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Abstract—A class of low-power cooling (LPC) codes, to con-
trol simultaneously both the peak temperature and the average
power consumption of interconnects, were introduced recently.
An (n, t, w)-LPC code is a coding scheme over n wires that
(A) avoids state transitions on the t hottest wires (cooling), and
(B) limit the number of transitions to w in each transmission
(low-power).

A few constructions for large LPC codes that have efficient
encoding and decoding schemes, are given. In particular, when
w is fixed, we construct LPC codes of size (n/w)w−1 and
show that these LPC codes can be modified to correct errors
efficiently. We further present a construction for large LPC
codes based on a mapping from cooling codes to LPC codes.

.

I. INTRODUCTION

Power and heat dissipation have emerged as first-order
design constraints for chips, whether targeted for battery-
powered devices or for high-end systems. High tem-
peratures have dramatic negative effects on interconnect
performance. Power-aware design alone is insufficient to
address the thermal challenges, since it does not directly
target the spatial and temporal behavior of the operating
environment. For this reason, thermally-aware approaches
have emerged as one of the most important domains of
research in chip design today. Numerous techniques have
been proposed to reduce the overall power consumption
of on-chip buses (see [1] and the references therein).
However, these techniques do not directly address peak
temperature minimization.

Recently, Chee et al. [1] introduced several efficient
coding schemes to directly control the peak temperature
and the average power consumption. Among others, low-
power cooling (LPC) codes are of particular interest as they
control both the peak temperature and the average power
consumption simultaneously. Specifically, an (n, t, w)-LPC
code is a coding scheme for communication over a bus
consisting of n wires, if the scheme has the features:
(A) every transmission does not cause state transitions on

the t hottest wires;
(B) the number of state transitions on all the wires is at

most w in every transmission.
Using partial spreads, Chee et al. [1] constructed LPC

codes with efficient encoding and decoding schemes.
When t ≤ 0.687n and w ≥ (n− t)/2, these codes achieve
optimal asymptotic rates. However, when w is small, the
code rates are small and Chee et al. proposed another con-
struction based on decomposition of the complete hypergraph
into perfect matchings. While the construction results in
LPC codes of large size, efficient encoding and decoding
algorithms are not known.

In this work, we focus on this regime (w small) and
construct LPC codes with efficient encoding and decoding
schemes. Specifically, our contributions are as follows.

(I) We propose a method that takes a linear erasure
code as input and constructs an LPC code. Using
this method, we then construct a family of LPC
codes of size (n/w)w−1 that attains the asymptotic
upper bound O(nw−1) when w is fixed. We also use
this method to construct a class of LPC codes of
size (n/w)w−e−1 that is able to correct e substitution
errors.

(II) We propose efficient encoding / decoding schemes
for the output LPC code. In particular, for the above
family of LPC codes, we demonstrate encoding with
O(n) multiplications over Fq and decoding with
O(w3) multiplications over Fq, where q = n/w.
Furthermore, the related class of LPC codes is able
to correct e errors with complexity O(n3).

(III) A recursive construction for a class of (n, t, w)-LPC
codes where t ≥ n/w.

(IV) A construction for a class of (n, t, w)-LPC codes
based on a mapping from (m, t)-cooling codes.

For lack of space, all the proofs of the results will be
given in the full version of this paper.

II. PRELIMINARY

Given a positive integer n, the set {1, 2, . . . , n} is abbrevi-
ated as [n]. The Hamming weight of a vector x ∈ Fn

q , denoted
wt(x), is the number of nonzero positions in x, while the
support of x is defined as supp(x) , {i ∈ [n] : xi 6= 0}.

A q-ary code C of length n is a subset of Fn
q . If C is a

subspace of Fn
q , it is called linear code. An [n, k, d]q-code is

a linear code with dimension k and minimum distance d.

Definition 1. For n and t, an (n, t)-cooling code C of
size M is defined as a collection {C1,C2, . . . ,CM}, where
C1,C2, . . . ,CM are disjoint subsets of {0, 1}n satisfying the
following property: for any set S ⊆ [n] of size |S| = t
and for i ∈ [M], there exists a vector u ∈ Ci with
supp(u)∩ S = ∅. We refer to C1,C2, . . . ,CM as codesets and
the vectors in them as codewords.

Definition 2. For n, t and w with t + w ≤ n, an (n, t, w)-
low-power cooling (LPC) code C of size M is defined as a col-
lection of codesets {C1,C2, . . . ,CM}, where C1,C2, . . . ,CM
are disjoint subsets of {u ∈ {0, 1}n : wt(u) ≤ w} satisfying
the following property: for any set S ⊆ [n] of size |S| = t
and for i ∈ [M], there exists a vector u ∈ Ci with
supp(u) ∩ S = ∅.
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In this paper, we focus on a class of (n, t, w)-LPC codes
where every transmission results in exactly w state tran-
sitions. We call such codes (n, t, w)-constant-power cooling
(CPC) codes. In particular, let J(n, w) , {u ∈ {0, 1}n :
wt(u) = w}, and J+(n, w) , {u ∈ {0, 1}n : wt(u) ≤ w}.
Then an (n, t, w)-CPC code is an (n, t, w)-LPC code such
that Ci ⊆ J(n, w) for i ∈ [M].

A. Set Systems
For a finite set X of size n, 2X denotes the collection of all

subsets of X, i.e., 2X , {A : A ⊆ X}. A set system of order
n is a pair (X,B), where X is a finite set of n points and
B ⊆ 2X . The elements of B are called blocks. A set system
(X, 2X) is a complete set system. Two set systems (X,B1)
and (X,B2) with the same point set are called disjoint if
B1 ∩B2 = ∅.

A partial parallel class of a set system (X,B) is a collec-
tion of pairwise disjoint blocks. If a partial parallel class
partitions the point set X, it is called parallel class. A set
system (X,B) is called resolvable if the block set B can be
partitioned into parallel classes.

There is a canonical one-to-one correspondence between
the set of all codes of length n and the set of all set
systems of order n: the coordinates of vectors in {0, 1}n

correspond to the points in [n], and each vector u ∈ {0, 1}n

corresponds to the block supp(u). Thus we may speak of
the set system of a code or the code of a set system.

B. Upper Bounds
Given a t-subset S and a vector u ∈ {0, 1}n, we shall say

that u avoids S if supp(u)∩ S = ∅. Observing that a vector
of weight w avoids exactly (n−w

t ) different t-subsets, we
have the following bounds on LPC codes and CPC codes.

Theorem 3. Let C be an (n, t, w)-LPC code of size M, then

M ≤ 1
(n

t)

[
w

∑
i=0

(
n
i

)(
n− i

t

)]
=

w

∑
i=0

(
n− t

i

)
.

Furthermore, if C is an (n, t, w)-CPC code, then

M ≤
(

n
w

)(
n− w

t

)/(
n
t

)
=

(
n− t

w

)
.

Hence both LPC codes and CPC codes share the same
asymptotic upper bound O(nw).

Next, we improve this upper bound in some parameters.
To do so, we need results on Turán systems.

Let n ≥ k ≥ r. Let |X| = n and define (X
r ) be the

collection of r-subsets of X. A Turán (n, k, r)-system is a
set system (X,B) where |X| = n and B ⊆ (X

r ) such that
every k-subset of X contains at least one of the blocks. The
Turán number T(n, k, r) is the minimum number of blocks in
such system. This number is determined only for r = 2 and
some sporadic examples. De Caen [3] proved the general
lower bound.

T(n, k, r) ≥ n− k + 1
n− r + 1

· k/r

(k
r)

(
n
r

)
. (1)

The following is immediate from the definition of Turán
systems.

Proposition 4. A family of codesets {C1,C2, . . . ,CM} is an
(n, t, w)-CPC code if and only if the set system of each Ci is a
Turán (n, n− t, w)-system and these M set systems are pairwise
disjoint.

Combining the bound (1) and Proposition 4, we have
the following upper bound on the size of CPC codes.

Theorem 5. Let C be an (n, t, w)-CPC code of size M. Then

M ≤ n− w + 1
t + 1

(
n− t− 1

w− 1

)
.

When t = Θ(n), we have (n − w + 1)/(t + 1) = O(1),
and so the upper bound for (n, t, w)-CPC codes is im-
proved from O(nw) to O(nw−1).

For an (n, t, w)-LPC code, the number of codesets con-
taining at least one codeword of weight < w is at
most ∑w−1

i=0 (n
i ). Thus, the size of a LPC code is at most

∑w−1
i=0 (n

i ) +
n−w+1

t+1 (n−t−1
w−1 ), which is O(nw−1) when t is

proportional to n.

C. Previous Constructions
Chee et. al [1] provided the following construction of

LPC / CPC codes.

Proposition 6 (Decomposition of Complete Hypergraphs).
Let n = (t + 1)w. There exists an (n, t, w)-CPC code of size
(n−1

w−1).

When w is fixed, we have t proportional to n and the
above construction attains the asymptotic upper bound
O(nw−1). Unfortunately, no efficient encoding and decod-
ing methods are known for this construction and the
only known encoding method involves listing all (n−1

w−1)
codesets.

In the same paper, Chee et. al then proposed the follow-
ing constructions of LPC codes that have efficient coding
schemes.

Proposition 7 (Concatenation). Suppose that q ≤ ∑w′
i=0 (

s
i)

and q is a prime power and t ≤ s.
(i) If t + 1 ≤ m/2, then there exisits an (ms, t, mw′)-LPC

code of size qm−t−1.
(ii) If t + 1 ≤ m ≤ q + 1, then there exisits an (ms, t, mw′)-

LPC code of size qm−t.

Proposition 8 (Sunflower Construction). Let r + t ≤ (n +
s)/2. If a linear [n, s, w + 1]2-code exists and a linear [n −
t, r, w + 1]2-code does not exist, then there exists an (n, t, w)-
LPC code of size 2n−t−r.

III. CONSTANT-POWER COOLING CODES

In this section, we present our main construction of
CPC codes. Our construction is based on the following
generalization of Proposition 6.

Proposition 9. Let (X,B) be a set system of order n with B

partitioned into M paritial parallel classes P1,P2, . . . ,PM. If
B ⊆ (X

w) and each Pi has at least t + 1 blocks, then the codesets
P1,P2, . . . ,PM constitute an (n, t, w)-CPC code.

Since a decomposition of the complete k-uniform hyper-
graph with vertex set X is a resolvable set system (X, (X

k )),
we recover Proposition 6.
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A. CPC Codes Based on Linear Codes
Let C be an [N, K, D]q-code. Using the codewords of C,

we construct a set system with qK−1 partial parallel classes
and then Proposition 9 yields an CPC code D. To equip D

with efficient coding, we then utilize the erasure-correcting
algorithms of the linear code C. We discuss this in detail
in Section III-B.

For a coordinate set I and a vector σσσ ∈ F
|I|
q , we say

σσσ appears λ times in C at I if there are λ codewords in C

whose restrictions on I are σσσ. Since any two codewords of
C agree in at most N−D positions, we have the following
observations.

Lemma 10. Let C be an [N, K, D]q-code.
(i) For any (N − D + 1)-subset I and any σσσ ∈ FN−D+1

q , σσσ
appears at most once in C at I.

(ii) For any (N−D)-subset J and any τττ ∈ FN−D
q , τττ appears

at most q times in C at J.

Lemma 11. Let G be a generator matrix of an [N, K, D]q-code.
Then every K× (N−D) submatrix of G has rank K or K− 1.
Furthermore, there is a K× (N−D) submatrix of rank K− 1.

We are ready to present our main construction.

Construction 1. Let G be a generator matrix of an
[N, K, D]q-code C. From Lemma 11, we assume that the
last N − D columns of G form a submatrix of rank K− 1.
• Partition C into disjoint codesets C1,C2, . . . ,CM such

that u and v are in the same codeset if and only if
they agree on the last N − D symbols.

• For i ∈ [M], we truncate the codewords in Ci to length
w by removing their last N − w symbols. In other
words, set C′i = {u|[w] : u ∈ Ci} for i ∈ [M].

• Let X = Fq × [w]. We construct the partial parallel
classes D = {D1,D2, . . . ,DM}, where

Di = {{(xj, j) : j ∈ [w]} : x = x1x2 · · · xw ∈ C′i}.

If N − D + 1 ≤ w ≤ D, then D is an (n, t, w)-CPC code of
size M = qK−1 where n = qw and t ≤ q− 1.

Observe that for Construction 1, in addition to the input
code C, we need to find a minimum weight word in C

in order to determine the K × (N − D)-submatrix. As it
is difficult to determine the minimum weight word for
general linear codes, we focus on certain families of codes
where this is well known.

Recall that a linear [N, K, D]q-code is maximum distance
separable (MDS) if D = N − K + 1. If the input code C is
MDS, every K columns of G are linearly independent and
so any K × (N − D) submatrix of G has rank K − 1 as
N − D = K − 1. Therefore, we use any N − D coordinate
positions to partition C. It is well known that MDS codes
exist for the following all parameters.

Theorem 12 (see [2, Ch.11]). Let q be a prime. If D ≥ 3, then
there exists an [N, K, D]q-MDS code if N ≤ q + 1 for all q and
2 ≤ K ≤ q− 1, except when q is even and K ∈ {3, q− 1}, in
which case N ≤ q + 2.

Setting N = q + 1, K = w, D = q − w + 2 and using
an [N, K, D]q-MDS code as the input code, Construction 1
yields the following corollary.

Corollary 13. If q = n/w is a prime power and q ≥
max{2w − 2, t + 1}, then there exists an (n, t, w)-CPC code
of size (n/w)w−1.

In Corollary 13, when w is fixed, we choose t to be
propotional to n. In this case, the codes constructed asymp-
totically attain the upper bound O(nw−1). We also note that
in some parameters, these CPC codes are much larger than
the LPC codes provided by Propositions 7 and 8.

Example 14. Setting n = 96, w = 6 and t = 15 in
Corollary 13 yields a (96, 15, 6)-CPC code of size 165 = 220.

In contrast, suppose we use Proposition 7 to construct an
(96, t, 6)-LPC code with t ≤ 15. The largest size 165 = 220 is
obtained by setting m = 6, t = 1, s = 16, w′ = 1, and q =
16. While the resulting (96, 1, 6)-LPC code has the same
size as the CPC from Corollary 13, the cooling capability
of the former is clearly much weaker. Proposition 8, on
the other hand, yields an (96, 15, 6)-LPC code of size 216

by setting s = 81 and r = 65.

As before, in some parameters, these CPC codes are
much larger than the LPC codes provided by Proposi-
tions 7 and 8.

Example 15. There exists an [17, 8, 9]9-code (see [4]). Set-
ting w = 9 and t = 8 in Construction 1 yields a (81, 8, 9)-
CPC code of size 97 ≈ 222.189.

In contrast, the largest (81, 8, 9)-LPC resulting from
Proposition 7 is of size 9 ≈ 23.17 by setting m = s = q = 9,
w′ = 1. Proposition 8, on the other hand, yields an
(81, 8, 9)-LPC of size 221 by setting s = 54 and r = 52.

B. Encoding and Decoding Schemes

Now, we discuss the encoding and decoding schemes
for the code D in Construction 1. Let G be a generator
matrix of the input [N, K, D]q-linear code C such that the
last N − D columns of G form a matrix Ĝ of rank K − 1.
Furthermore, we assume that Ĝ has the following form.

Ĝ =

(
A Ik−1

0 · · · 0 0 · · · 0

)
,

where Ik−1 is the identity matrix of size K− 1.
Since the number of codesets is qK−1, we index the

codesets in D using vectors in FK−1
q . For σσσ ∈ FK−1

q , let
Cσσσ be the set of q codewords whose (K − 1)-suffix is σσσ.
Then C′σσσ and Dσσσ are derived as in Construction 1.

Given a t-subset S of Fq × [w] and σσσ =
(σ1, σ2, . . . , σK−1) ∈ FK−1

q , our objective for encoding
is to find D ∈ Dσσσ such that D ∩ S = ∅. Let βββi be the i-th
row of G and βββi|[w] be the w-prefix of βββi. First compute

r =
K−1

∑
i=1

σiβββi|[w].

Then the codeset C′σσσ can be determined as follows.

C′σσσ = {r + λβββk|[w] : λ ∈ Fq}.

Consequently, the codeset Dσσσ can be derived as in Con-
struction 1, and so we can compare all the blocks in Dσσσ

with S to find the block D such that D ∩ S = ∅.
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Hence, for our encoding, since n = qw, we need to
perform O(n) multiplications over Fq to find Dσσσ and O(tn)
comparisons to find D.

For the decoding, suppose that we have a code-
word {(x1, 1), (x2, 2), . . . , (xw, w)}. Since w ≥ N − D + 1,
we can run the erasure correcting algorithm of C on
(x1, x2, . . . , xw, ?, ?, . . . , ?) to recover the last K− 1 symbols,
xN−K+2, xN−K+3, . . . , xN . Then the message can be decoded
as (xN−K+2, xN−K+3, . . . , xN). In particular, if the input
code C is a Reed-Solomon code, by using Lagrange in-
terpolation, we perform O(w3) multiplications to decode.

IV. ERROR-CORRECTING CPC CODES

In this section we consider LPC codes that can correct
transmission errors (‘0’ received as ‘1’, or ‘1’ received as
‘0’). An (n, w, t)-CPC that is able to correct up to e errors
is denoted as an (n, t, w, e)-CPECC code.

We adapt Construction 1 to produce CPECC codes.

Theorem 16. If the input code C is an [N, K, D]q-code, then the
output code D of Construction 1 is an (n, t, w, e)-CPECC code
of size M = qK−1, where n = qw, t ≤ q, e = w− (N−D)− 1.

For error-correcting, we focus on a special case, where
C is a Reed-Solomon code and K = N − D + 1 = w− e.

Construction 2. Let w and e be positive integers and
q be a prime power such that q ≥ 2w − e − 1. Let
a1, a2, . . . , aw, b1, b2, . . . , bw−e−1 be 2w− e− 1 pairwise dis-
tinct elements of Fq.
• For each polynomial f (X) ∈ Fq[X], define

C f = {( f (aj), j) : j ∈ [w]}.

• For each σσσ = (σ1, σ2, . . . , σw−e−1) ∈ Fw−e−1
q , let

Eσσσ = {C f : f ∈ Fq[X], deg( f ) ≤ w− e− 1,

f (b`) = σ` for ` ∈ [w− e− 1]}.

Denote the collection of Eσσσ as E. Then E is an (n, t, w, e)-
CPECC code of size qw−e−1 where n = qw and t < q.

The encoding scheme in Section III-B can be easily
adapted for the encoding of the CPECC code E. Now we
use Algorithm 1 to illustrate the decoding scheme.

Theorem 17. Algorithm 1 is correct. In other words, suppose
that c ∈ E and u is the received word from c with at most e
errors. Then Algorithm 1 returns σσσ ∈ Fw−e−1

q such that c ∈ Eσσσ.

The Berlekamp-Welch algorithm corrects errors in time
O(q3) [5], and hence, Algorithm 1 has complexity O(n3).

V. RECURSIVE CONSTRUCTION

Notice that an (n, t, w)-CPC code resulting from Proposi-
tion 6 and Construction 1 has t < n/w. In this section, we
present a recursive construction that yields (n, t, w)-CPC
codes with t ≥ n/w.

To do so, we revisit Proposition 9. Let (X,B) be a set
system of order n with B ⊆ (X

w) and B partitioned into
M paritial parallel classes P1,P2, . . . ,PM. Suppose further
than each Pi has exactly q blocks.

Let S be a t-subset of X and fix a partial parallel
class Pi. If t ≥ q, it is not always possible to choose

Algorithm 1 Error-Correction for the CPECC codes in
Construction 2
Input: a binary word u indexed by Fq × [w]
Output: a message σσσ ∈ Fw−e−1

q
1: C ← supp(u). Note that C ⊆ Fq × [w]
2: for each i ∈ [w] do
3: if |{(y, i) : (y, i) ∈ C}| = 1 then
4: yi ← y, where (y, i) is the unique pair in {(y, i) :

(y, i) ∈ C};
5: else
6: yi ← ‘#’;
7: y← (y1, y2, . . . , yw);
8: ŷ← the vector obtained by deleting all the ‘#’ from y
9: run the decoding algorithm for Reed-Solomon codes

on ŷ, returning a polynomial L(x) of degree w− e− 1;
10: σσσ← (L(b1), L(b2), . . . , L(bw−e−1));
11: return σσσ;

a block/codeword in Pi that avoids S. However, by pi-
geonhole principle, we can find a block/codeword that
contains at most bt/qc elements in S. Suppose we use a
(w, bt/qc, w′)-LPC code H to break up this codeword into
codewords of weight at most w′. Then we are able to find
a block/codeword of weight w′ that avoids S.

We formalise this idea in the following recursive con-
struction. To simplify our construction, we specialise our
recursive construction akin to Construction 2.

Construction 3. Let H be an (n, t, w)-CPC code of size
m. Let q ≥ n + w − 1 be a prime power and choose
a1, a2, . . . , an, b1, b2, . . . , bw−1 be n + w− 1 distinct elements
of Fq.
• Consider the point set A = Fq × [n] and set B =
{{( f (aj), j) : j ∈ [n]} : f ∈ Fq[x], deg( f ) ≤ w− 1}. As
before, using b1, b2, . . . , bw−1, we can partition B into
qw−1 parallel classes. Label the blocks such that the
parallel classes are Pi = {Bij : j ∈ [q]} for i ∈ [qw−1].

• Since the block Bij is of size n, we can use Bij to relabel
the point set of the (n, t, w)-CPC code H so that each
codeword in H corresponds to a w-subset of Bij. Then
each codeword Bij gives rise to a collection of codesets,
denoted as Eij` for ` ∈ [m].

• For (i, `) ∈ [qw−l ]× [m], the codeset Ei` is given by the
union

⋃q
j=1 Eij`.

Therefore, E = {Ei` : i ∈ [qw−1], ` ∈ [m]} is an
(nq, tq, w)-LPC code of size mqw−1.

Corollary 18. Let q be a prime power. If t + w ≤ n and q ≥
n + w− 1, then

(i) there exists an (nq, tq, w)-CPC code of size qw−1;
(ii) there exists an (nq, tq, w)-LPC code of size ∑w−1

i=0 qi.

Example 19. We compare certain CPC codes resulting from
Construction 3 and Corollary 18 with the LPC codes
resulting from Proposition 8.

(i) Consider the set of five disjoint 3-(10, 4, 1)-designs
constructed by Etzion and Hartmann [6]. By taking
the complements of the blocks, we obtain a (10, 3, 6)-
CPC code of size five. Applying Construction 3 with
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q = 16, we obtain a (160, 48, 6)-CPC code of size
5 · 165 ≈ 222.322.
In contrast, Proposition 8 yields a (160, 48, 6)-LPC
code of size 217 by setting s = 137 and r = 95.

(ii) Setting n = 9, t = 2, w = 7, and q = 16 in
Corollary 18 yields a (144, 32, 7)-LPC code of size
∑6

i=0 16i ≈ 224.093.
In contrast, Proposition 8 yields a (144, 32, 7)-LPC
code of size 218 by setting s = 121 and r = 94.

In the regime where w is fixed and t is proportional
to n, we show that the codes in this section are asymp-
totically larger than those resulting from Proposition 8.
The CPC codes resulting from Construction 3 and Corol-
lary 18 attain the asymptotic upper bound O((nq)w−1)
when w is fixed. In contrast, if we apply Proposition 8
with s = nq− dlog2(∑

w−1
i=0 (nq−1

i )e) (the GV lower bound)

and r = nq − tq − blog2(∑
w
2
i=0 (

nq−tq
i ))c (the Hamming

upper bound), we obtain an (nq, tq, w)-LPC code of size
O((nq)w/2) = o((nq)w−1).

VI. LPC CODES FROM COOLING CODES

In this section we use a novel method to transform cool-
ing codes into low-power cooling codes, while preserving
the efficiency of the cooling codes. The construction is
based on two mappings.

Given a surjection

g : [n] −→ [m] ,

called a coordinates mapping and an injection

ϕ : Fm
2 −→ J+(n, w) ,

the mapping ϕ(m, n, w) is called a domination mapping if
the following condition holds:

For any binary word (v1, v2, . . . , vm) of length m
and its image (u1, u2, . . . , un), under the injection ϕ,

ui = 1 implies that vg(i) = 1 for each 1 ≤ i ≤ n.

Theorem 20. If there exists an (m, t)-cooling code C and a
domination mapping ϕ(m, n, w) then the code

C′ , {ϕ(x) : x ∈ C},

in an (n, t, w)-LPC code.

Domination mappings are not difficult to find. There are
many with efficient encoding and decoding. For example,
we have such mappings for the following triples (m, n, w):
(5,8,2), (9,15,3), (12,20,4).
The product construction:

Given ` domination mappings ϕi(mi, ni, wi), 1 ≤ i ≤ `,
and a binary word (x1, x2, . . . , x`), where the length of xi
is mi, for each 1 ≤ i ≤ `. The mapping ϕ(m, n, w), defined
by

ϕ(x1, x2, . . . , x`) = (ϕ1(x1), ϕ2(x2), . . . , ϕ`(x`)),

is also a domination mapping for m = ∑`
i=1 mi, n =

∑`
i=1 ni, and w = ∑`

i=1 wi.
The main construction is given with specific parameters

for simplicity and better understanding, but it can be
generalized easily to other sets of parameters.

Construction 4. Assume we are given w ≥ 6, m = 3w =
9α + 12β, n = 5w = 15α + 20β, t, and an (m, t)-cooling
code C with 2k codesets. We will construct an (n, t, w)-LPC
code C′. Let u be the information word of length k and
let Cu be its related codeset in C. The encoder partitions
the set of m coordinates into α + β subsets, α subsets of
size 9 and β subsets of size 12. Similarly, it partitions
the set n coordinates of codewords from C′ into α + β
subsets, α subsets of size 15 and β subsets of size 20. Let
ϕ1(9, 15, 3) and ϕ2(12, 20, 4) be two domination mappings
and let ϕ(m, n, w) be the domination mapping implied by
the product construction on α copies of ϕ1 and β copies
of ϕ2. Let g be the coordinates mapping implied by the
product construction. Let T = {i1, . . . , it} be the t hottest
wires on the n-wire bus and let T′ = {g(i1), . . . , g(jt)} be
a t′-subset of [m], where t′ ≤ t. The encoder finds the
vector v in Cu related to the set T′, i.e. v has zeroes in the
coordinates of T′, as required by the encoder of C. Finally
the encoder parse v into v1v2 . . . vαv′1v′2 . . . v′β, where vi is of
length 9 and v′i is of length 12. By using the encoding of the
mappings ϕ1(9, 15, 3) and ϕ2(12, 20, 4), the encoder maps
v1v2 . . . vαv′1v′2 . . . v′β to the word ϕ(v1v2 . . . vαv′1v′2 . . . v′β) of
the (n, t, w)-LPC code, where each vi is mapped by ϕ1 to a
word of length 15 and each v′i is mapped by ϕ2 to a word
of length 20.

The decoder is applied in reverse order to generate the
information word of length k from a word of length n of
the code C′, by first generating a word from C and after
that using the decoder of C.

Note that Construction 4 can be viewed as a modifica-
tion of the Concatenation construction (See Proposition 7).
Construction 4 has an advantage on the Concatenation of
Proposition 7 and other constructions with larger size for
the same weight w and where the number of hottest wires
is t. A complete analysis and comparison between all the
constructions will be given in the full version of this paper.
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