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Using the Calderbank�Shor�Steane (CSS) construction, pure q-ary asymmetric quantum
error-correcting codes attaining the quantum Singleton bound are constructed. Such codes are

called pure CSS asymmetric quantum maximum distance separable (AQMDS) codes. Assuming

the validity of the classical maximum distance separable (MDS) Conjecture, pure CSS AQMDS

codes of all possible parameters are accounted for.
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1. Introduction

The study of asymmetric quantum codes ðAQCsÞ began when it was argued in Refs. 1

and 2 that, in many qubit systems, phase-°ips (or Z-errors) occur more frequently
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than bit-°ips (or X-errors) do. Steane ¯rst hinted the idea of adjusting the error-

correction to the particular characteristics of the quantum channel in Ref. 3 and

later, Wang et al. established a mathematical model of AQCs in the general qudit

system in Ref. 4.

To date, the only known class of AQCs is given by the asymmetric version of the

Calderbank�Shor�Steane (CSS) construction. In this paper, the CSS construction is

used to derive a class of purea AQCs attaining the quantum analogue of the Singleton

bound. We call such optimal codes asymmetric quantum maximum distance sepa-

rable ðAQMDSÞ codes and if the codes are derived from the CSS construction, we call

them CSS AQMDS codes.

Thus far, the only known AQMDS codes are pure CSS AQMDS and many results

concerning these codes had been discussed in Ref. 6. This paper provides a complete

treatment of such codes by solving the remaining open problems. This enables us to

provide a complete characterization. To be precise, assuming the validity of the MDS

conjecture, pure CSS AQMDS codes of all possible parameters are constructed.

The paper is organized as follows. In Sec. 2, we discuss some preliminary concepts

and results. In Secs. 3 to 5, nested pairs ofGeneralizedReed�Solomon (GRS) codes and

extended GRS codes are used to derive AQMDS codes of lengths up to qþ 2. Sec. 6

presents an alternative view on the construction of AQMDS codes based on the weights

of maximum distance separable (MDS) codes. A summary is provided in Sec. 7.

2. Preliminaries

2.1. Classical linear MDS codes

Let q be a prime power and Fq the ¯nite ¯eld having q elements. A linear

½n; k; d �q-code C is a k-dimensional Fq-subspace of F
n
q with minimum distance

d :¼ minfwtðvÞ : v 2 Cnf0gg, where wtðvÞ denotes the Hamming weight of v 2 F
n
q .

Given two distinct linear codes C and D, wtðCnDÞ denotes minfwtðuÞ : u 2 CnDg.
Every ½n; k; d �q-code C satis¯es the Singleton bound

d � n� kþ 1;

and C is said to be maximum distance separable if d ¼ n� kþ 1. Trivial families

of MDS codes include the vector space F
n
q , the codes equivalent to the

½n; 1;n�q-repetition code and their duals ½n;n� 1; 2�q for positive integers n � 2.

MDS codes which are not equivalent to the trivial ones are said to be nontrivial.

Furthermore, we have the following conjecture which has been shown to be true when

q is prime in Ref. 7.

Conjecture 1 (MDS Conjecture). If there is a nontrivial ½n; k; d�q-MDS code,

then n � qþ 1, except when q is even and k ¼ 3 or k ¼ q� 1 in which case n � qþ 2.

aPurity in the CSS case is de¯ned in Theorem 2.
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For u ¼ ðuiÞni¼1 and v ¼ ðviÞni¼1, hu;viE :¼Pn
i¼1 uivi is the Euclidean inner

product of u and v. With respect to this inner product, the dual C? of C is given by

C? :¼ fu 2 F
n
q : hu;viE ¼ 0 for all v 2 Cg:

It is well known that ðC?Þ? ¼ C and that the dual of an MDS code is MDS.

Let Fq ½X�k denote the set of all polynomials of degree less than k in Fq½X�. The set
f1;x; . . . ;xk�1g forms the standard basis for Fq ½X�k as a vector space over Fq.

2.2. CSS construction and AQMDS codes

We begin with a formal de¯nition of an AQC.

De¯nition 1. Let dx and dz be positive integers. A quantum code Q in Vn ¼ ðCqÞ�n

with dimension K � 1 is called an asymmetric quantum code with parameters

ððn;K; dz=dxÞÞq or ½½n; k; dz=dx��q, where k ¼ logqK, if Q detects dx � 1 qudits of

bit-°ips (or X-errors) and, at the same time, dz � 1 qudits of phase-°ips (or Z -errors).

The correspondence between pairs of classical linear codes and AQCs is given in

Refs. 4 and 5.

Theorem 2 (Standard CSS Construction for AQC). Let Ci be linear codes

with parameters ½n; ki; di�q for i ¼ 1; 2 with C?
1 � C2. Let

dz :¼ maxfwtðC2nC?
1 Þ;wtðC1nC?

2 Þg and

dx :¼ minfwtðC2nC?
1 Þ;wtðC1nC?

2 Þg: ð1Þ

Then there exists an AQC Q with parameters ½½n; k1 þ k2 � n; dz=dx��q. The code Q is

said to be pure whenever fdz; dxg ¼ fd1; d2g.
For a CSS AQC, the purity in Theorem 2 is equivalent to the general de¯nition

given in Ref. 4.

Furthermore, any CSS ½½n; k; dz=dx��q-AQC satis¯es the following bound [8,

Lemma 3.3],

k � n� dx � dz þ 2: ð2Þ
This bound is conjectured to hold for all AQCs. A quantum code is said to be

AQMDS if it attains the equality in (2).

For our construction, the following result holds.

Lemma 1 ([4, Corollary 2.5]). A pure CSS AQC is an asymmetric quantum MDS

code if and only if both C1 and C2 in Theorem 2 are (classical) MDS codes.

This means that constructing a pure q-ary CSS AQMDS code of a speci¯c set of

parameters is equivalent to ¯nding a suitable corresponding nested pair of classical

Fq-linear MDS codes.
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Following Lemma 1, a CSS AQMDS code is said to be trivial if both C1 and C2 are

trivial MDS codes.

From Lemma 1 and the MDS conjecture, the following necessary condition for the

existence of a nontrivial pure CSS AQMDS code is immediate.

Proposition 1. Assuming the validity of the MDS Conjecture, every nontrivial pure

q-ary CSS AQMDS code has length n � qþ 1 if q is odd and n � qþ 2 if q is even.

Let Q be an AQC with parameters ½½n; k; dz=dx��q. We usually require k > 0

(equivalently, K ¼ qk > 1) or for error detection purposes, dx � 2. However, for

completeness, we state the results for the two cases: ¯rst, when dx ¼ 1 and second,

when k ¼ 0.

Proposition 2. Let n; k be positive integers such that k � n� 1. A pure CSS

AQMDS code with parameters ½½n; k; dz=1��q where dz ¼ n� kþ 1 exists if and only if

there exists an MDS code with parameters ½n; k;n� kþ 1�q.
Proof. We show only one direction. Let C be an MDS code with parameters

½n; k;n� kþ 1�q. Apply Theorem 2 with C1 ¼ C and C2 ¼ F
n
q to obtain the required

AQMDS code.

Proposition 3. Let n; k be positive integers such that k � n� 1. A pure

CSS AQMDS code with parameters ½½n; 0; dz=dx��q where fdz; dxg ¼ fn� kþ 1;

kþ 1g exists if and only if there exists an MDS code with parameters ½n; k;
n� kþ 1�q.
Proof. Again, we show one direction. Let C be an MDS code with parameters

½n; k;n� kþ 1�q and let C?
1 ¼ C2 ¼ C. Following Ref. 9, assume that a quantum

code with K ¼ 1 is pure and hence, there exists an AQMDS with parameters

½½n; 0; dz=dx��q where fdz; dxg ¼ fn� kþ 1; kþ 1g.
In the subsequent sections, pure CSS AQMDS codes with k � 1 and dx � 2 are

studied.

3. AQMDS Codes of Length n&̧<q

Let us recall some basic results on GRS codes (see Ref. 10, Sec. 5.3). Choose n

distinct elements �1; �2; . . . ; �n in Fq and de¯ne ® :¼ ð�1; �2; . . . ; �nÞ. Let

v :¼ ðv1; v2; . . . ; vnÞ, where v1; v2; . . . ; vn are nonzero elements in Fq. Then, given ®

and v, a GRS code of length n � q and dimension k � n is de¯ned as

GRSn;kð®;vÞ :¼ fðv1fð�1Þ; . . . ; vnfð�nÞÞ : fðXÞ 2 Fq ½X�kg:
Since Fq ½X�k � Fq ½X�kþ1 for ¯xed n;v, and ®, it follows immediately that

GRSn;kð®;vÞ � GRSn;kþ1ð®;vÞ: ð3Þ

M. F. Ezerman et al.
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Based on the standard basis for Fq ½X�k, a generator matrix G for GRSn;kð®;vÞ is
given by

G ¼

v1 v2 . . . vn
v1�1 v2�2 . . . vn�n

..

. ..
. . .

. ..
.

v1�
k�1
1 v2�

k�1
2 . . . vn�

k�1
n

0
BBBB@

1
CCCCA ð4Þ

and GRSn;kð®;vÞ is an MDS code with parameters ½n; k;n� kþ 1�q. Hence, the

following result gives a construction of an AQMDS code of length n � q.

Theorem 3. Let q � 3. Let n, k and j be positive integers such that n � q, k � n� 2

and j � n� k� 1. Then there exists a nontrivial AQMDS code with parameters

½½n; j; dz=dx��q where fdz; dxg ¼ fn� k� jþ 1; kþ 1g.
Proof. Apply Theorem 2 with C?

1 ¼ ðGRSn;kð®;vÞÞ � C2 ¼ GRSn;kþjð®;vÞ.

4. AQMDS Codes of Length n= q +1

Let �1; �2; . . . ; �q be distinct elements in Fq and v1; v2; . . . ; vqþ1 be nonzero elements

in Fq. Let k � q and consider the code E given by

E :¼ ðv1fð�1Þ; . . . ; vqfð�qÞ; vqþ1fk�1Þ : fðXÞ ¼
Xk�1

i¼0

fiX
i 2 Fq ½X�k

( )
:

Let x ¼ ð0; . . . ; 0; vqþ1Þ and G be as in (4) with n ¼ q. Then GE :¼ ðGjxTÞ is a

generator matrix of E. The code E is an extended GRS code with parameters

½qþ 1; k; q� kþ 2�q (see Ref. 10, Sec. 5.3).

Let 1 � r � k� 2. Then there exists a monic irreducible polynomial pðXÞ 2 Fq½X�
of degree k� r [Ref. 11, Corollary 2.11]. By the choice of pðXÞ, observe that pð�iÞ 6¼ 0

for all i. Hence, the matrix

GC ¼

v1pð�1Þ . . . vqpð�qÞ 0

v1�1pð�1Þ . . . vq�qpð�qÞ 0

..

. . .
. ..

. ..
.

v1�
r�2
1 pð�1Þ . . . vq�

r�2
q pð�qÞ 0

v1�
r�1
1 pð�1Þ . . . vq�

r�1
q pð�qÞ vqþ1

0
BBBBBBBB@

1
CCCCCCCCA

ð5Þ

is a generator matrix of a ½qþ 1; r; q� rþ 2�q-MDS code C .

Observe that, for all gðXÞ 2 Fq ½X�r, pðXÞgðXÞ is also a polynomial in Fq ½X�k.
Moreover, the coe±cient ofXk�1 in pðXÞgðXÞ is given by the coe±cient ofXr�1 in gðXÞ.
Thus, C � E, leading to the following construction of AQMDS code of length qþ 1.
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Theorem 4. Let q � 3. Let j; k be positive integers such that 3 � k � q and

2 � j � k� 1. Then there exists an AQMDS code with parameters ½½qþ 1; j; dz=dx��q
where fdz; dxg ¼ fq� kþ 2; k� jþ 1g.
Proof. Let r ¼ k� j. Apply Theorem 2 with C1 ¼ C? and C2 ¼ E.

Note that Theorem 4 gives AQMDS codes with parameters ½½qþ 1; j; dz=dx��q with
j � 2. The next proposition gives the necessary and su±cient conditions for the

existence of pure CSS AQMDS codes with j ¼ 1.

Proposition 4. Let n; k be positive integers such that k � n� 1. There exists a pair

of nested MDS codes C � C 0 with parameters ½n; k;n� kþ 1�q and ½n; kþ 1;n� k�q,
respectively, if and only if there exists an MDS code with parameters

½nþ 1; kþ 1;n� kþ 1�q.
Equivalently, there exists a pure CSS AQMDS code with parameters ½½n; 1; dz=dx��q

where fdz; dxg ¼ fn� k; kþ 1g if and only if there exists an MDS code with para-

meters ½nþ 1; kþ 1;n� kþ 1�q.

Proof. Let G be a generator matrix of C . Pick w 2 C 0 nC and observe that G

w

� �
is

agenerator matrix for C 0. It can be veri¯ed that

0 G

1 w

 !

is a generator matrix of an ½nþ 1; kþ 1;n� kþ 1�q-MDS code.

Conversely, let D be an ½nþ 1; kþ 1;n� kþ 1�q-MDS code with k � n� 1.

Shortening the code D at the last coordinate yields an ½n; k;n� kþ 1�q-MDS code C .

Puncturing the code D at the last coordinate gives an ½n; kþ 1;n� k�q-MDS code C 0.
A quick observation con¯rms that C � C 0.

This proposition leads to the following characterization.

Corollary 1. Assuming the validity of the MDS conjecture, there exists a pure CSS

AQMDS code with parameters ½½qþ 1; 1; dz=dx��q if and only if q is even and

fdz; dxg ¼ f3; q� 1g.
Proof. There exists a ½2m þ 2; 3; 2m�2m -MDS code (see Ref. 12, Ch. 11, Theorem 10).

By Proposition 4, an AQMDS code with the indicated parameters exists.

The necessary condition follows from combining the MDS conjecture and Prop-

osition 4. Assume that there exists a ½½qþ 1; 1; dz=dx��q-AQMDS code Q with dx � 2.

If q is odd, the existence of Q would imply the existence of a nontrivial MDS

code of length qþ 2, contradicting the MDS conjecture. For even q, suppose

fdz; dxg 6¼ fq� 1; 3g. Without loss of generality, assume dz � dx 6¼ 3. Then there

exists a nested pair ½qþ 1; qþ 1� dx; dx þ 1�q � ½qþ 1; qþ 2� dx; dx�q. By Proposi-

tion 4, there exists a ½qþ 2; qþ 2� dx; dx þ 1�q-MDS code. If dx ¼ 2, then

M. F. Ezerman et al.
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qþ 2� dx ¼ q 62 f3; q� 1g, contradicting the MDS conjecture. If dx > 3, then dz <

q� 1 and 3 < qþ 2� dz � qþ 2� dx < q� 1, a contradiction to the MDS

conjecture.

5. AQMDS Codes of Length n = 2m + 2 � 6 with dz = dx = 4

MDS codes of length qþ 2 are known to exist for q ¼ 2m, and k 2 f3; 2m � 1g (see

Ref. 12, Ch. 11, Theorem 10). Let v1; v2; . . . ; vqþ2 be nonzero elements in Fq and ¯x

�q ¼ 0 in the notations of Sec. 3.

Form � 2, a generator matrix for k ¼ 3 or a parity check matrix for k ¼ 2m � 1 is

given by

H ¼
v1 � � � vq�1 vq 0 0

v1�1 � � � vq�1�q�1 0 vqþ1 0

v1�
2
1 � � � vq�1�

2
q�1 0 0 vqþ2

0
BB@

1
CCA: ð6Þ

Let C be a ½2m þ 2; 2m � 1; 4�2m -code with parity check matrix H given in (6).

Let D be the ½2m þ 2; 3; 2m�2m -code whose generator matrix G is given by

G ¼
v�1
1 � � � v�1

q�1 v�1
q 0 0

v�1
1 ��1

1 � � � v�1
q�1�

�1
q�1 0 v�1

qþ1 0

v�1
1 ��2

1 � � � v�1
q�1�

�2
q�1 0 0 v�1

qþ2

0
BBB@

1
CCCA: ð7Þ

The following theorem gives a construction of an AQMDS code of length qþ 2.

Theorem 5. Let q ¼ 2m � 4. Then there exists an AQMDS code with parameters

½½2m þ 2; 2m � 4; 4=4��2m .

Proof. Firstweprove thatD � C by showing thatM ¼ ðmi;jÞ :¼ GHT ¼ 0.Note that

mi;j ¼
Xqþ2

l¼1

gi;l � hj;l

for 1 � i; j � 3. If i ¼ j, thenmi;j ¼ q ¼ 0. If i 6¼ j, the desired conclusion follows since

Xq�1

i¼1

�i ¼
Xq�1

i¼1

��1
i ¼ 0 and

Xq�1

i¼1

��2
i ¼

Xq�1

i¼1

�2
i ¼

Xq�1

i¼1

�i

 !2

¼ 0:

Applying Theorem 2 with C1 ¼ D? and C2 ¼ C completes the proof.

6. AQMDS Codes with dz � dx = 2, an Alternative Look

In the previous sections, suitable pairs of GRS or extended GRS codes were chosen for

the CSS construction. This section singles out the case of dx ¼ 2 where the particular

Pure Asymmetric Quantum MDS Codes from CSS Construction
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type of the MDS code chosen is inessential. The following theorem gives a con-

struction on an AQC with dx ¼ 2.

Theorem 6 ([Ref. 6 Theorem 7]). Let C be a linear (not necessarily MDS)

½n; k; d�q-code with k � 2. If C has a codeword u such that wtðuÞ ¼ n, then there exists

an ½½n; k� 1; d=2��q-AQC.

Let C be an ½n; k;n� kþ 1�q-MDS code. Ezerman et al. in Ref. 13 showed that C

has a codeword u with wtðuÞ ¼ n, except when either C is the dual of the binary

repetition code of odd length n � 3, or C is a simplex code with parameters

½qþ 1; 2; q�q. Hence, the following corollary can be derived.

Corollary 2. The following statements hold:

(1) For even integers n, there exists an ½½n;n� 2; 2=2��2-AQMDS code.

(2) For positive integers n; q � 3, there exists an ½½n;n� 2; 2=2��q-AQMDS code.

(3) Given positive integers q � n � 4, there exists an AQMDS code for 2 � k � n� 2

with parameters ½½n; k� 1; dz=2��q with dz ¼ n� kþ 1.

(4) Given q � 4, there exists an AQMDS code for 3 � k � q� 1 with parameters

½½qþ 1; k� 1; dz=2��q with dz ¼ q� kþ 2.

(5) Given positive integer m � 2 and q ¼ 2m, there exists an AQMDS code with

parameters ½½2m þ 2; 2; 2m=2��2m and an AQMDS code with parameters

½½2m þ 2; 2m � 2; 4=2��2m .

Wang et al. (Ref. 4, Corollary 3.4) gave a di®erent proof of the existence of

½½n;n� 2; 2=2��q-AQMDS codes Q for n; q � 3.

In this section, it is shown for dx ¼ 2 that the speci¯c construction of the classical

MDS codes used in the CSS construction is inconsequential. This is useful as there are

many classical MDS codes which are not equivalent to the GRS codes (see Ref. 14, for

instance).

7. Summary

While the ingredients to construct a pure AQC under the CSS construction, namely a

pair of nested codes, the knowledge on the codimension and the dual distances of the

codes, are all classical, computing the exact set of parameters and establishing the

optimality of the resulting AQC are by no means trivial.

This work shows how to utilize the wealth of knowledge available regarding

classical MDS codes to completely classify under which conditions there exists a

particularly pure CSS AQMDS code and how to construct such a code explicitly.

Outside the MDS framework, more work needs to be done in determining the exact

values of dx and dz and in establishing optimality.

We summarize the results of the paper in the following theorem.

Theorem 7. Let q be a prime power, n; k be positive integers and j be a nonnegative

integer. Assuming the validity of the MDS conjecture, there exists a pure CSS

M. F. Ezerman et al.
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AQMDS code with parameters ½½n; j; dz=dx��q, where fdz; dxg ¼ fn� k� jþ 1; kþ 1g
if and only if one of the following holds:

(1) [Proposition 2, Proposition 3] q is arbitrary, n � 2, k 2 f1;n� 1g and

j 2 f0;n� kg.
(2) [Corollary 2] q ¼ 2, n is even, k ¼ 1 and j ¼ n� 2.

(3) [Corollary 2] q � 3, n � 2, k ¼ 1 and j ¼ n� 2.

(4) [Proposition 2, Proposition 3, Theorem 3] q � 3, 2 � n � q, k � n� 1 and

0 � j � n� k.

(5) [Proposition 2, Proposition 3, Theorem 4] q � 3, n ¼ qþ 1, k � n� 1 and

j 2 f0; 2; . . . ;n� kg.
(6) [Corollary 1] q ¼ 2m, n ¼ qþ 1, j ¼ 1 and k 2 f2; 2m � 2g.
(7) [Proposition 2, Proposition 3, Theorem 5, Corollary 2] q ¼ 2m where m � 2,

n ¼ qþ 2,

k ¼ 1; and j 2 f2; 2m � 2g;
k ¼ 3; and j 2 f0; 2m � 4; 2m � 1g; or ;

k ¼ 2m � 1; and j 2 f0; 3g:

8><
>:

As a concluding remark, note that all AQMDS codes constructed here are pure

CSS codes. The existence of a degenerate CSS AQMDS code or an AQMDS code

derived from non-CSS method with parameters di®erent from those in Theorem 7

remains an open question.
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