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Abstract—Tandon et al. (2017) introduced a coding theoretic
framework to alleviate the problem of stragglers in distributed
learning. Following Tandon et al., many authors provided explicit
schemes that were able to compute a certain function using n−s
replies from n workers in the worst case.

In this work, we focus on reducing the expected delay. To
reduce the expected delay, we modify existing schemes so that
less than (n−s) replies are sufficient in most cases. In particular,
we provide a simple modification to existing optimal schemes
and demonstrate that with this modification, the expected delay
time converges to the fundamental delay. Additionally, for specific
parameters, we reduce the number of replies further so that the
expected delay time converges faster to the fundamental delay.

I. INTRODUCTION

In this information era, we are faced with an abundant
amount of data, and this huge amount of data results in a high
processing complexity. An example is the training phase of
machine learning, where we find a least-cost approximation
function for a large dataset. This can be accomplished via
gradient descent, which entails the iterative computations of
a gradient function for the large dataset. Unfortunately, it is
often not feasible for one worker, or workstation, to complete
the entire computation.

To overcome this issue, distributed computing is used. The
simplest way of distributing the workload is to divide the
larger dataset into smaller partitions and give one partition
to each worker. Each worker then performs the computation
on its smaller partition and sends the computation result back
to the taskmaster. The desired computation for the entire
dataset can then be recovered from all replies of the workers.
One of the main concerns in this scheme is the existence
of stragglers. Stragglers are workers that experience some
communication delay. Such delay can be caused by various
reasons such as unbalanced load and resource contention [1].
This communication delay can even been shown to last up
to five times of the typical behaviour [2]. The severity of
delay caused by stragglers becomes more pronounced when
the degree of parallelism increases [3].

To alleviate this problem of stragglers, Tandon et al. bor-
rowed ideas from erasure-coding and introduced the notion
of gradient codes [2]. The crucial idea is this: assign more
than one data partition to each worker! When the assignment
is judiciously chosen, the taskmaster is able to recover the
desired computation from some replies.

Optimal schemes in this framework have been provided
in recent works [2], [4], [5]. In these works, the authors
looked at the worst-case scenario and designed schemes that

enables taskmaster to perform its computation whenever it
receives a certain number of replies. Furthermore, Halbawi
et al. analysed the convergence of the expected delay time as
the number of workers grows [5]. Specifically, assuming that
a worker’s response time follows a Pareto distribution with
fundamental delay t0, Halbawi et al. showed that the expected
delay converges to κt0, where κ is a constant greater than one
and is dependent on the workload ratio (number of partitions
assigned to a worker).

In this work, we look at the average-case scenario where
the taskmaster is able to perform its computation using a
smaller set of replies most of the time. Specifically, we
provide a simple modification to existing optimal schemes and
demonstrate that with this modification, the expected delay
time converges to t0, independent of the workload ratio! In
other words, we not only alleviate, but also remove the effect
of stragglers. Additionally, for specific parameters, we also
look at improving the convergence rate so that the expected
delay time comes close to t0 with a smaller number of workers.

Before we state our results formally, we provide a short
overview of gradient coding.

II. OVERVIEW OF GRADIENT CODING

For completeness, we review the gradient coding framework
proposed by Tandon et al. [2]. Let D be a dataset that com-
prises d datapoints z1, · · · , zd. Consider an additive function
f . Then the required computation for the taskmaster is

f(D) ,
d∑
j=1

f(zj). (1)

In machine learning, suppose that we want to learn the
parameter β of a certain model and the cost function with
respect to the dataset D is given by C(β, D). To obtain the
parameter that minimises the cost, we set the additive function
f(D) to be ∇C(β, D).

Since computing f (D) is impractical, we partition D into
k parts, D1, · · · , Dk. If we set gj = f(Dj) ,

∑
z∈Dj f(z)

for i ∈ {1, . . . , k} and g = [g1, g2, · · · , gk]
T , then the desired

computation can be obtained via

f(D) = 1g,

where 1 is the all-ones row vector.
Now, given n workers W1, · · · ,Wn, we assign each worker

at most w data partitions. To mitigate the effect of s stragglers,
it is then necessary to assign the same data partition to more
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than one worker. Conversely, we look at when we are able to
compute f(D) given a set of n− s responses.

Suppose that the worker Wi is assigned to the data partitions
{Di1 , · · ·Diw}. This means that it is tasked to compute the
values gi1 , · · · ,giw . When it completes its computations,
it sends the linear combination Ri =

∑w
j=1 λjgij to the

taskmaster where λj’s are coefficients predetermined by the
taskmaster. We rewrite Ri =

∑k
j=1 λi,jgj where λi,j = λi`

if j ∈ {i1, · · · , iw} and it is 0 otherwise.
Since we want to recover f (D) = 1g, the required

computation can be retrieved from the replies Ri1 , · · · ,Riw
if and only if 1 belongs to the row space spanned by{

(λij ,1, · · ·λij ,k) : j ∈ {1, . . . , w}
}
. We use an n×k matrix E

to record the coefficients λi,j’s and summarise our discussion
with the following definition.

Definition 1 (Tandon et al. [2]). An (n, s+ 1, k, w)-gradient
coding matrix (GCM) E is an n × k complex-valued matrix
such that the support of any row of E has size at most w and
the all ones vector 1 belongs to the row space spanned by any
n− s rows of E.

Example 1. Let n = 6, s = 3, k = 3, w = 2, and consider

E =


−2ω6 + 1 2ω6 + 2 0
2ω6 + 2 0 −2ω6 + 1

0 −2ω6 + 1 2ω6 + 2
−2ω6 + 4 2ω6 − 1 0
2ω6 − 1 0 −2ω6 + 4

0 −2ω6 + 4 2ω6 − 1

 ,

where ω6 is a primitive sixth root of unity. To verify that E is
an (n, s+ 1, k, w)-GCM, we check that 1 is the span of any
three rows of E.

For example, we check that 1 = 1
3 (r1 + r2 + r3), where ri

is the ith row of E. In other words, if R1, R2, and R3 are the
responses provided by the first three workers, the taskmaster
than immediately obtain g by computing 1

3 (R1 +R2 +R3).
One can verify that this is true for all combinations of three
rows.

The following theorem provides a necessary condition for
the existence of an (n, s+ 1, k, w)-GCM.

Theorem 1 ([2]). Let n, s, k and w be positive integers. If
an (n, s + 1, k, w)-GCM exists, then n/(s+ 1) ≥ k/w. An
(n, s+1, k, w)-GCM is said to be optimal if n/(s+ 1) = k/w.

A. Previous Results

Tandon et al. [2] introduced the notion of gradient coding
and constructed optimal (n, s + 1, k, w)-GCMs when n = k.
When (s + 1) divides n, an explicit construction was given.
Otherwise, the authors provided a randomised construction.

This result was then improved by Raviv et al., who provided
explicit constructions using cyclic MDS codes for all s and
n, with k = n [4]. Halbawi et al. independently provided
explicit constructions of optimal GCMs [5]. Their scheme
makes use of row-balanced matrix as a mask and choosing
codewords from a suitable Reed-Solomon code for the rows

of the encoding matrix. The (6, 4, 3, 2)-GCM E in Example 1
is obtained via the construction of Halbawi et al.

Finally, using the GCMs from their construction, Halbawi et
al. also derived the expected delay, the time for the taskmaster
to receive sufficient responses. In the analysis, the processing
time of each worker is assumed to be independently and identi-
cally distributed under the Pareto distribution with parameters
t0 and ξ. We refer to the quantity t0 as the fundamental delay,
that is, the minimum time required for a worker to complete
its task.

Proposition 1 ([5]). Let Ti be the time for worker Wi to finish
its task. Suppose Ti ∼ Pareto(t0, ξ) for all i.

Fix the ratio k/w and set THdelay to be the time for
the taskmaster receive sufficient responses using the GCMs
constructed by Halbawi et al.. Then limn→∞ E[THdelay] =

t0(w/k)−1/ξ.

B. Our Contributions

In this work, we focus on reducing the expected delay,
assuming the same probability distribution. For fixed values
of w, k, n, we set s = bwn/kc − 1 and Theorem 1 states
that the number of replies required is at least (n − s) in the
worst case. To reduce the expected delay, we modify existing
schemes so that less than (n−s) replies are sufficient in most
cases.

Our contributions are as follow.
(I) Using a seed GCM in previous works [4], [5], we con-

struct explicit optimal GCMs. For this family of GCMs,
we then show that the expected delay approaches the
fundamental delay t0. Our results imply that given a
sufficient number of machines, it is possible to distribute
the computations such that the effect of stragglers be-
comes negligible.

(II) For odd n, we provide explicit constructions of
(n, 2, n, 2)-GCMs such that in most cases (n+ 1)/2
responses are sufficient to recover the gradient. Using
these GCMs as seed matrices in our scheme, we demon-
strate via simulations that the average delay converges
to the fundamental delay more quickly.

III. REPETITION SCHEME

In this section, we provide a simple construction of GCMs
that uses smaller GCMs as building blocks and show that the
expected delay is reduced using this construction. First, we
introduce the notion of decodable and minimal decodable sets.
Let E be an (n, s, k, w)-GCM. Then the family of decodable
sets is defined to be

S = {S ⊆ {1, 2, . . . , n} : 1 is in the
span of the rows of E corresponding to S}. (2)

Then the family of minimal decodable sets is given by D =
{S ∈ S : T 6∈ S for all proper subsets T of S} .

Example 2. Consider E given in Example 1. Then it can be
verified that D is given by all 3-subsets of {1, 2, . . . , 6}.
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Example 3. Let n = 6, s = 4, k = 3, w = 2 and consider

E′ =


−ω3 + 1 ω3 + 2 0
ω3 + 2 0 −ω3 + 1

0 −ω3 + 1 ω3 + 2
−ω3 + 1 ω3 + 2 0
ω3 + 2 0 −ω3 + 1

0 −ω3 + 1 ω3 + 2

 ,

where ω3 is a primitive third root of unity. Then it can be ver-
ified that D = {{1, 2}, {1, 3}, {2, 3}, {4, 5}, {4, 6}, {5, 6}}.
Since any 3-subset of {1, 2, . . . , n} necessarily contains a
decodable set in D, we verify that E′ is also an optimal
(6, 4, 3, 2)-GCM.

Next, notice that the decodable sets in D have size two while
the decodable sets in Example 2 have size three. Hence, it is
likely that the taskmaster is able to commence computation
earlier. We formalise this idea and provide a detailed analysis
in Section III-A.

Finally, observe that the first three rows form an optimal
(3, 2, 3, 2)-GCM and is in fact obtained from Halbawi et al.’s
construction. The next three rows are simply replicates of the
first three rows and this construction can be generalized easily.

Theorem 2 (Repetition Scheme). Let b < a be two positive
integers such that a and b are coprime and E ∈ Ca×a be
an optimal (a, b, a, b)-GCM. Choose integers n1, k1 and set
n = n1a, s+ 1 = n1b, k = k1a, and w = k1b.

Define the block matrix B ∈ Cn1a×k1a as follows:

B = n1




k1︷ ︸︸ ︷
E E · · · E
E E · · · E
...

...
. . .

...
E E · · · E

 (3)

Then B is an optimal (n, s+ 1, k, w)-GCM. Furthermore, the
minimal decodable sets have size at most (a− b+ 1).

Proof. First, consider the following block matrix:

Ek1 = (E E · · · E).

Since E is an optimal (a, b, a, b)-GCM, the span of any a−b+1
rows of E contains the all-ones vector. Since Ek1 is consists
of k1 replicates of the matrix E column-wise, then the span
of any a− b+ 1 rows of E′ also contains the all-ones vector.

To show that B is an (n, s + 1, k, w)-GCM, it suffices to
show that the span of any (n − s) rows of B contains 1.
Observe that B consists of n1 replicates of Ek1 row-wise. Since
n− s = n1(a− b) + 1, then by pigeonhole principle, any set
of (n − s) rows of B contains a set of (a − b + 1) rows of
Ek1 . Since 1 is in the span of these (a− b+1) rows, 1 is also
contained in the span of the (n− s) rows.

Suppose that an (n, s+1, k, w)-GCM B is constructed from
an (a, b, a, b)-GCM E using Theorem 2. We call E the seed
matrix of B. Observe that the size of minimal decodable sets
for B has the same size as the minimal decodable sets for the

smaller seed matrix E. In Section IV, we reduce the size of
the decodable sets further for the seed matrices.

In the next subsection, we analyse the expected delay for
the repetition scheme and demonstrate that this expected delay
converges to the fundamental delay.

A. Asymptotic Analysis of Expected Delay

This subsection is devoted to the analysis of the expected
waiting time for this scheme. As observed in practice [6], the
processing time for each workers is independently and iden-
tically distributed by the Pareto distribution with parameters
t0, ξ for some t0, ξ > 0. Formally, when the random variable
X ∼ Pareto(t0, ξ), the cumulative density function of X is
given by

FX(t) = 1−
(
t0
t

)ξ
, (4)

while the probability density function of X is given by

fX(t) = ξ
tξ0
tξ+1

. (5)

Here t0 represents the fundamental or minimum delay of
a worker and in practice, we have 1 ≤ ξ ≤ 2 [6]. The
following proposition provides the asymptotic approximation
of the expected delay resulting from the scheme in Theorem 2.

Proposition 2. Fix coprime integers a and b and let E be an
optimal (a, b, a, b)-GCM. For integer n1, set k1 = 1 and set B
to be the (n, s+ 1, k, w)-GCM constructed from Theorem 2.

Let TRdelay be the random variable measuring the delay or
the time taken by the taskmaster to obtain a decodable set.
Then, as n1 → ∞, the expected delay time converges to t0.
That is,

lim
n→∞

E(TRdelay) = t0.

Proof. We reindex the rows of B with (1, 1), (1, 2), . . . , (1, a),
(2, 1), (2, 2), . . . , (2, a), . . . , (n1, 1), (n1, 2), . . . , (n1, a). For
i ∈ {1, 2, . . . , n1} and j ∈ {1, 2, . . . , a}, we let T(i,j) denote
the random variable measuring the processing time of the
worker W(i,j). Then T(i,j) ∼ Pareto(t0, ξ) and we denote
the probability and cumulative density functions of the Pareto
distribution with fP (t) and FP (t), respectively.

Fix j ∈ {1, 2, . . . , a}. Observe that the rows indexed
by (1, j), (2, j), . . . , (n1, j) are identical. Hence, we are in-
terested in the time required to obtain the response from
one of these workers. Set Tj = min1≤i≤j T(i,j), or Tj
is the first order statistic of the set of random variables{
T(1,j), T(2,j), . . . , T(n1,j)

}
. Then the PDF of Tj can be com-

puted as

fTj (t) =
n1!

(1− 1)!(n1 − 1)!
fP (t)(1− FP (t))n1−1

= n1

(
ξ
tξ0
tξ+1

)(
1−

(
1−

(
t0
t

)ξ))n1−1

= n1

(
ξ
tξ0
tξ+1

)(
t0
t

)ξ(n1−1)

= (n1ξ)
tn1ξ
0

tn1ξ+1
.
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In other words, Tj ∼ Pareto(t0, n1ξ).
Now, in order to compute the gradient vector, we need at

least (a − b + 1) rows of E. In other words, Tdelay is the
(a − b + 1)-th order statistics of the set of random variables
{T1, T2, . . . , Ta}. The expected value for this distribution can
then be calculated using the formula in [7]. Specifically,

E(Tdelay) = t0
Γ
(
b− 1

n1ξ

)
Γ (a+ 1)

Γ(b)Γ
(
a+ 1− 1

n1ξ

) (6)

where Γ(x) =
∫∞
0
tx−1e−tdt.

Note that

lim
n1→∞

b− 1

n1ξ
= b and lim

n1→∞
a+ 1− 1

n1ξ
= a+ 1.

Therefore, by the continuity of Gamma function [8], we have

lim
ε→∞

t0
Γ
(
b− 1

n1ξ

)
Γ (a+ 1)

Γ(b)Γ
(
a+ 1− 1

n1ξ

) = t0
Γ(b)Γ(a+ 1)

Γ(b)Γ(a+ 1)
= t0.

Remark 1. Fix the ratio k/w. We consider the family of
optimal GCMs constructed by Halbawi et al. [5]. As in
Proposition 1, we consider the random variable THdelay and
following our derivation, we have

E(THdelay) = t0
Γ
(
s+ 1− 1

ξ

)
Γ(n+ 1)

Γ(s+ 1)Γ
(
n+ 1− 1

ξ

) . (7)

This value does not approach t0 as the difference between
the Gamma functions on the numerator and denominator does
not approach zero. Instead, Halbawi et al. demonstrated that
E(THdelay) converges to t0

(
w
k

)− 1
ξ .

Therefore, the repetition scheme reduces the expected delay
by a factor of

(
w
k

)− 1
ξ asymptotically.

B. Numerical Experiments

We perform numerical experiments to corroborate Propo-
sitions 1 and 2. Specifically, we set a = 3 and b = 2 and
model the processing time of each worker with the distribution
Pareto(0.001, 1.1) following [5].

For different numbers of workers, we conducted a sim-
ulation and obtained the average delay (over 1000 trials)
resulting from two different schemes. Specifically, for n1 ∈
{1, 2, . . . , 16},, we set n = k = 3n1 and s + 1 = w = 2n1.
The first scheme then uses (n, s + 1, k, w)-GCM constructed
by Halbawi et al., while the second scheme uses the (n, s +
1, k, w)-GCM constructed resulting from Theorem 2 with E′

in Example 3 as the seed matrix. We compare the average
delay in Figure 1.

Observe that as the number of workers increases, the
average delay of the first scheme converges to (3/2)−1/1.1t0 ≈
1.45t0, corroborating Proposition 1. In contrast, the average
delay converges to t0 verifying Propositon 2.

Fig. 1. Comparison of average delay using Halbawi et al.’s scheme and the
repetition scheme

IV. SEED MATRICES WITH SMALLER DECODABLE SETS

In the previous section, we used an (a, b, a, b)-GCM as a
seed matrix for the repetition scheme and showed that the
expected delay converges to the fundamental delay when the
number of workers is sufficiently large. In this section, we
further reduce the size of minimal decodable sets for the seed
matrix so that the expected delay converges as a faster rate.

Now, in previous constructions of optimal GCMs, the au-
thors focussed on ensuring that all minimal decoding sets have
size at most a− b+ 1. Often, these GCMs have the property
that all minimal decoding sets have size equal to a−b+1. For
example, when a = 5 and b = 2, the construction of Raviv et
al. [4] yields the following GCM

ER =


α 0 β 0 0
β 0 0 α 0
0 α 0 β 0
0 β 0 0 α
0 0 α 0 β

 ,

where α = ω4
5 − ω2

5 − 2ω5 + 2, β = −2ω4
5 − ω3

5 + ω5 + 2,
and ω5 is the primitive fifth root of unity. Then the family of
minimal decodable sets for ER is given by

{{2, 3, 4, 5}, {1, 3, 4, 5}, {1, 2, 4, 5}, {1, 2, 3, 5}, {1, 2, 3, 4}}.

On the other hand, consider the following matrix

E∗ =


2 0 1 0 0
1 0 0 1 0
0 1 0 1 0
0 1 0 0 −1
0 0 1 0 2

 ,

Then the family of minimal decoding sets is given by

D∗ = {{1, 3, 5}, {2, 4, 5}, {1, 2, 3, 4}}.

Observe that each 4-subset of {1, 2, 3, 4, 5} contains at least
one decodable set in D∗. Therefore, E∗ is also an optimal
(5, 2, 5, 2)-GCM.
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The above construction can be generalized to all odd a and
b = 2. Instead of having a minimum decodable sets of size
(a− 1), the next construction provides an optimal (a, b, a, b)-
GCM three minimum decodable sets, two of size (a + 1)/2
and one of size a− 1.

Theorem 3 (Seed Matrix with b = 2). Let a be an odd integer.
Consider the following set of indices

S = {(2j − 1, j), (2j, j) : 1 ≤ j ≤ a− 1} \ {(1, 1)},

where the arithmetic of indices is taken over modulo a.
Construct a matrix E ∈ Ra×a as follows

Ei,j =


1, if (i, j) ∈ S
2, if (i, j) ∈ {(1, 1), (a, a)}
−1, if (i, j) = (a− 1, a)
0, otherwise.

Then the minimum decodable sets are given by

{{1, 3, 5, . . . , a− 2, a}, {2, 4, 6, . . . , a− 1, a}, {1, 2, . . . , a− 1}}.

Proof. For each decodable set, we demonstrate that 1 is in the
span of the corresponding rows. Set ri to be the ith row of E.
Then

1 =
1

2
r1 + r3 + · · ·+ ra−2 +

1

2
ra

= r2 + r4 · · ·+ ra−1 + ra
= r1 − r2 + 2r3 − r4 · · ·+ 2ra−2 − ra−1.

To conclude this section, we perform numerical experiments
to examine the effect of reducing the size of the decodable
sets. Specifically, we set a = 5 and consider the seed matrices
ER and E∗ in this section. We then vary n1 ∈ {1, 2, . . . , 10}
with k1 = 1 and construct (n, s + 1, k, w)-GCMs using
Theorem 2 with the two different seed matrices. As before, we
model the processing time of each worker with the distribution
Pareto(0.001, 1.1) and compute the average delay from 1000
trials. We then repeated the numerical experiment with a = 21.
Figure 2 compares the average delays amongst the different
schemes.

As observed in Figure 2, even though the schemes have the
same asymptotic average delay, the average delay converges
to the fundamental delay at a faster rate.

V. CONCLUSION

In this work, we looked at the problem of stragglers in the
distributed computation of the gradient function in machine
learning. By modifying existing schemes, we are able to
compute the gradient with significantly less replies in most
cases and hence, reduce the expected delay.

Of significance, we used seed GCMs in previous works [4],
[5] to construct explicit optimal GCMs. For this family of
GCMs, we then showed that the expected delay approaches
the fundamental delay t0 (see Theorem 2 and Proposition 2).
Our results therefore imply that given a sufficient number of
machines, it is possible to distribute the computations such
that the effect of stragglers becomes negligible.

Fig. 2. Comparison of average delay using various seed matrices

In Section IV, we then provided an explicit construction of
(n, 2, n, 2)-GCMs such that in most cases (n+ 1)/2 responses
are sufficient to recover the gradient. As illustrated by Fig-
ure 2, suitable modifications of the seed matrices result in a
significant improvement in delay. Therefore, it is of practical
interest to design seed matrices with smaller decodable sets
for b > 2.

REFERENCES

[1] A. Harlap, H. Cui, W. Dai, J. Wei, G. R. Ganger, P. B. Gibbons,
G. A. Gibson, and E. P. Xing, “Addressing the straggler problem
for iterative convergent parallel ml,” in Proceedings of the Seventh
ACM Symposium on Cloud Computing, ser. SoCC ’16. New
York, NY, USA: ACM, 2016, pp. 98–111. [Online]. Available:
http://doi.acm.org/10.1145/2987550.2987554

[2] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Proceedings
of the 34th International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, D. Precup and Y. W.
Teh, Eds., vol. 70. International Convention Centre, Sydney, Australia:
PMLR, 06–11 Aug 2017, pp. 3368–3376. [Online]. Available:
http://proceedings.mlr.press/v70/tandon17a.html

[3] J. Cipar, Q. Ho, J. K. Kim, S. Lee, G. R. Ganger, G. Gibson,
K. Keeton, and E. Xing, “Solving the straggler problem with
bounded staleness,” in Proceedings of the 14th USENIX Conference
on Hot Topics in Operating Systems, ser. HotOS’13. Berkeley, CA,
USA: USENIX Association, 2013, pp. 22–22. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2490483.2490505

[4] N. Raviv, I. Tamo, R. Tandon, and A. G. Dimakis, “Gradient coding
from cyclic MDS codes and expander graphs,” 2017. [Online]. Available:
arXiv:abs/1707.03858

[5] W. Halbawi, N. A. Ruhi, F. Salehi, and B. Hassibi, “Improving
distributed gradient descent using reed-solomon codes,” 2017. [Online].
Available: arXiv:abs/1706.05436

[6] M. Harchol-Balter, “The effect of heavy-tailed job size distributions on
computer system design.” in Proc. of ASA-IMS Conf. on Applications
of Heavy Tailed Distributions in Economics, Engineering and Statistics,
1999.

[7] K. Vännman, “Estimators based on order statistics from a pareto
distribution,” Journal of the American Statistical Association,
vol. 71, no. 355, pp. 704–708, 1976. [Online]. Available:
https://doi.org/10.1080/01621459.1976.10481551

[8] L. M. Hall, “Special function,” 1995. [Online]. Available:
http://web.mst.edu/ lmhall/SPFNS/sfch2.pdf

ISITA2018, Singapore, October 28-31, 2018

Copyright (C) 2018 by IEICE 527


