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Abstract—We consider the problem of synchronizing data in
distributed storage networks under edits that include deletions
and insertions. We present modifications of codes on distributed
storage systems that allow updates in the parity-check values to be
performed with one round of communication at low bit rates and a
small storage overhead. Our main contributions are novel protocols
for synchronizing both frequently updated and semi-static data, and
protocols for data deduplication applications, based on intermediary
coding using permutation and Vandermonde matrices.

Index Terms—Distributed storage, Synchronization.
I. INTRODUCTION

Coding for distributed storage systems (DSSs) has garnered
significant attention in the past few years [1]–[5], due to the rapid
development of information technologies and the emergence of
Big Data formats that need to be saved or disseminated in a
distributed fashion across a network. Two key functionalities of
codes for DSSs are (i) reconstruction of the stored files via access
to a subset of the nodes to achieve reliability, and (ii) content
repair of failed nodes. Both functionalities need to be retained
when the files undergo edits, such as symbol insertions, deletions,
or substitutions. Edits frequently arise in storage and networked
systems involving non-archival data that is frequently edited or
data deduplication1 features [6], or in shared file systems such as
Dropbox and Sugarsync [7]. Current solutions for synchronization
protocols operate exclusively on uncoded data (examples include
rsync [8], dsync [9], and a number of related file synchronization
methods put forward in the information theory literature [10]–
[14]); furthermore, they do not fully exploit the distributed nature
of information. On the other hand, deduplication methods mostly
apply to read-only architectures and are in an early stage of
development for distributed systems [15].

It is in general not an easy task to synchronize or deduplicate
a file and its corresponding DSS nodes while simultaneously
optimizing the communication/updating costs and retaining the
reconstruction and repair functionalities. In the uncoded domain,
the synchronization problem involves a single user and a single
node storing a replica of her/his file. Once the user edits the file,
assuming no knowledge of the edits, the user and the storage node
communicate interactively until their files are matched (or until
the node matches the master copy of the user).

In the encoded DSS scenario that we propose to analyze, we
make the natural assumption that the users have full knowledge
of the edits that they make. Furthermore, our work is primarily
concerned with efficiently updating encoded copies in the DSS
nodes with minimal communication rates under edits that are

This work was supported in part by NSF Grants CIF 1218764, CIF 1117980,
and STC Class 2010, CCF 0939370, and the Strategic Research Program of
University of Illinois, Urbana-Champaign. This work was completed when the
third author was at University of Illinois at Urbana-Champaign.

1Deduplication is the process of identifying duplicate files or data chunks in
the system and deleting the duplicates and replacing them with a reference to the
original data.

(a) A traditional synchronization scheme (see Example 1).
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(b) Our synchronization scheme (see Example 3).
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Fig. 1. Synchronization schemes for coded data. Communication cost is reduced
from 8 log2 q in (a) to 2 log2 q+2 log2 5 bits in (b). Here q is the alphabet size.

insertions or deletions. This fundamentally differs from update
efficient codes studied in [16], [17], where the edits can be viewed
as substitutions.

Contributions and Outline: We describe coding protocols for
efficient data synchronization in a distributed storage environment
that dynamically maintain regenerative properties. The synchro-
nization protocols are based on a simple new scheme termed in-
termediary coding, which changes the structure of the code during
each update. The intermediary preprocessing scheme also offers
flexibility in terms of accommodating a very broad family of
coding schemes used in DSSs (such as erasure codes, regenerating
codes, and locally repairable codes). In addition, we show that
traditional synchronization schemes require significantly higher
communication costs and describe an application of our method
for an important class of deduplication algorithm called post-
processing deduplication.

The paper is organized as follows. Section II motivates the
problem using the example in Fig. 1 and provides the precise
problem statement. Section III examines the underlying commu-
nication costs when traditional DSS encoding methods are used.
Section IV contains our main result, a collection of encoding
algorithms and protocols for data synchronization that have
communication cost a constant factor away from the fundamental
limits. The full version of the paper [18] contains proofs to
propositions, extensions of the proposed schemes, and derivations
of fundamental performance limits.



II. MOTIVATION AND PROBLEM STATEMENT

We start with a straightforward example to motivate the diffi-
culties encountered in synchronizing coded data.

Example 1. Consider two users with data blocks u(1) and u(2),
each consisting of five symbols of length 5 over Fq . Suppose
these blocks are encoded in a DSS consisting of three nodes,
that store u(1), u(2), and u(1) + u(2), respectively. This DSS
coding scheme, illustrated in Fig. 1, satisfies the reconstruction
property for the data blocks {u(1),u(2)}, and it may be used
to repair any one failed node by accessing the remaining two
nodes. Suppose next that the last symbol in u(1) and the first
symbol in u(2) are deleted, resulting in the smaller data blocks
ũ(1) = (u
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The question of interest may be stated as follows: What commu-
nication protocol should the users and the DSS nodes employ to
minimize the data transmission cost whilst retaining the recon-
struction and repair functionalities?

One way would be for the three DSS nodes to update their
contents to ũ(1), ũ(2), and ũ(1) + ũ(2), respectively. For the
uncoded parts of the encoded DSS nodes, it is both necessary
and sufficient for the user with data block u(i) to communicate
her/his deletion position (that is, log2 5 bits in Example 1) to the
corresponding node i. The next proposition states that at least
four symbols need to be transmitted to the parity check node 3.

Proposition 1. Let u(1) and u(2) be the user data blocks of length
`. Assume that exactly one deletion has occurred in u(1) and
u(2). Let ũ(1) and ũ(2) denote the respective edited blocks, and
suppose that the information to be updated at the three nodes of
the corresponding encoded DSS is given by ũ(1), ũ(2), and ũ(1)+
ũ(2), respectively. Then, in the worst case over all possible edit
locations, the total communication cost is at least `− 1 symbols,
or (`−1) log2 q bits, independent of the network topology between
the users and the nodes.

It therefore appears that in Example 1, both users have to
necessarily transmit almost their whole contents to node 3. We
show however that, akin to the notion of functional repair in DSS
[2], one may significantly save in communication complexity by
updating the contents of node 3 via a flexible change in the code
structure. The key idea is to use the fact that the users have full
knowledge of the edits and “transfer” the burden of updating
the data from the DSS nodes to the users. We first formally
describe the general problem setup and then proceed to describe
our underlying solution.

A. Coding for Distributed Storage Systems

Notation: We denote by [n] the set of integers {1, 2, . . . , n} and
by

(
X
k

)
the collection of k-subsets of X for a set X and k ≤ |X|.

Given a finite field Fq of order q, the vector space of all vectors
of length `, the vector space of all matrices of dimensions m×n,
and the vector space of all tensors of dimensions m× n× ` are
denoted by F`q , Fm×nq and Fm×n×`q , respectively. For i ∈ [`], xi
represents the i-th coordinate of a vector x ∈ F`q , and ei the i-th
standard basis vector. Given a matrix M ∈ Fm×nq , a subset of the
rows R ⊆ [m], and a subset of the columns C ⊆ [n], M|R×C
represents the |R|×|C| matrix obtained by restricting M to rows
in R and columns in C. We use analogous definitions for tensors.

Let x =
(
x(1), x(2), . . . , x(B)

)
∈ FBq be an information vector

to be stored in a distributed storage system (DSS). We call each
x(s), for s = 1, . . . , B, a data unit. A DSS is equipped with an
encoding function, as well as a set of reconstruction and a set
of repair algorithms specifying a coding scheme. The encoding
algorithm converts the vector x into n vectors of length α and
stores them in n storage nodes, while the reconstruction algorithm
recovers x from the contents of any k ≤ n out of n nodes. In
addition, when a node fails, one uses the contents of a subset
of d ≤ n nodes to repair the contents of the failed node. More
formally, we have the following definitions.

1) An encoding function is a map EC : FBq → Fn×αq , where α
is chosen such that EC can be constructed.

2) For any T ∈
(
[n]
k

)
, a map RCT : Fk×αq → FBq is termed a

reconstruction function if for x ∈ FBq ,

RCT

(
EC (x)|T×[α]

)
= x.

3) Given a t ∈ [n] and T ∈
(
[n]\{t}
d

)
, a map RPt,T : Fd×αq →

Fαq is termed an exact repair function if

RPt,T (C|T×[α]) = C|{t}×[α],

where C is the information stored over n nodes.
We refer to an encoding for a DSS as an (n, k, d, α,B) DSS

code, and focus on codes where the above mappings are linear.

B. Problem Description

Our edit model assumes that there is a user s ∈ [B] corre-
sponding to each data unit. In general, each user is associated
with a data block consisting of ` data units. The overall B` data
units are stored by extending the (n, k, d, α,B) DSS code to an
(n, k, d, `α, `B) DSS code. This extension is akin to data-striping
in RAID systems, amounting to a simple conversion of a symbol
to a vector of symbols. One can also view this construction as a
means of dividing the B` data units into ` groups of B symbols
each, and then applying to each group an (n, k, d, α,B) DSS
encoding. We say that a set of nodes N(s) is connected to user s
if the nodes need to be updated when data unit s is edited. That
is, N(s) , {t ∈ [n] : EC(es)|{t}×[α] 6= 0}.

We assume that the data blocks are subjected to deletions
performed in an independent fashion by B different users2.
Furthermore, we focus on a uniform edits model, in which each
data block has the same number of deletions and thus the resulting
data blocks all have the same length.

Example 2 (Example 1 Continued). Consider a [3, 2] MDS code,
or a (3, 2, 2, 5, 10) DSS code. Note that the DSS stores data blocks
u(1) and u(2) of length ` = 5, that are assumed to be edited by
users 1 and 2. Nodes 1 and 3 are connected to user 1, and nodes
2 and 3 are connected to user 2.

The problem of interest may be stated as follows:

Find the smallest communication cost protocol for the B users
to communicate their edits to the connected DSS nodes, so that
the nodes can update their information while maintaining the
reconstruction and repair functionalities.

2It may be possible that a user edits a number of different data blocks. However,
for simplicity, our model assumes that each data block is edited by one user.



For simplicity and concreteness, we define cost as the number
of bits transmitted from a user to a DSS node connected to it,
averaged over all users. We are typically concerned with the worst
case cost, that is cost maximized over all edit scenarios (say,
all single deletion scenarios). For example, in the worst case,
` log2 q ≥ cost ≥ log2 ` for a deletion, and ` log2 q ≥ cost ≥
log2 ` + log2 q for an insertion. A scheme that achieves these
bounds is for each user to send the entire edited data file to each
DSS node. The lower bound follows by noting that at least one
user needs to communicate the edit position (and inserted symbol
in the case of an insertion) to at least one DSS node.

In what follows, we introduce what we call the traditional
synchronization scheme and describe its shortcomings. We then
propose two schemes that achieve a communication cost of
O(log ` + log q) bits, i.e., of the order of the intuitive lower
bound. To facilitate this low communication cost, we introduce
additional storage overhead needed to describe the intermedi-
ary encoding function. The gist of the encoding method is to
transform the information, and hence the codes applied to data
blocks, via permutation and Vandermonde matrix multiplication.
The resulting schemes are subsequently referred to as Schemes P
and V, respectively. The key property of the transforms is that they
reduce the update and synchronization communication cost by
changing the code structure. Detailed descriptions and analysis of
this storage overhead may be found in our companion paper [18].

III. SYNCHRONIZATION WITH TRADITIONAL ENCODING

We call a synchronization scheme traditional if for a given
length ` of the data blocks, the corresponding (n, k, d, `α, `B)
DSS code is a tensorized version of an (n, k, d, α,B) DSS code
as described in Section II-B. In other words, for a fixed `, we
encode B data blocks of ` units each by encoding the i-th unit of
each block using the same (n, k, d, α,B) DSS code. Formally, we
have the traditional encoding function3 EC` : FB×`q → Fn×α×`q ,
defined such that for i ∈ [`],

EC`
(
x(1), . . . ,x(B)

)∣∣∣
[n]×[α]×{i}

= EC
(
x
(1)
i , . . . , x

(B)
i

)
. (1)

Hence, we regard the information stored at the n nodes as
an n × α × ` tensor. The corresponding reconstruction and
repair functions can similarly be given by the functions RC`T :
Fk×α×`q → FB×`q for T ∈

(
[n]
k

)
; and RP`t,T : Fd×α×`q → Fα×`q

for t ∈ [n] and T ∈
(
[n]\{t}
d

)
, respectively, defined such that for

i ∈ [`],

RC`T
(
C|T×[α]×[`]

)∣∣∣
[B]×{i}

, RCT
(
C|T×[α]×{i}

)
, (2)

RP`t,T
(
C|T×[α]×[`]

)∣∣∣
[α]×{i}

, RPt,T
(
C|T×[α]×{i}

)
, (3)

where C, for brevity, is the encoded data EC`
(
x(1), . . . ,x(B)

)
stored in the DSS.

Suppose that following one edit per block, the data blocks
are updated to x̃(1), . . . , x̃(B), each of length ` − 1. Then, the
traditional synchronization scheme (henceforth, referred to as
Scheme T) requires that the information stored at the n nodes be
given by EC`

′ (
x̃(1), . . . , x̃(B)

)
. We can characterize the worst-

case cost of scheme T according to the following proposition.

3For compactness, we write
(
x(1),x(2), . . . ,x(B)

)
instead of its transpose.

Proposition 2 (Scheme T). Consider an (n, k, d, `α, `B) DSS
code and assume single deletions in the user data blocks. Scheme
T updates the content of the storage nodes to (n, k, d, (` −
1)α, (` − 1)B) DSS codes, with each user sending out cost =
|I| log2 q bits to a connected storage node. Here, I = {i ∈ [`] :
imin ≤ i ≤ imax − 1}, where is is the deletion position for data
block s ∈ [B], imax = maxs∈[B] is and imin = mins∈[B] is. In
the worst case, cost = (`−1) log2 q bits. Furthermore, no scheme
can do better (up to a constant factor).

Remark: The previous results easily extended to uniform dele-
tion as well as insertion models.

IV. SYNCHRONIZATION WITH ORDER-OPTIMAL
COMMUNICATION COST

We present next two synchronization schemes that achieve a
cost of O(log2 ` + log2 q) bits as opposed to O(` log2 q) bits.
Intuitively, the idea is illustrated in the continuation of Example
1 below.

Example 3 (Example 1 Continued). Suppose each user sends the
following information: (deletion position, deleted symbol) to node
3, i.e., user 1 transmits (5, u

(1)
5 ) and user 2 transmits (1, u

(2)
1 ).

See Fig. 1. Now, node 3 which has u(1) + u(2) and receives
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The new code continues to be a [3, 2] MDS code with ` = 4,
albeit involving a different parity-check. The communication cost
however is reduced from 8 bits (assuming a binary alphabet) to
2 log2(5) + 2 = 6.6 bits.

The idea is formalized by introducing the notion of intermedi-
ary encoding.

Let
(
x(1),x(2), . . . ,x(B)

)
∈ FB×`q and let A(1), A(2), . . . ,

A(B) be invertible ` × ` matrices over Fq . We define a new
encoding function EC∗` : FB×`q → Fn×α×`q , which uses the
traditional encoding function EC` as a building block, according
to

EC∗`
(
x(1), . . . ,x(B)

)
, EC`

(
x(1)A(1), . . . ,x(B)A(B)

)
. (1∗)

The repair functions remain the same as in (3), where C now
equals EC∗`

(
x(1), . . . ,x(B)

)
. The reconstruction functions in (2)

give back the linearly transformed data blocks and since the
corresponding matrices are invertible, the original data blocks are
reconstructible. Observe that when A(s) = I for all s ∈ [B], we
recover scheme T.

We describe next how to choose the matrices A(s) and the
accompanying update protocols to ensure small values of the
communication cost. Suppose once again that the data blocks
are edited to length `′ = `−1. The idea is to request the users to
modify their respective matrices A(s) to invertible `′×`′ matrices
Ã(s) according to the edits made. Then, users may transmit the
locations and values of their edits rather than a whole span of
values, with the storage nodes being able to update their respective
information so that (1∗) holds. The matrices Ã(s) are designed to
be invertible, so the resulting system remains an (n, k, d, α`′, B`′)
DSS code. We propose two different update schemes for the
matrices Ã(s) based on the frequency and extent to which edits
are made. For simplicity, we describe the schemes for edits of
the form of a single deletion or insertion; extensions to multiple
edits are straightforward.



TABLE I
EXAMPLE ILLUSTRATING SCHEME P WITH A [3, 2] MDS CODE OVER F5 .

u(1) u(2) edit D EC5
(
u(1)A(1),u(2)A(2)

)
A(1) A(2)

(1, 2, 3, 4, 4) (1, 1, 1, 1, 1) — —

(
1 2 3 4 4
1 1 1 1 1
2 3 4 0 0

) 
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



(1, 3, 4, 4, 0) (1, 1, 1, 1, 1) deletion at position 2 of u(1)

(
0 2 0 0 0
0 0 0 0 0
0 2 0 0 0

) (
1 0 3 4 4
1 1 1 1 1
2 1 4 0 0

) 
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



(1, 3, 4, 1, 4) (1, 1, 1, 1, 1) insertion of 1 at position 4 of u(1)

(
0 1 0 0 0
0 0 0 0 0
0 1 0 0 0

) (
1 1 3 4 4
1 1 1 1 1
2 2 4 0 0

) 
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


TABLE II

EXAMPLE ILLUSTRATING SCHEME V WITH A [3, 2] MDS CODE OVER F5 .

u(1) i1 u(2) i2 D EC`
(
u(1)A(1),u(2)A(2)

)
A(1) A(2)

(0, 1, 0, 1) — (1, 0, 1, 0) — —

(
2 1 0 2
2 4 0 3
4 0 0 0

)  1 1 1 1
1 2 4 3
1 3 4 2
1 4 1 4


 1 1 1 1

1 2 4 3
1 3 4 2
1 4 1 4


(0, 1, 0) 4 (0, 1, 0) 1

(
1 4 1 4
1 1 1 1
2 0 2 0

)  1 2 4 �3
1 3 4 �2
2 0 3 �0

 (
1 1 1
1 2 4
1 3 4

) (
1 2 4
1 3 4
1 4 1

)

A. Semi-Static Data: Synchronization with Permutation Matrices

For semi-static data, we assume that only a constant fraction
of the data blocks is edited by users so that most data blocks
retain their original length `. In this case, the matrices Ã(s) –
albeit modified – remain of dimension `×`. The most appropriate
choice for the matrices are permutation matrices, i.e., 0-1 matrices
with exactly one 1 per row and per column. We observe that each
node stores α` symbols. For the nonuniform setting of semi-static
data, we pad the shorter data blocks by an appropriate number
of zeroes: as an example, a deletion in x at position 2 results in
x̃ = (x1, x3, . . . , x`−1, 0).

Scheme P: Suppose x(s) is edited at coordinate is.

1 if edit is a deletion then
2 js ← coordinate where the isth row A(s) is one (note:

A(s) is a permutation matrix)
3 shift isth row of A(s) to the last row
4 else
5 js ← coordinate where the last row A(s) is one
6 shift last row of A(s) to the isth row
7 end
8 User s sends to the connected storage nodes N(s): the value

affected, using x (log q bits), the type of edit – insertion or
deletion (one bit), and the coordinate js (log ` bits)

9 for t ∈ N(s) do
10 Compute d = EC` (0, . . . ,0, xejs ,0, . . . ,0) |{t}×[α]×[`]
11 if edit is a deletion then
12 subtract d from coordinate js at each storage node
13 else
14 add d to coordinate js at each storage node
15 end
16 end

Let data block x(s) be edited at coordinate is. Recall that we
associate with x(s) an ` × ` matrix A(s). The matrix A(s) is
initialized to the identity matrix I and it remains a permutation

matrix after each update. Roughly speaking, the storage nodes
maintain the coded information in the original order. Since with
each edit this order changes, the permutation matrix A(s) is used
to keep track of the order in the data blocks relative to that in
the storage nodes. Hence, A(s) indicates that instead of editing
“position is” of the check nodes, one has to edit a position
“position js” in the original order. These assertions are stated
in Proposition 3. We call the permutation matrix intermediary
encoding scheme Scheme P.

Proposition 3 (Scheme P). Consider an (n, k, d, α`,B`) DSS
code and assume a single edit for a single user. The updates
in accordance to Scheme P result in an (n, k, d, α`,B`) DSS
code and the user needs to communicate log2 `+ log2 q bits to a
connected storage node to update her/his information.

Example 4. Consider two data blocks u(1) and u(2), shown in
Table I, of length ` = 5, as part of a [3, 2] MDS code over F5.
Let D denote the tensor given by EC` (0, . . . ,0, xejs ,0, . . . ,0)
in line 10. We illustrate the steps of the protocol in Table
I. We can reconstruct the user data by contacting any two
nodes, obtaining the data stored in nodes 1 and 2, and mul-
tiplying it with the corresponding matrix inverses to obtain
û(1) = (1, 1, 3, 4, 4)

(
A(1)

)−1
= (1, 3, 4, 1, 4), and û(2) =

(1, 1, 1, 1, 1)
(
A(2)

)−1
= (1, 1, 1, 1, 1).

Notice that Scheme P requires the storage of the most updated
“data order” and the deletion positions. To mitigate this unde-
sirable feature, we propose the following scheme which changes
the order automatically, and once data is deleted, all information
about it is removed from the system. This also brings us to the
second editing paradigm, frequent editing.

B. Frequently-Updated Data: Synchronization with Vandermonde
Matrices

In contrast to the semi-static case, one may also assume that
a significant proportion of the data blocks are edited or accessed



by users4. In this case, suppose that the resulting data blocks are
of length `′ < `; then, the requirements are for each node to store
α`′ < α` symbols. The appropriate choices for the matrices Ã(s)

are Vandermonde or Cauchy matrices of dimension `′ × `′.
Let there be a single deletion at coordinate is in data block

x(s), for s ∈ [B]. The updated data block length equals `′ =
` − 1. Recall that we associate with x(s) an ` × ` matrix A(s).
After synchronization, we want the updated matrix Ã(s) to be of
dimension (` − 1) × (` − 1) and invertible, and the information
in the n storage nodes reduced to α× (`−1) arrays. The deleted
values x(1)i1 , x

(2)
i2
, . . . , x

(B)
iB

are stored in the storage nodes as

D , EC`
(
x
(1)
i1

A|{i1}×[`], . . . , x
(B)
iB

A|{iB}×[`]
)
. (4)

Hence, when given the values x(s)is and positions is, each node
t may subtract the vector D|{t}×[α]×[`] from its content. To
reduce the size of the storage node arrays, we simply remove
the coordinates in the set [n] × [α] × {`}. Suppose Ã(s) is the
(`−1)× (`−1) matrix obtained from A(s) by removing the isth
row and last column. It is easy to check that a posteriori the edit,
the storage nodes contain the tensor

EC`−1
(
x̃(1)Ã(1), x̃(2)Ã(2), . . . , x̃(B)Ã(B)

)
. (5)

For the system to be an (n, k, d, α(`−1), B(`−1)) DSS code,
we require Ã(s) to remain invertible. This is clearly true if the
matrix A(s) is a Vandermonde or a Cauchy matrix. We refer to
the former method as Scheme V, the details of which are given
below.

Scheme V: Symbol x(s) is deleted at is, s ∈ [B].

1 for s ∈ [B] do
2 User s sends to all connected storage nodes its deleted

value deleted – x(s)is – (log q bits) as well as the
coordinate is of the deletion (log ` bits)

3 A(s) ← A(s) via removal of the isth row and last
column

4 end
5 for t ∈ [n] do
6 Using (4), compute and subtract D|{t}×[α]×[`]
7 Remove the (t, j, `)th coordinate, for all j ∈ [α]
8 end

Proposition 4 (Scheme V). Consider an (n, k, d, α`,B`) DSS
code and assume single deletions in each user data block. The
updates in accordance to Scheme V result in an (n, k, d, α(` −
1), B(` − 1)) DSS code and each user needs to communicate
log2 `+ log2 q bits to connected storage nodes.

Example 5. Assume that ` = 4 and that the DSS code is a [3, 2]
MDS code over F5. As before, we choose two data blocks u(1)

and u(2) and illustrate the scheme in Table II. As in Example 4,

4In many application, both hot data (i.e. frequently accessed data) and fre-
quently updated data is left uncoded in order to facilitate quick access to
information and eliminate the need for re-encoding. Our scheme may be seen
as a means to mitigate both the issues of access and re-encoding, while allowing
higher level of data integrity through distributed coding. This is achieved at the
price of intermediary code parameter storage and simple arithmetic procedures.

we can reconstruct the user data blocks from the data stored in
nodes 1 and 2: û(1) = (1, 2, 4)(A(1))−1 = (0, 1, 0), and û(2) =
(1, 3, 4)(A(2))−1 = (0, 1, 0).

Application to data deduplication. Deduplication broadly refers
to the process of removing duplicate copies of data with the ob-
jective of saving storage [6]. Scheme V may easily be integrated
into a data deduplication process for a DSS so as to remove
duplicates not only amongst the users, but also their redundantly
encoded information at the storage nodes.

We describe how to accomplish this task for post-process
deduplication, i.e., deduplication after users have already writ-
ten on their disks certain data blocks, say (f1, . . . , fe) ∈ Feq .
Deduplication proceeds as follows:

(I) A central node broadcasts to all users and nodes the data
(f1, f2, . . . , fe) to be removed.

(II) For s ∈ [B], user s scans the string x(s) for the data string
(f1, f2, . . . , fe) and identifies positions is,1, is,2, . . . , is,e
where the blocks are stored.

(III) User s transmits positions is,1, is,2, . . . , is,e to all con-
nected storage nodes.

(IV) Each storage node and user updates information as re-
quested by Scheme V in e iterations.
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