Optimal Binary Switch Codes with Small Query Size

Han Mao Kiah

Nanyang Technological University, Singapore
Joint work with Zhiying Wang and Yuval Cassuto ISIT 2015

Network Switches - Toy Example

- k input ports
- n memory banks
- R output ports

Network Switches - Toy Example

all
requests in
parallel

$$
k=3, R=4, n=3
$$

Network Switches - Toy Example

Network Switches - Toy Example

most
two

$$
k=4, R=4, n=7
$$

alphabet

(n,k,R) Switch Code (Wang et al. ISIT'2013)

Switch code consists of:

- an encoding function $\{0,1\}^{\mathrm{k}}$ to $\{0,1\}^{\mathrm{n}}$,

(n,k,R) Switch Code (Wang et al. ISIT'2013)

Switch code consists of:

- an encoding function $\{0,1\}^{k}$ to $\{0,1\}^{n}$,
- a decoding algorithm such that for any R-multiset of \{x1, x2, ..., xk\}

(n,k,R) Switch Code (Wang et al. ISIT'2013)

Switch code consists of:

- an encoding function $\{0,1\}^{\mathrm{k}}$ to $\{0,1\}^{\mathrm{n}}$,
- a decoding algorithm such that for any R-multiset of $\{x 1, x 2, \ldots, x k\}$, there exists R disjoint subsets of $\{c 1, c 2, \ldots, c n\}$

(n,k,R) Switch Code (Wang et al. ISIT'2013)

Switch code consists of:

- an encoding function $\{0,1\}^{k}$ to $\{0,1\}^{n}$,
- a decoding algorithm such that for any R-multiset of $\{x 1, x 2, \ldots, x k\}$, there exists R disjoint subsets of $\{c 1, c 2, \ldots, c n\}$ so that we can recover the requested symbol.

(n,k,R) Switch Code (Wang et al. ISIT'2013)

Switch code consists of:

- an encoding function $\{0,1\}^{k}$ to $\{0,1\}^{n}$,
- a decoding algorithm such that for any R-multiset of $\{x 1, x 2, \ldots, x k\}$, there exists R disjoint subsets of $\{c 1, c 2, \ldots, c n\}$ so that we can recover the requested symbol.

> this work: linear encoding and decoding i.e. decode via simple XOR.

(n,k,R) Switch Code (Wang et al. ISIT'2013)

c18
Switch code consists of:

- an encoding function $\{0,1\}^{k}$ to $\{0,1\}^{n}$,
- a decoding algorithm such that for any R-multiset of $\{x 1, x 2, \ldots, x k\}$, there exists R disjoint subsets of $\{c 1, c 2, \ldots, c n\}$ so that we can recover the requested symbol.
this work: small query size, r.

Related Work - Locally Recoverable Codes with Multiple Alternatives

When a node fails, want:

- repair it by accessing a small number of other nodes
- many alternative repair sets
(Oggier and Datta 2011; Pamies-Juarez et al. 2013;
Rawat et al. 2014; Tamo and A. Barg 2014)

Related Work - Locally Recoverable Codes with Multiple Alternatives

Differences. A switch code

- Requests with different bits
- Interested only in the information bits

Related Work - Primitive Multiset Batch Codes (Ishai et al. STOC'2004)

Switch codes is a specialization of primitive multiset batch codes.

- Ishai et al.: positive rates (so, R<k).
- Switch codes: k is close to R.

Simplex Code as a Switch Code

A simplex code of dimension k has length $2^{k}-1$.
Example: $\mathrm{k}=3$. So, $\mathrm{n}=7$.

Simplex Code as a Switch Code

A simplex code of dimension k has length $2^{k}-1$.
Example: $\mathrm{k}=3$. So, $\mathrm{n}=7$ and $\mathrm{R}=4$.

Theorem

A simplex code of dimension k is an ($n=2^{k}-1, k, R=2^{k-1}$) switch code with query size at most two.

Simplex Code with k=5, n=31

A Locally Recoverable Code with r=2 and 15 alternatives (Kuijper and Napp 2014)

Simplex Code with $\mathrm{k}=5$ is an ($n=31,5, R=16$) Switch Code
six $\times 5$, five $x 4$, three $x 3$, one $x 2$, one $x 1$

Proof by Induction

- Induction on k
- $k=4$ to $k=5$

Strategy: satisfy requests of x1, x2, x3, x4 first using simplex code with $\mathrm{k}=4$.

Proof by Induction
 - A Naive "Doubling" Approach

- Induction on k
(- $k=4$ to $k=5$

Proof by Induction
 - A Naive "Doubling" Approach

- Induction on k
- $k=4$ to $k=5$

Proof by Induction
 - Type I Solution

- Induction on k
(-1) $k=4$ to $k=5$

Type I solution: All query sets do not
contain "singletons".

Proof by Induction
 - Doubling a Type I Solution

- Induction on k
(- $k=4$ to $k=5$

zero x5, four x4, two x3, zero x2, zero x1

Proof by Induction
 - Doubling a Type I Solution

- Induction on k

(-1) $k=4$ to $k=5$

zero x5, four x4, two x3, zero x2, zero x1
goal: six $\times 5$, five $x 4$, three $x 3$, one $\times 2$, one $x 1$

Proof by Induction
 - Completing the Solution

goal: six $x 5$, five $x 4$, three $x 3$, one $\times 2$, one $x 1$
current: zero x5, four x4, two x3, zero x2, zero x1

$x 1+x 4$
$+x 5$

$x 1+x 2+x$
$3+x 4$
$x 1+x 2+x$
$3+x 4+x$
5

Proof by Induction
 - Completing the Solution

goal: six $x 5$, five $x 4$, three $x 3$, one $\times 2$, one $x 1$
current: zero x5, four x4, two x3, zero x2, zero x1

Proof by Induction
 - Completing the Solution

goal: six $x 5$, five x 4 , three x 3 , one x 2 , one x 1
current: zero $x 5$, five $\times 4$, three $x 3$, one $x 2$, one $x 1$

Proof by Induction
 - Completing the Solution

goal: six $\times 5$, five $\times 4$, three $\times 3$, one $\times 2$, one $x 1$
current: six $x 5$, five $x 4$, three $x 3$, one $x 2$, one $x 1$

Concatenating Simplex Codes

Construction I
Concatenating m copies of ($2^{k}-1, k, 2^{k-1}$) simplex codes yields an

$$
\left(m\left(2^{k}-1\right), m k, 2^{k-1}\right) \text { switch code. }
$$

Concatenating Simplex Codes

Construction I
Concatenating m copies of ($2^{k}-1, k, 2^{k-1}$) simplex codes
yields an

$$
\left(m\left(2^{k}-1\right), m k, 2^{k-1}\right) \text { switch code. }
$$

Properties of Construction I

- binary alphabet
- small query size
- explicit decoding algorithm
- optimal with respect to encoding degree

Work in Progress

Generalizing the proof - query size at most three (or bigger)

- Simplex codes is in fact a special class of ‘subset codes’ (Ishai et al. STOC'2004)
\square Randomized decoding algorithm with no guarantee of success
- Our work: deterministic and provable decodability
\square Extend our decoding to the general class of subset codes
- Simplex code is a shortened first order Reed Muller code

Questions?

Presenter: Han Mao Kiah hmkiah@ntu.edu.sg
Co-authors: Zhiying Wang zhiyingw@stanford.edu Yuval Cassuto ycassuto@ee.technion.ac.il

Credits

Special thanks to all the people who made and released these awesome resources for free:

- Presentation template by SlidesCarnival
- Photographs by Unsplash

