
Binary Subblock Energy-Constrained Codes:
Bounds on Code Size and Asymptotic Rate

Anshoo Tandon
National University of Singapore

anshoo.tandon@gmail.com

Han Mao Kiah
Nanyang Technological University

hmkiah@ntu.edu.sg

Mehul Motani
National University of Singapore

motani@nus.edu.sg

Abstract—The subblock energy-constrained codes (SECCs)
have recently been shown to be suitable candidates for si-
multaneous energy and information transfer, where bounds on
SECC capacity were presented for communication over noisy
channels. In this paper, we study binary SECCs with given
error correction capability, by considering codes with a certain
minimum distance. Binary SECCs are a class of constrained
codes where each codeword is partitioned into equal sized
subblocks, and every subblock has weight exceeding a given
threshold. We present several upper and lower bounds on the
optimal SECC code size, and also derive the asymptotic Gilbert-
Varshamov (GV) and sphere-packing bounds for SECCs. A
related class of codes are the heavy weight codes (HWCs) where
the weight of each codeword exceeds a given threshold. We show
that for a fixed subblock length, the asymptotic rate for SECCs
is strictly lower than the corresponding rate for HWCs when
the relative distance of the code is small. The rate gap between
HWCs and SECCs denotes the penalty due to imposition of
weight constraint per subblock, relative to the codeword based
weight constraint.

I. INTRODUCTION

For providing regular energy content in a codeword for the
application of simultaneous energy and information transfer
from a powered transmitter to an energy harvesting receiver,
the use of subblock energy-constrained codes (SECCs) was
proposed in [1], [2]. When on-off keying is employed, with
bit-1 (bit-0) represented by the presence (absence) of a high
energy signal, higher energy content in the transmitted signal
is achieved by using relatively high weight codewords. Binary
SECCs are a class of constrained codes where each codeword
is partitioned into equal sized subblocks, and every subblock
has weight exceeding a given threshold. The weight constraint
per subblock in binary SECCs helps to avoid sequences which
carry limited energy over long durations, thereby preventing
energy outage at a receiver having finite energy storage
capability. Bounds on SECC capacity and error exponent for
communication over noisy channels were presented in [2].

In this paper, we study bounds on the optimal code size and
asymptotic rate for binary SECCs with given error correction
capability, by considering codes with a certain minimum
distance. We present several upper and lower bounds on
the SECC code size and asymptotic rate. Additionally, for
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fixed subblock length and small code distance, we show that
the asymptotic rate for SECCs is strictly lower than the
corresponding rate for heavy weight codes (HWCs) [3], [4].

The notation used is as follows. The input alphabet is
denoted by X which comprises q symbols. An n-length, q-
ary code C over X is a subset of Xn. The elements of C are
called codewords and C is said to have minimum distance d if
the Hamming distance between any two distinct codewords is
at least d. A q-ary code of length n and distance d is called an
(n, d)q-code, and the largest size of an (n, d)q-code is denoted
by Aq(n, d). For binary alphabet, an (n, d)2-code is just called
an (n, d)-code, and its largest size is simply denoted A(n, d).

A constant weight code (CWC) with parameter w is a
binary code where each codeword has weight exactly w.
We denote a CWC with weight parameter w, blocklength n,
and distance d by (n, d, w)-CWC, and denote its maximum
possible size by A(n, d, w). A heavy weight code (HWC) with
parameter w is a binary code where each codeword has weight
at least w. We denote a HWC with weight parameter w,
blocklength n, and distance d by (n, d, w)-HWC, and denote
its maximum possible size by H(n, d, w).

A binary SECC with codeword length n = mL, minimum
distance d, subblock length L, and weight per subblock at
least ws, is called a (m,L, d, ws)-SECC. We denote the max-
imum possible size of (m,L, d, ws)-SECC by S(m,L, d, ws).
Since an (m,L, d, ws)-SECC is an (mL, d,mws)-HWC, we
have that S(m,L, d, ws) ≤ H(mL, d,mws).

We also analyze bounds on the asymptotic SECC rate where
the number of subblocks m tends to infinity, d scales linearly
with m, but L and ws are fixed. In the following, the base
for log is assumed to be 2. Formally, for fixed 0 < δ < 1, the
asymptotic rate for SECCs with subblock length L, subblock
weight at least ws, number of subblocks in a codeword m→
∞, and distance d scaling as d = bmLδc is defined as

σ(L, δ, ws/L) , lim sup
m→∞

logS(m,L, bmLδc, ws)
mL

. (1)

This rate can be compared with related exponents:

α(δ) , lim sup
n→∞

logA (n, bnδc)
n

, (2)

α(δ, ws/L) , lim sup
n→∞

logA (n, bnδc, bnws/Lc)
n

, (3)

η(δ, ws/L) , lim sup
n→∞

logH(n, bnδc, bnws/Lc)
n

. (4)

2017 IEEE International Symposium on Information Theory (ISIT)

978-1-5090-4096-4/17/$31.00 ©2017 IEEE 1480



In a related work, Cohen et al. [3] introduced the class
of HWCs, motivated by certain asynchronous communication
problems. Later Bachoc et al. [4] established the asymptotic
rate for HWCs, showing that for 0 ≤ δ, ω ≤ 1, we have

η(δ, ω) =

{
α(δ), when 0 ≤ ω ≤ 1/2,

α(δ, ω), when 1/2 ≤ ω ≤ 1.
(5)

A. Our Contributions

The contributions of this paper are as follows:
• We provide both upper and lower bounds for
S(m,L, d, ws) in Section II.

• We derive bounds on the asymptotic rate for SECCs
in Section III. Additionally, for given L and ws, in
Section IV we demonstrate the existence of an δ̂L such
that η(δ, ws/L) > σ(L, δ, ws/L) for all δ < δ̂L.

• We provide numerical lower bounds on the asymptotic
rate gap between HWCs and SECCs in Section V.

II. BOUNDS ON OPTIMAL SECC CODE SIZE

Among other bounds, we present the GV and sphere-
packing bounds on the optimal SECC code size,
S(m,L, d, ws), in this section, and their respective
asymptotic versions in Sec. III. Let S(m,L,ws) denote
the space of all binary SECC words comprising of
m subblocks, each subblock having length L, with
weight at least ws per subblock. For x ∈ S(m,L,ws),
we define a ball of radius t, centered at x, as
BS(x, t;m,L,ws) , {y ∈ S(m,L,ws) : d(x,y) ≤ t}.

Unfortunately, the size of BS(x, t;m,L,ws) depends on x.
Take for example, m = 1, L = 4, ws = 2 and t = 1. We have
that BS(0111, t;m,L,ws) = {0111, 1111, 0011, 0101, 0110},
while BS(1001, t;m,L,ws) = {1001, 1101, 1011}.

We denote the smallest and the average ball size in the
SECC space as follows:

|Bmin
S (t;m,L,ws)| , min

x∈S(m,L,ws)
|BS(x, t;m,L,ws)|, (6)

|BavgS (t;m,L,ws)| ,
∑

x∈S(m,L,ws)

|BS(x, t;m,L,ws)|
|S(m,L,ws)|

. (7)

The total number of words in SECC space, S(m,L,ws),
are

(∑L
i=ws

(
L
i

))m
. The generalized Gilbert-Varshamov

bound [5, Thm. 4] (for spaces where balls with fixed radius
and different centers may have different sizes) when applied
to the SECC space gives us the following lower bound on the
optimal SECC code size, S(m,L, d, ws).

Proposition 1. We have

S(m,L, d, ws) ≥

(∑L
i=ws

(
L
i

))m
|BavgS (d− 1;m,L,ws)|

. (8)

The next proposition extends the concatenation approach [6]
for SECCs.

Proposition 2. If q ≤ H(L, d1, ws), then

S(m,L, d1d2, ws) ≥ Aq(m, d2). (9)

Proof: Adapt the concatenated code construction scheme
in [7, Prop. 4.1] by replacing the constant weight inner code
by a heavy weight inner code.

We extend the Elias-Bassalygo bound (see for example, [8,
eq. 2.7]) for SECCs.

Proposition 3. We have

S(m,L, d, ws) ≥

(∑L
i=ws

(
L
i

))m
2mL

A(mL, d). (10)

Proof: Let C be a (mL, d)-code with A(mL, d) code-
words. Let FmL2 denote the space of binary vectors of length
mL, and x ∈ FmL2 be chosen so that |S(m,L,ws)∩ (x+C )|
is maximal. Then

S(m,L, d, ws) ≥ |S(m,L,ws) ∩ (x + C )|

≥ 1

2mL

∑
y∈FmL

2

|S(m,L,ws) ∩ (y + C )|

=
1

2mL

∑
y∈FmL

2

∑
b∈S(m,L,ws)

∑
c∈C

|{b} ∩ {y + c}|

=
1

2mL

∑
b∈S(m,L,ws)

∑
c∈C

1

=
|S(m,L,ws)||C |

2mL
.

Observing that balls of radius t = b(d − 1)/2c around
codewords are non-intersecting in an (m,L, d, ws)-SECC, we
have the following sphere-packing bound for SECCs.

Proposition 4. Let t , b(d− 1)/2c. Then, we have

S(m,L, d, ws) ≤

(∑L
i=ws

(
L
i

))m
|Bmin
S (t;m,L,ws)|

. (11)

As discussed earlier, for a given radius t, different SECC
balls may have different sizes, depending on the center word.
In view of this, note that the SECC sphere-packing upper
bound (11) is obtained by considering the smallest ball size
of radius t. The generalized sphere-packing bound, for spaces
where different balls of same radius have different sizes,
was investigated in [9], [10]. However, it is unclear if the
techniques in [9], [10] are able to yield tighter asymptotic
upper bound than that given in the next section via Theorem 1.

Furthermore, we point out that the average sphere-packing
value is not an upper bound for the optimal SECC code size.
Specifically, for a t-error-correcting code, the average sphere-
packing value was defined in [9] to be the ratio of the size of
the space, to the average ball size of radius t. It was observed
that for many spaces, this average sphere-packing value is an
upper bound for the optimal code size. However, we claim that
this value is not an upper bound for the optimal SECC code
size, and prove the claim by providing a counter-example.

Consider the space, S(m,L,ws), corresponding to m = 1,
L = 3, and ws = 1. Here, the size |S(m,L,ws)| is 7, while
the average ball size, |BavgS (t;m,L,ws)|, for t = 1, is equal
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to 25/7. In this case, the average sphere-packing value, for a
single error correcting code, is 49/25. But this value is readily
seen to be strictly less than the size of the SECC code C =
{100, 011}, thereby providing the required counter-example.

We next present a Johnson-type bound [11] for SECCs.
Towards this, we consider a generalization of SECC where dif-
ferent subblocks in a codeword may have different length and
weight constraints. Let T (m, [L1, . . . , Lm], d, [w1, . . . , wm])
denote the largest size of a binary code where each codeword
has m subblocks, the ith subblock has length Li and weight
at least wi, and the minimum distance of the code is d. Here,
the length of each codeword is n =

∑m
i=1 Li.

Now, let C be such a generalized code of size
T (m, [L1, . . . , Lm], d, [w1, . . . , wm]). Consider a
matrix with n columns, whose rows comprise of the
T (m, [L1, . . . , Lm], d, [w1, . . . , wm]) codewords of C . By
focusing on the ith subblock of each codeword, we observe
that there exists a column, say column l, having at least
T (m, [L1, . . . , Lm], d, [w1, . . . , wm]) × (wi/Li) ones. Pick
a subcode of C where each codeword has a 1 in the l-th
position. Delete the l-th component in the subcode to obtain

T (m, [L1, . . . , Lm], d, [w1, . . . , wm]) ≤
Li
wi

T (m, [L1, . . . , Li − 1, . . . Lm], d, [w1, . . . , wi − 1, . . . , wm]).

(12)

By varying i from 1 to m and recursively applying (12),

T (m, [L1, . . . , Lm], d, [w1, . . . , wm]) ≤(
m∏
i=1

Li
wi

)
T (m, [L1 − 1, . . . , Lm − 1], d, [w1 − 1, . . . , wm − 1]).

(13)

Specializing (13) to the case when each Li = L and wi = ws,
we obtain the following Johnson-type upper bound for SECCs.

Proposition 5. We have

S(m,L, d, ws) ≤
Lm

wms
S(m,L− 1, d, ws − 1). (14)

III. ASYMPTOTIC BOUND ON SECC RATE

We fix the relative distance δ, and the subblock length
L, and provide estimates of the asymptotic rate as number
of subblocks m → ∞. The motivation for fixing L to
relatively small values comes from the application of SECCs
to simultaneous energy and information transfer [1], where
SECCs with appropriate weight were shown to avoid energy
outage if the subblock length is less than a certain threshold.

Recall the definitions of σ(L, δ, ws/L) and η(δ, ws/L)
given by (1) and (4). We have the following inequality.

σ(L, δ, ws/L) ≤ η(δ, ws/L). (15)

The gap η(δ, ws/L)− σ(L, δ, ws/L) denotes the rate penalty
on HWC due to the additional constraint on sufficient weight
within every subblock duration. Now, if we define

δ∗ , 2
(ws
L

)(
1− ws

L

)
, (16)

then from MRRW bound [8, Eq. (2.16)] for CWCs, we have

α(δ, ws/L) = 0, if δ ≥ δ∗. (17)

Therefore, combining (5) and (15), for ws ≥ L/2, we have

σ(L, δ, ws/L) = 0, if δ ≥ δ∗. (18)

The following proposition presents the asymptotic GV lower
bound for σ(L, δ, ws/L).

Proposition 6 (Asymptotic GV bound for SECCs). We have
σ(L, δ, ws/L) ≥ σGV (L, δ, ws/L) where

σGV (L, δ, ws/L) ,
1

L
log

 L∑
j=ws

(
L

j

)− h(δ), (19)

with h(δ) , −δ log2 δ − (1− δ) log2(1− δ).

Proof: A simple upper bound on |BavgS (d− 1;m,L,ws)|
is given by

∑d−1
i=1

(
mL
i

)
. Hence, using Prop. 1, we get

S(m,L, d, ws) ≥

(∑L
j=ws

(
L
j

))m
∑d−1
i=1

(
mL
i

) . (20)

The proposition now follows by combining (1) and (20).
Next, Theorem 1 presents the sphere-packing upper bound

on σ(L, δ, ws/L) for relatively small values of δ. We will use
the following lemma towards proving this theorem.

Lemma 1. Let z be a length L vector whose weight w̃s
satisfies w̃s ≥ ws. Then the number of binary vectors with
length L, weight at least ws, which are at a distance of either
1 or 2 from z is lower bounded by (L− ws)(ws + 1).

Proof: Let N1 (resp. N2) be the number of L length
binary vectors of weight at least ws, which are at a distance
of 1 (resp. 2) from z. We consider three different cases:

1) w̃s = ws: In this case N1 = L− ws. If (L− ws) ≥ 2,
then N2 = (L−ws)ws+

(
L−ws

2

)
, else N2 = (L−ws)ws.

2) w̃s = ws+1: In this case N1 = L. If (L−ws) ≥ 2, then
N2 = (L− ws)ws +

(
L−ws

2

)
, else N2 = (L− ws)ws.

3) w̃s ≥ ws + 2: In this scenario, N1 = L and N2 =
(
L
2

)
.

For all the above three cases, it can easily be verified that
N1 +N2 ≥ (L− ws)(ws + 1).

Theorem 1 (Asymptotic sphere-packing bound for SECCs).
For 0 < δ < min{δ∗, 4/L}, we have σ(L, δ, ws/L) ≤
σSP (L, δ, ws/L) where

σSP (L, δ, ws/L) ,
1

L
log

 L∑
j=ws

(
L

j

)− 1

L
h

(
Lδ

4

)
− δ

4
log ((L− ws)(ws + 1)) . (21)

Proof: Let t = b(d− 1)/2c, where distance d = bδmLc.
Define m̃ , bt/2c and note that the constraint δ < 4/L
implies that m̃ < m. For a given x ∈ S(m,L,ws), let x[j]

denote the j-th subblock of x, i.e. x = (x[1] x[2] · · ·x[m]).
Let Λx ⊂ S(m,L,ws) be the set of vectors which satisfy:
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(i) For every y ∈ Λx, exactly m̃ subblocks of y differ from
corresponding subblocks of x, and (ii) If y[j] 6= x[j], then
d(x[j],y[j]) ∈ {1, 2}. Thus, if y ∈ Λx, then d(x,y) ≤ 2m̃ ≤
t, and hence Λx ⊆ BS(x, t;m,L,ws) with

|BS(x, t;m,L,ws)| ≥ |Λx|
(i)
≥
(
m

m̃

)
[(L− ws)(ws + 1)]

m̃
,

(22)
where (i) follows from Lemma 1. Because the above inequal-
ity holds for all x ∈ S(m,L,ws), we have

|Bmin
S (t;m,L,ws)| ≥

(
m

m̃

)
[(L− ws)(ws + 1)]

m̃
. (23)

Now limm→∞
m̃
m = Lδ

4 and hence the claim is proved by
combining (1), Prop. 4, and (23).

IV. RATE PENALTY DUE TO SUBBLOCK CONSTRAINTS

In SECCs, the fraction of ones in every subblock is at least
ws/L, and hence the fraction of ones in the entire codeword
is also at least ws/L. Relative to the constraint requiring at
least ws/L fraction of bits to be 1 for all codewords, the rate
penalty due to the constraint requiring minimum weight ws
per subblock is quantified by Gη−σ(L, δ, ws/L), defined as

Gη−σ(L, δ, ws/L) , η(δ, ws/L)− σ(L, δ, ws/L). (24)

For ws ≥ L/2, using (5), we note that a lower bound for
Gη−σ(L, δ, ws/L) is given by

GLBη−σ(L, δ, ws/L) , [αGV (δ, ws/L)− σSP (L, δ, ws/L)]
+
,

(25)
where the notation [z]+ implies max{0, z}, and
αGV (δ, ws/L) denotes the asymptotic GV lower bound
for CWCs [8], [12]

αGV (δ, ω) , h(ω)− ωh
(
δ

2ω

)
− (1− ω)h

(
δ

2(1− ω)

)
.

(26)
When ws ≤ L/2, we have η(δ, ws/L) = α(δ) = α(δ, 0.5),
and the corresponding rate gap lower bound is defined as

GLBη−σ(L, δ, ws/L) , [αGV (δ, 0.5)− σSP (L, δ, ws/L)]
+
.

(27)
The following theorem shows that rate gap between HWCs

and SECCs is strictly positive when δ is sufficiently small.

Theorem 2. For even L with L ≥ 4, we have the strict
inequality GLBη−σ(L, δ, 0.5) > 0 for 0 < δ < δ̂L, where δ̂L
is the smallest positive root of f̂L(δ) defined as

f̂L(δ) , 1− h(δ)− 1

L
log

 L∑
j=L/2

(
L

j

)
+

1

L
h

(
Lδ

4

)
+
δ

4
log

(
L(L+ 2)

4

)
. (28)

Proof: Using (25), (26), and (21), we have
GLBη−σ(L, δ, 0.5) = f̂L(δ) for δ < 2/L. We show in the
full paper [13] that f̂L(0) > 0 and f̂L(2/L) < 0, and hence
the equation f̂L(δ) = 0 has a solution in the interval (0, 2/L),

as f̂L is a continuous function of δ. The theorem now follows
by denoting the smallest positive root of f̂L(δ) by δ̂L.

Remark: For L = 2 and ws = 1, it can be numerically
verified using (21) that GLBη−σ(2, δ, 0.5) > 0 for 0 ≤ δ <
0.056.

Although Thm. 2 only considers the case ws = L/2, a
similar argument can be used to show that, in general for
0 < ws < L, we have GLBη−σ(L, δ, ws/L) > 0 for small δ.
The following proposition addresses the converse question on
identifying δ where the rate gap is provably zero.

Proposition 7. For ws ≤ L/2, the rate gap between HWCs
and SECCs, Gη−σ(L, δ, ws/L) is identically zero when 1/2 ≤
δ ≤ 1, while for ws ≥ L/2, this gap is zero when δ∗ ≤ δ ≤ 1.

Proof: The claim for ws ≤ L/2 follows from (5) and
the asymptotic Plotkin bound, while the claim for ws ≥ L/2
follows from (5) and (17).

Proposition 8. The lower bound on the rate gap between
HWCs and SECCs, GLBη−σ(L, δ, ws/L), is tight when δ → 0.

Proof: For ws ≥ L/2, from (25) we have that

GLBη−σ(L, 0, ws/L) = h(ws/L)− 1

L
log

 L∑
j=ws

(
L

j

) . (29)

The asymptotic sphere-packing bound for CWCs [14] is

αSP (δ, ω) , h(ω)− ωh
(
δ

4ω

)
− (1− ω)h

(
δ

4(1− ω)

)
.

(30)
For ws ≥ L/2, an upper bound on Gη−σ(L, δ, ws/L) is given
by αSP (δ, ws/L)− σGV (L, δ, ws/L) (using (5)). This upper
bound tends to the right hand side of (29) as δ → 0, thereby
proving the tightness of GLBη−σ(L, δ, ws/L) for ws ≥ L/2.

For ws ≤ L/2, from (27) we have that

GLBη−σ(L, 0, ws/L) = 1− 1

L
log

 L∑
j=ws

(
L

j

) . (31)

Now, from (5) and the relation α(δ, 0.5) = α(δ) [8], an upper
bound on Gη−σ(L, δ, ws/L), for ws ≤ L/2, is given by
αSP (δ, 0.5)−σGV (L, δ, ws/L). Using (19) and (30), we note
that this upper bound tends to the right hand side of (31) as
δ → 0. This proves the claim for ws ≤ L/2.

V. NUMERICAL RESULTS

Fig. 1 plots GLBη−σ(L, δ, ws/L) as a function of L, when
ws = L/2. For a given δ, it is seen that GLBη−σ(L, δ, 0.5)
decreases with L. Further, in the full paper [13], we show that
for ws ≥ L/2, we have GLBη−σ(L, δ, ws/L) → 0, as L → ∞.
Fig. 2 plots GLBη−σ(L, δ, ws/L) versus ws, for fixed L = 16.

The shaded area in Fig. 3 depicts the region where the rate
gap between HWC and SECC is provably strictly positive.
Here, δ̂L is the smallest value of δ for which the lower bound
on the rate gap GLBη−σ(L, δ, 0.5) is zero (see Theorem 2).
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Fig. 2. GLBη−σ(16, δ, ws/16) as a function of ws.

Fig. 3 shows that δ̂L decreases with L, and in the full
paper [13], we show that δ̂L → 0 as L→∞.
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Fig. 3. Area where GLBη−σ(L, δ, 0.5) is strictly positive.

VI. REFLECTIONS

We presented several bounds for the optimal SECC code
size, and also derived the asymptotic GV and sphere-packing
bounds for SECCs. For a fixed subblock length L and
weight parameter ws, we demonstrated the existence of some
δ̂L, such that the rate gap between HWCs and SECCs,
Gη−σ(L, δ, ws/L), is strictly positive for δ < δ̂L. The rate gap
reflects the penalty due to the imposition of subblock-based
weight constraint, relative to the codeword-based constraint.
Furthermore, we provided an estimate on δ̂L via Theorem 2.

The converse problem, on identifying an interval for δ
where the rate gap is zero was addressed via Proposition 7. An
interesting but unsolved problem in this regard is to establish
the smallest δ beyond which the rate gap is zero.

In the full paper [13], we study another class of con-
strained codes called the constant subblock-composition codes
(CSCCs) where the constraint on each subblock having weight
at least ws, is replaced by the constraint that each subblock
has weight exactly ws. Relative to SECCs, the CSCCs are
more constrained in the choice of bits within each subblock.
It can be shown [13] that for small δ, the SECCs result
in asymptotic rate which is strictly greater than CSCC rate.
Further, when ws ≥ L/2, the asymptotic SECC rate is
sandwiched strictly between the asymptotic rates for CWCs
and CSCCs.
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