111\}, \\ \mathcal{D}^* = \{0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111\}.$

Let $\mathcal{C}=\mathcal{D}=\mathrm{span}\{0101,1010\}$ and $\mathbf{u}=\mathbf{v}=0011.$ Then

 $\mathcal{C} + \mathbf{u} \subseteq \mathcal{C}^*, \quad \mathcal{D} + \mathbf{v} \subseteq \mathcal{D}^*.$

Applying Construction I, we have

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Matrices with Bounded Row and Column Weights

We generalize the previous construction.

Proposition

Let C, D be binary linear $[n, k, d_{\mathcal{C}}]$, and $[m, \ell, d_{\mathcal{D}}]$ codes respectively. Suppose $\mathbf{1}_n \in \mathcal{C}$, and $\mathbf{1}_m \in \mathcal{D}$. Then we have a systematic code over binary $m \times n$ matrices of size $2^{(k-1)(\ell-1)}$ whose codeword matrices have

- (i) row weight bounded between $d_{\mathcal{C}}$ and $n d_{\mathcal{C}}$,
- (ii) column weight bounded between $d_{\mathcal{D}}$ and $m d_{\mathcal{D}}$.

column weight bounded between $d_{\mathcal{D}}$ and $m - d_{\mathcal{D}}$

Variants of Construction I

Construction I can be modified so that

(a) the component codes are unions of affine codes; i.e.

$$\mathcal{C}^* = \bigcup \mathcal{C} + \mathbf{u}, \text{ and } \mathcal{D}^* = \bigcup \mathcal{D} + \mathbf{v},$$

where ${\mathcal C}$ and ${\mathcal D}$ are linear codes.

(b) the component code is an expurgated code; i.e.

$$\mathcal{C}^* = \mathcal{C}_1 \smallsetminus \mathcal{C}_2, \text{ and } \mathcal{D}^* = \mathcal{D}_1 \smallsetminus \mathcal{D}_2,$$

where C_1, C_2, D_1, D_2 are linear codes such that $C_2 \subseteq C_1$ and $D_2 \subseteq D_1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Variants of Construction I

Construction I can be modified so that

(c) each row (column) belongs to a different component affine code (a la Alipour et al. '12: Irregular product codes).

$$\left(\begin{array}{cccc} \in \mathcal{D}_1^* & \in \mathcal{D}_2^* & \in \mathcal{D}_3^* & \in \mathcal{D}_4^* \\ (& \bigtriangleup & \bigtriangleup & \bigtriangleup & \bigtriangleup \\ (& \bigtriangleup & \bigtriangleup & \bigtriangleup & \bigtriangleup \\ (& \bigtriangleup & \bigtriangleup & \bigtriangleup & \bigtriangleup \\ (& \bigtriangleup & \bigtriangleup & \bigtriangleup & \bigtriangleup & \bigtriangleup \\ (& \bigtriangleup & \bigtriangleup & \bigtriangleup & \bigtriangleup & \bigtriangleup) \end{array}\right) \in \mathcal{C}_1^*$$

Motivation	Construction I	Variants

Conclusion

- (i) Construction of systematic affine matrix codes that are obtained by taking product of affine codes.
 - Property: every row and every column belongs to the row code and column code, respectively.
 - Construct matrix codes with restricted column and row weights and with error-correcting capabities.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

(ii) Potential applications in array codes with "affine-like" constraints.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - わんぐ

QUESTIONS?