
Cooling Codes: Thermal-Management Coding
for High-Performance Interconnects

Yeow Meng Cheex, Tuvi Etzion∗, Han Mao Kiahx, Alexander Vardy+
xSchool of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
∗Computer Science Department, Technion, Israel Institute of Technology, Haifa 32000, Israel

+Department of Electrical and Computer Engineering, University of California, San Diego, CA 92093, USA
ymchee@ntu.edu.sg, etzion@cs.technion.ac.il, hmkiah@ntu.edu.sg, avardy@ucsd.edu

Abstract— High temperatures have dramatic negative effects on
interconnect performance. Numerous techniques have been pro-
posed to reduce the power dissipation of on-chip buses but they
fall short of fully addressing the thermal challenges posed by
high-performance interconnects. We introduce new efficient cod-
ing schemes that directly control the peak temperature of a bus
by effectively cooling its hottest wires. This is achieved by avoid-
ing state transitions on the hottest wires for as long as necessary
until their temperature drops off. At the same time, we reduce
the average power consumption by ensuring that the total number
of state transitions on all the wires is bounded.

Our solutions call for redundancy: we use n > k wires to en-
code a given k-bit bus. Therefore, it is important to determine
the minimum possible number of wires n needed to encode k
bits while satisfying the desired properties. We provide full anal-
ysis in each case, and show that the number of additional wires
required to cool the t hottest wires is negligible when k is large.
Moreover, the resulting encoders and decoders are fully practi-
cal. They do not require significant computational overhead and
can be implemented without sacrificing a large circuit area.

I. INTRODUCTION
Power and heat dissipation have emerged as first-order de-

sign constraints for chips, whether targeted for battery-powered
devices or for high-end systems. With the migration to pro-
cess geometries of 65 nm and below, power dissipation has
become as important an issue as timing and signal integrity.
Aggressive technology scaling results in smaller feature size,
greater packing density, increasing microarchitectural com-
plexity, and higher clock frequencies. This is pushing chip
level power consumption to the edge. It is not uncommon
for on-chip hot spots to have temperatures exceeding 100°C,
while inter-chip temperature differentials often exceed 20°C.

Power-aware design alone is insufficient to address this ther-
mal challenge, since it does not directly target the spatial and
temporal behavior of the operating environment. For this rea-
son, thermally-aware approaches have emerged as one of the
most important domains of research in chip design today.

High temperatures have dramatic negative effects on circuit
behavior, with interconnects being among the most impacted
circuit components. This is due, in part, to the ever decreas-
ing interconnect pitch and the introduction of low-κ dielectric
insulation which has low thermal conductivity. For example,
the Elmore delay [7] of an interconnect increases 5% to 6%
for every 10°C increase in temperature, whereas the leakage
current grows exponentially with temperature [1]. Therefore,
minimizing the temperature of interconnects is of paramount
importance for thermally-aware design.
A. Related Work
Numerous encoding techniques have been proposed in the
literature to reduce the overall power consumption of both

on-chip and off-chip buses [2,12,13,15,16,20]. It is well es-
tablished [4,11,14,20] that bus power is directly proportional
to the product of line capacitance and the average number of
state transitions on the bus wires. Thus the general idea is to
encode the data transmitted over the bus so as to reduce the
average number of transitions. For example, the “bus-invert”
code [16] potentially complements the data on all the wires,
according to the Hamming distance between consecutive trans-
missions, to ensure that the total number of state transitions
on n bus wires never exceeds n/2. Unfortunately, encoding
techniques designed to minimize power consumption, do not
directly address peak temperature minimization. To reduce the
temperature of a wire, it is not sufficient to minimize its av-
erage switching activity. Rather, it is necessary to control the
temporal distribution of the state transitions on the wire. To re-
duce the peak temperature of an interconnect, it is necessary
to exercise such control for all of its constituent wires.

Wang et al. [20] proposed an efficient thermal spreading
encoding scheme that evenly spreads the switching activity
among all the wires, using a simple architecture consisting of
a shift-register and a crossbar logic.

B. Our Contributions

In this paper, we introduce new efficient coding schemes that
simultaneously control both the peak temperature and the av-
erage power consumption of interconnects. The proposed cod-
ing schemes are distinguished from existing state-of-the-art by
having some or all of the following features:

A. We directly control the peak temperature of a bus by ef-
fectively cooling its hottest wires. This is achieved by
avoiding state transitions on the hottest wires for as
long as necessary until their temperature decreases.

B. We reduce the overall power dissipation by guarantee-
ing that the total number of transitions on the bus wires
is below a specified threshold in every transmission.

C. We combine properties A and/or B with coding for im-
proved reliability (e.g., for low-swing signaling), using
existing error-correcting codes.

To achieve these features, we propose to insert at the in-
terface of the bus specialized circuits implementing encod-
ing/decoding functions. The resulting encoders/decoders are
efficient: they do not require significant computational and area
overhead. The encoder requires knowledge of the hottest wires
at every transmission. This can be obtained by using an ana-
lytical model to estimate current temperatures of wires [17],
or to have actual temperature sensors for each wire [5].
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We consider both adaptive and nonadaptive (memoryless)
coding schemes. The advantage of nonadaptive schemes is
that they are easier to implement and do not require memory.
The disadvantage is that it is not possible to implement Prop-
erty A with nonadaptive encoding. For this reason, most of the
coding schemes developed in this paper are adaptive, based
on the idea of differential encoding. Notably, however, all of
our schemes require the encoder and decoder circuits to keep
track of only one previous (the most recent) transmission.

Unlike the thermal spreading methods of [20], the solu-
tions we propose introduce redundancy: we require n > k
wires to encode a given k-bit bus. A key consideration is the
area overhead due to the additional n− k wires. Therefore, it
is important to determine the theoretically minimum possible
number of wires n needed to encode k bits while satisfying
the desired properties. We show that the number of additional
wires required to satisfy Property A becomes negligible when
k is large.

C. Organization

The rest of this paper is organized as follows. The next sec-
tion gives formulations of the coding problems that result from
the thermal-management features we propose to implement.
In Section III, we present a nonadaptive coding scheme that
combines Property B with the thermal spreading approach of
[20]. Our constructions in Section III are based on the notions
of anticodes and quorum systems, and use key results from
the theory of combinatorial designs. Section IV is devoted to
Property A: we show how state transitions on the t hottest
wires can be avoided by using only t + 1 additional bus lines.
This optimal construction is based on combining differential
coding with the notion of spreads in projective geometry. In
Section V, we show how Properties A, B, and C can all be
achieved at the same time. We design coding schemes that
simultaneously control peak temperature and average power
consumption in every transmission, while also correcting trans-
mission errors on the bus wires. Owing to lack of space, we
omit most of the proofs, the analysis, examples, as well as
some more constructions and the asymptotic behaviour of our
codes. They appear in an arxiv version [3].

II. PROBLEM FORMULATION AND PRELIMINARIES

We elaborate upon Properties A, B, C introduced in the previ-
ous section. For each of these properties, we characterize the
performance of the corresponding coding scheme by a sin-
gle integer parameter. All of our coding schemes use n > k
wires to encode a k-bit bus. We assume that communication
across the bus is synchronous, occurring in clocked cycles
called transmissions. This leads to the following definition.

Definition 1. Consider a coding scheme for a bus of n wires.
Let t, w, e be positive integers less than n. We say that the cod-
ing scheme has

Property A(t): if every transmission does not cause state tran-
sitions on the t hottest wires;

Property B(w): if the total number of state transitions on all
the wires is at most w, in every transmission;

Property C(e): if up to e transmission errors on the n wires
can be corrected.

We presume that, at the time of transmission, it is known which t
wires are the hottest; Property A(t) is required to hold assum-
ing that any t wires can be designated as the hottest.

The values of t, w, e are design parameters, to be determin-
ed by the specific thermal requirements of specific intercon-
nects. The proposed coding schemes work for any t, w, e.

We view the collective state of the n wires during each trans-
mission as a binary vector x = (x1, x2, . . . , xn). The set of
all such binary vectors is Fn

2 and also the Hamming n-space
H(n) = {0, 1}n. Given any x, y∈H(n), the Hamming dis-
tance d(x, y) is the number of positions where x and y differ.
The Hamming weight of a vector x∈H(n), denoted wt(x), is
the number of nonzero positions in x. Thus wt(x) = d(x, 0).

Conventionally, a binary code C of length n is simply a sub-
set of H(n). Given a code C, its minimum distance d(C) and
diameter diam(C) are defined as follows:

d(C) = min
x,y∈C

d(x, y) and diam(C) = max
x,y∈C

d(x, y)

III. NONADAPTIVE LOW-POWER CODES

The encoding schemes considered in this section belong to the
nonadaptive kind, in that the choice which codeword to trans-
mit across the bus in the current transmission does not depend
on codewords that have been transmitted earlier. Such coding
schemes are also known as memoryless. The advantage of non-
adaptive schemes is that they are simpler to implement: they do
not need a continuously changing data model, and they do not
require memory to track the history of previous transmissions.

In the nonadaptive case, an n-bit coding scheme for a source
S ⊆ H(k) is a triple E = 〈C, E ,D〉, where

1) C is a binary code of length n,
2) E : S→ C is a bijective map called an encoding function,
3) D: C→ S is a bijective map called a decoding function,

such that D
(
E(u)

)
= u for all u ∈ S.

Suppose u, v∈ S are two words that are to be communi-
cated across an n-bit bus during consecutive transmissions.
Then the total switching activity of the bus is d(E(u), E(v)) 6
diam(C). It follows that the coding scheme satisfies Prop-
erty B(w) if and only if diam(C)6w. We call such a code
C an (n, w)-low-power code.

In this section, we are interested in (n, w)-low-power codes
that also achieve low peak temperatures by spreading the switch-
ing activities among the wires as uniformly as possible. In
doing so, we follow the analysis and the resulting thermal
spreading approach of [20]. To quantify the thermal spread-
ing achieved by a given coding scheme E = 〈C, E ,D〉, we
treat the source S as a random variable taking on values in
H(k), and assume that S is uniformly distributed. This is
a common assumption in bus analysis [14]. If the expected
switching activity of the bus wires is uniformly distributed
then we say that the code C is thermal-optimal. This leads to
the following problem:

Given n and w, determine the maximum size of
a thermal-optimal (n, w)-low-power code. (1)

The size of C is important because we wish to minimize the
area overhead introduced by our coding scheme, This over-
head is largely determined by the number n− k of additional
wires that we need to encode.
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In a thermal-optimal code C, the number of codewords
(x1, x2, . . . , xn)∈C having xi = 1 is the same for all i. Such
codes are said to be equireplicate in the combinatorics litera-
ture. To construct such codes, we need tools from the theory
of set systems.

A. Set Systems
Given a positive integer n, the set {1, 2, . . . , n} is abbreviated
as [n]. For a finite set X and k 6 |X|, we let

2X =
{

A : A ⊆ X
}

and
(

X
k

)
=

{
A ∈ 2X : |A| = k

}
.

A set system of order n is a pair (X,A), where X is a finite set
of n points and A ⊆ 2X . The elements of A are called blocks.
The replication number of x∈X is the number of blocks con-
taining x. A set system is equireplicate if its replication num-
bers are all equal.

There is a natural one-to-one correspondence between the
Hamming n-space H(n) and the set system ([n], 2[n]) of or-
der n. For a vector x = (x1, x2, . . . , xn)∈H(n), the support
of x is defined as supp(x) = {i ∈ [n] : xi 6= 0}. With
this, the positions of vectors in H(n) correspond to points
in [n], each vector x∈H(n) corresponds to the block supp(x),
and d(x, y) = | supp(x)4 supp(y)|, where4 stands for the
symmetric difference. Thus, we may speak of the set system
of a code or the code of a set system.

B. Thermal-Optimal Low-Power Codes
The set system ([n],A) of a thermal-optimal (n, w)-low-power
code is defined by the following properties:

1) |A14 A2| 6 w for all A1, A2 ∈ A, and
2) ([n],A) is equireplicate.

It follows that our problem in (1) can be recast as an equiva-
lent problem in extremal set systems, as follows:

Given n and w, determine T(n, w), the maximum size
of an equireplicate set system (X,A) of order n

such that |A14 A2| 6 w for all A1, A2 ∈A.
(2)

If the equireplication condition is removed, the set system is
known as an anticode of length n and diameter w. Hence,
thermal-optimal low-power codes are equireplicate anticodes.

The maximum size of an anticode (not necessarily equirepli-
cate) has been completely determined by Kleitman [9] and
Katona [10]. When w is even, the extremal set system is
equireplicate, which implies a solution for (1) and (2).

Corollary 1.

T(n, w) =
w/2

∑
i=0

(
n
i

)
when w ≡ 0 (mod 2).

The situation when w is odd is much more difficult, but we
can derive that for all odd w, we have:

w−1
2

∑
i=0

(
n
i

)
6 T(n, w) 6

(
n−1
w−1

2

)
+

w−1
2

∑
i=0

(
n
i

)
.

Next, some exact values of T(n, w) for odd w are established.

Proposition 2.
T(n, 1) = 1 for n > 2,
T(n, 3) = n + 1 for n > 5,

T(n, n−1) = 2n−1 for n > 3.

For other odd values of w, we start with the extremal anti-
code A of diameter w− 1 and add blocks to A while main-
taining the equireplication requirement. All such blocks must
contain exactly (w+1)/2 points and any two of them must
intersect in at least one point. Interestingly, these properties
precisely define a regular uniform quorum system of rank
(w+1)/2. Quorum systems have been studied extensively in
the literature — see [19] for a recent survey.

IV. COOLING CODES

Unfortunately, it is not possible to satisfy Property A(t) with
nonadaptive coding schemes, even for t = 1. In this section,
we shall see that if the encoder and decoder keep track of just
one previous transmission then Property A(t) can be satisfied
for any t with only t + 1 additional wires if 2(t + 1) 6 n, by
using spreads, a notion from projective geometry. If t + 1 >
n/2 we propose a construction which generalizes the one with
spreads. We also consider error-correction in our schemes.

A. Differential Encoding and Decoding
The main idea of our differential encoding method is to encode
the data to be communicated across the bus in the difference be-
tween the current transmission and the previous one.

To explain differential encoding in more detail, let us first
consider a nonadaptive coding scheme E = 〈C, E ,D〉 such
as the one described in the previous section. Suppose the en-
coder E puts out a sequence of codewords x1, x2, . . . in suc-
cessive transmissions. We propose to pipe the output of E
into a differential encoder E∆ that, in response, puts out the
sequence of codewords 0, y1, y2, . . . defined as follows:

yi = yi−1 + xi for i = 1, 2, . . .

where the addition is in Fn
2 . At the receiving end, we prepend

the decoder D with the differential decoder D∆ which re-
constructs the original codeword sequence x1, x2, . . . from the
sequence y1, y2, . . . as follows:

xi = yi + yi−1 for i = 1, 2, . . .

Henceforth, we always assume that a coding scheme 〈C, E ,D〉
is augmented with the differential encoder E∆ and decoder D∆.

Differential coding is useful in our context, since in trans-
mitting a codeword x = (x1, x2, . . . , xn), there is a state tran-
sition on wire i if and only if xi = 1, and the total number
of transitions is precisely wt(x). This makes it possible to re-
duce the area overhead significantly beyond the best overhead
achievable with nonadaptive schemes. For example, under dif-
ferential encoding, a code C satisfies Property B(w) — and
so is an (n, w)-low-power code — if and only if wt(x) 6 w
for all x∈C. It follows that the thermal-optimal (n, w)-low-
power code of maximum size is given by

J+(n, w)
def
=

{
x ∈ {0, 1}n : wt(x) 6 w

}
.

This set, is clearly equireplicate and its size is much larger
than the size of the largest anticode of diameter w.

B. Definition of Cooling Codes
Even under differential encoding, it is still not possible to
satisfy Property A(t) with conventional binary codes. Conse-
quently, we henceforth modify our notion of a code C as fol-
lows. The elements of C are sets of binary vectors of length n,
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say C1, C2, . . . , CM. We refer to C1, C2, . . . , CM as codesets.
We do not require these codesets to be of the same size, but
we do require them to be disjoint: Ci ∩ Cj = ∅ for all i 6= j.
The elements of each codeset Ci are called codewords. The
goal is to guarantee that no matter which codeset Ci is chosen,
for each possible designation of t wires as the hottest, there is
at least one codeword in Ci with zeroes on the corresponding t
positions. This leads to the following definition.

Definition 2. For positive integers n and t < n, an (n,t)-cooling
code C of size M is defined as a set {C1, C2, . . . , CM}, where
C1, C2, . . . , CM are disjoint subsets of H(n) satisfying the fol-
lowing property: for any set S ⊂ [n] of size |S| = t and for all
i∈ [M], there exists a codeword x∈Ci with supp(x)∩S = ∅.

Given the foregoing definition of cooling codes, we also need
to modify our notions of an encoding function and a decod-
ing function, introduced in Section III. As before, we assume
that the data to be communicated across the bus is represented
by a source S taking on some M 6 2k values in H(k). The
input to the encoding function E now comprises, in addition
to a word u∈ S, also a set S ⊂ [n] of size t representing the
positions of the t hottest wires. We let

C = C1 ∪ C2 ∪ · · · ∪ CM.

Then the output of the encoding function E is a vector x∈C
such that supp(x) ∩ S = ∅. For every possible S , the func-
tion E(·,S) is a bijective map from S to C. Since the codesets
C1, C2, . . . , CM are disjoint, this allows the decoding function
D to recover u ∈ S from the encoder output x ∈ C. We sum-
marize the foregoing discussion in the next definition.

Definition 3. For integers n and t < n, an (n,t)-cooling coding
scheme for a source S ⊆ H(k) is a triple E = 〈C, E ,D〉, where

1) The code C is an (n, t)-cooling code;

2) The encoding function E : S×
([n]

t
)
→ C is such that for all

S ⊂ [n] of size t and all u∈ S, we have

supp
(
E(u,S)

)
∩ S = ∅ ;

3) The decoding function D: C→ S is such that for all u∈ S,
we have D

(
E(u,S)

)
= u regardless of the value of S .

C. Bounds on the Size of Cooling Codes
In this subsection, we show that realizing an (n, t)-cooling cod-
ing scheme requires at least t + 1 additional wires. In the next
subsection, we present a construction that achieves this bound.
Herein, let us begin with the following lemma.

Lemma 3. Let C be an (n, t)-cooling code of size |C| = M.
Then

M 6
t!(n−t)!

n!

n−t

∑
w=0

(
n
w

)(
n−w

t

)
= 2n−t.

An (n, t)-cooling code C of size |C| = 2n−t would be
perfect. But, it can be proved that such cooling codes do not
exist, unless t = 1 or t = n− 1 Therefore,

Theorem 4. If 1 < t < n − 1, then the size of any (n, t)-
cooling code C is bounded by |C| 6 2n−t− 1. Consequently,
such a code cannot support the transmission of n− t or more
bits over an n-wire bus.

D. Construction of Optimal Cooling Codes
In this subsection, we construct optimal (n, t)-cooling codes
that support the transmission of up to n− t− 1 bits, where
2(t + 1) 6 n, over an n-wire bus. Our construction is based
on the notion of spreads in projective geometry.

Loosely speaking, a τ-spread of the vector space Fn
2 is a

partition of Fn
2 into disjoint subspaces of dimension τ. For-

mally, a collection V1, V2, . . . , VM of τ-dimensional subspaces
of Fn

2 is said to be a τ-spread of Fn
2 if

Vi ∩Vj = {0} for all i 6= j, and (3)

Fn
2 = V1 ∪V2 ∪ · · · ∪VM.

It is well known that such τ-spreads exist if and only if τ
divides n, in which case M = (2n−1)/(2τ−1) > 2n−τ .
For the case where τ does not divide n, partial spreads with
M > 2n−τ have been constructed in [8, Theorem 11]. In what
follows, we take τ = t + 1. To simplify the terminology, we
assume w.l.o.g. that t+ 1 divides n (which is justified by [8]).

Theorem 5. Let V1,V2, . . . , VM be a (t+1)-spread of Fn
2 , and

define the code C = {V∗1 , V∗2 , . . . , V∗M}, where V∗i = Vi \{0}
for all i. Then C is an (n, t)-cooling code of size M > 2n−t−1.

Proof. It is obvious from (3) that the M codesets of C are
disjoint subsets of H(n). It remains to verify that for any set
S ⊂ [n] of size t, each of V∗1 ,V∗2 , . . . , V∗M contains at least one
vector whose support is disjoint from S . To this end, consider
an arbitrary (t+1)-dimensional subspace V of Fn

2 , and suppose
{v1, v2, . . . , vt+1} is a basis for V. Let v′1, v′2, . . . , v′t+1 de-
note the projections of the basis vectors on the t positions in S .
These t + 1 vectors lie in a t-dimensional vector space — the
projection of Fn

2 on S . Hence, these vectors must be linearly
dependent, and there exist binary coefficients a1, a2, . . . , at+1,
not all zero, with a1v′1 + a2v′2 + · · ·+ at+1v′t+1 = 0. But then
x = a1v1 + a2v2 + · · ·+ at+1vt+1 is a nonzero vector in V
whose support does not include any of the positions in S . As
this holds for an arbitrary (t+1)-dimensional subspace, it must
hold for each of the subspaces V1,V2, . . . , VM in the spread.

Whether we start with a spread or a partial spread, the size
of our code C is usually strictly larger than 2n−t−1. In order
to use such a code to communicate k = n− t− 1 bits, one can
choose a subset of C arbitrarily. Finally, we note that there are
several efficient algorithms for coding into spreads are known.
In particular a simple and powerful method was developed by
Dumer [6] in the context of coding for memories with defects,
and can be used for our codes too.

E. Cooling Codes for Large t
The cooling codes constructed based on spreads or partial

spreads imply that t + 1 6 n/2. When t + 1 > n/2 we can
use another construction which generates codes of large size.
The construction is based on a sunflower whose heart of seeds
is a linear code C and his flowers are codes obtain by the sum
of C and elements of a spread.

Theorem 6. If n, t, `, r, d are integers, such that r + t 6 (n +
`)/2, and the following two requirements are satisfied:
• there exists an [n, `, d] code (a linear code of length n, di-

mension `, and minimum Hamming distance d);
• an [n− t, r, d] linear code does not exist,

then there exists an (n, t)-cooling code of size M > 2n−t−r.
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Theorem 6 can be applied in various ways. For example,
we can derive the following result.

Corollary 7. If n = 2m, m > 1, and t = (n + m− 1)/2, then
there exists an (n, t)-cooling code of size M > 2n−t−2.

Finally, Theorem 6 is generalized with weaker conditions [3].

F. Error-Correcting Cooling Codes
In this subsection, we construct (n, t)-cooling codes that

satisfy simultaneously Properties A(t) and C(e). The idea is to
take your favourite linear error-correcting code C, of length n
and dimension κ > 2(t + 1), which corrects e errors. In addi-
tion we take a (t + 1)-spread (or partial spread) of Fκ

2 . Since
C has dimension κ, there exists at least one set of κ coordi-
nates whose projection spans Fκ

2 . We form the (t + 1)-spread
on these coordinates, and partition the codewords of C into
codesets related to the spread. Given any t coordinates, each
codeset has at least one codeword with zeroes in these t coor-
dinates since the spread has dimension t + 1. Moreover, each
codeset can correct at least e errors as the code C. Thus, we
have an (n, t)-cooling code which can correct at least e errors.

Theorem 8. If there exists a binary [n, κ, 2e + 1] code and κ >
2(t + 1), then there exists an (n, t)-cooling code which correct
at least e errors, whose size M is greater than 2κ−t−1.

V. LOW-POWER COOLING CODES

In this section, we present coding schemes that satisfy Proper-
ties A(t),B(w) (with or without C(e)) simultaneously in every
transmission. We call the corresponding codes (n, t, w)-low-
power cooling codes (or (n, t, w)-LPC codes for short). We
suggest two types of constructions. The first is based on reso-
lutions in block designs. The second, which will be presented
in the full paper, is based on cooling codes over Fq, dual codes
of [n, κ, t + 1] codes, MDS codes, spreads, and concatenation
codes. The results of this construction are summarized in the
following two theorems.

Theorem 9. If q 6 ∑w′
i=0 (

s
i) and t + 1 6 m/2, then there ex-

ists an (ms, t, mw′)-LPC code of size M > qm−t−1.

Theorem 10. If q 6 ∑w′
i=0 (

s
i) and m 6 q + 1, then there exists

an (ms, t, mw′)-LPC code of size qm−t.

As before, we assume that the coding schemes constructed
in what follows are augmented by differential encoding. Since
the codes are also (n,t)-cooling codes, they conform to Defini-
tion 2. Thus a code C is a collection of codesets C1, C2, . . . , CM,
which are disjoint subsets of H(n). In order to satisfy Prop-
erty B(w), we now make sure that

C1, C2, . . . , CM ⊂ J+(n, w) .

As shown in Section IV-A, this guarantees that the total num-
ber of state transitions on the n bus wires is at most w.

The first construction applies the well known Baranyai’s
theorem [18, p. 536]. The theorem known in the context of
resolutions in block design or the decomposition of complete
hypergraphs asserts that the set of (w(t+1)

w ) binary words of
length w(t + 1) and weight w can be partitioned into pair-
wise disjoint sets of size t + 1, where two words in the same
set do not intersect. It is easy to verify that these sets can be
taken as the codesets of a (w(t + 1), t, w)-LPC code.

To correct e errors and detect e + 1 errors, in this construc-
tion, we should use a constant weight code of length w(t+ 1),

weight w, and minimum Hamming distance 2e+ 2 (instead of
all the (w(t+1)

w )) words of length w(t + 1)). Related partitions
are well known for e = 1 and w = 3, 4, in the context of
resolvable Steiner systems [18, p. 353].
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