
Efficient Encoding/Decoding of Capacity-Achieving
Constant-Composition ICI-Free Codes

Yeow Meng Chee, Chrisnata Johan, Han Mao Kiah, San Ling, Tuan Thanh Nguyen, and Van Khu Vu
School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

email: {ymchee, jchrisnata, hmkiah, lingsan, tuan3, vankhu001}@ntu.edu.sg

Abstract—We give the first known efficient encoder/decoder
for q-ary constant-composition ICI-free codes achieving ICI
channel capacity, for all q. Previously, the best result known
is an efficient encoder/decoder for binary constant-weight ICI-
free codes with more than 2% loss over ICI channel capacity.

I. INTRODUCTION

Flash memories have become a popular nonvolatile storage
of information owing to its advantage of high speed, low
noise, low power consumption, compact form factor, and good
physical reliability. The basic information storage element
of a flash memory is called a cell, which consists of a
floating-gate (FG) transistor. The amount of charge on an FG
transistor is discretized into charge levels as a way to store
information. The operation of injecting charge into an FG
transistor to a desired level is called programming. In a single
level cell (SLC) flash memory, each cell has two charge levels
(corresponding to a charged or uncharged FG transistor), and
hence can store one bit per cell. More recent multi-level cell
(MLC1) flash memories have cells with q > 2 charge levels,
with the ability to store log2 q bits per cell. More specifically,
we use qLC to refer to cells with q charge levels. The cells
of a flash memory are further organized into blocks, each
containing a constant number of cells. Hence, a block in a
qLC flash memory stores a q-ary word (where symbol i is
used to represent charge level i of a cell), and such a flash
memory stores a collection of q-ary words.

MLC technology increases the storage density of flash
memories. However, very precise programming is needed.
There are two main challenges to reliable programming and
storage:

(i) Intercell interference (ICI) caused by parasitic capaci-
tance coupling between adjacent cells [1]. Such interfer-
ence occurs when there are three adjacent cells c1, c2, c3
and we want to increase the charge levels of the left-
most and right-most cells, c1 and c3, while maintaining
the charge level of the center cell c2. Parasitic capaci-
tance coupling can cause the charge level of the (victim)
cell c2 to increase when we increase the charge levels
of its neighbouring cells c1 and c3.

(ii) Charge leakage [2]. The charge in an FG transistor leaks
away over time as a result of trap-assisted tunneling
effect. This results in charge levels of cells drifting
downwards over time, giving rise to asymmetric errors.

1MLC is commonly used to refer to the specific technology that allows
four charge levels per cell. For lack of a better notion, we extend the use of
“MLC” here to refer to technology allowing three or more charge levels per
cell.

Different techniques have been explored to mitigate ICI.
Physical methods, such as using low-κ dielectric material to
reduce capacitative coupling [3], and programming methods
such as proportional programming [4], have been investi-
gated but the approach that is most effective has been the
constrained coding method of Berman and Birk [5]–[7]. In
their approach, certain words are forbidden to be stored, since
the programming required to store such a word is highly
unreliable, owing to ICI. For example, the quaternary word
of length eight (1, 2, 1, 3, 0, 3, 2, 0) should be avoided as the
charge level of the fifth cell can be increased unintentionally
during the programming of the fourth and sixth cells. More
generally, Taranalli et al. [8] performed a comprehensive
series of program/erase (P/E) cycling experiments recently to
quantify ICI effects, and concluded that the words permitted
for storage on a qLC flash memory should avoid containing
any (q−1, σ, q−1) as a substring, where σ ∈ {0, 1, . . . , q−2}.

To mitigate the effect of charge leakage, a straightforward
way is to adopt asymmetric error-correcting codes [9], [10].
Dynamic threshold techniques, introduced by Zhou et al. [11]
for SLC and extended to MLC by Sala et al. [12], have been
shown to be not only highly effective against asymmetric
errors caused by charge leakage but also offer some protection
against over-programming. In error-correcting schemes with
dynamic threshold, the codes have constant composition, and
in particular, the case when the codes have both constant
composition and balanced (where the number of times a
symbol appears in a codeword is as close as possible) was
studied in detail by Zhou et al. and Sala et al. [11], [12].

Recent approaches have combined constrained coding and
dynamic threshold techniques [13]. Before we give an account
of these results, we introduce some necessary notations and
terminology.

A. Notations and Terminology

For n a positive integer, the set {1, 2, . . . , n} is denoted JnK.
Let Σ = {0, 1, . . . , q−1} be an alphabet of q ≥ 2 symbols. A
q-ary word of length n over Σ is an element u ∈ Σn. The ith
coordinate of u is denoted ui, so that u = (u1, u2, . . . , un).
The word of all ones, (1, 1, . . . , 1) ∈ Σn, is denoted j, and
the word with a “1” in position m and “0” everywhere else is
denoted em. There is a natural correspondence between the
data represented by the charge levels of a block of n cells
in a qLC flash memory and a q-ary word u ∈ Σn: ui is the
charge level of the ith cell in the block, for all i ∈ JnK.

For a positive integer n, a composition of n into q parts
is an (ordered) q-tuple, w(n) = [w0, w1, . . . , wq−1] of non-
negative integers such that

∑q−1
i=0 wi = n. We normally write

w for w(n), unless we want to emphasize a composition’s
dependence on n. A q-ary word u ∈ Σn is said to have
composition [w0, w1, . . . , wq−1] if the frequency of symbol
σ ∈ Σ in u is wσ . The weight of a word u ∈ Σn

with composition [w0, w1, . . . , wq−1] is w =
∑q−1
σ=1 wσ . A

word u ∈ Σn is said to be balanced if it has composition
[w0, w1, . . . , wq−1] such that wσ ∈ {bn/qc, dn/qe}, for all
σ ∈ Σ. Hence, in a balanced word, every symbol is as evenly
distributed as possible.

A substring of a word u = (u1, u2, . . . , un) ∈ Σn is a word
(ui+1, ui+2, . . . , ui+m) ∈ Σm, where i ≥ 0 and i + m ≤ n.
Let F be a set of words over Σ. A word u ∈ Σn is said to
avoid F if no words in F is a substring of u.

A q-ary code of length n is a nonemtpy subset C ⊆ Σn.
Elements of C are called codewords. The size of C is the
number of codewords in C. A code C is said to have

(i) constant weight w, if every codeword in C has weight
w; and

(ii) constant composition w, if every codeword in C has
composition w.

Note that a constant-composition code is also constant-weight,
though the reverse need not hold. However, for the case of
binary codes (q = 2), the notions of constant-composition and
constant-weight are equivalent. A code is balanced if each of
its codewords is balanced. Let F be a set of words over Σ.
A code C ⊆ Σn is said to avoid F if every codeword in C

avoids F.
The rate of a code C ⊆ Σn is R = log2 |C|/n.
Define I(q) = {(q − 1, σ, q − 1) : 0 ≤ σ ≤ q − 2}.

Example 1. I(2) = {(1, 0, 1)} and I(4) =
{(3, 0, 3), (3, 1, 3), (3, 2, 3)}.

Observe that I(q) is the set of charge levels of three adjacent
cells in a qLC flash memory that we should avoid since
they give rise to ICI effects. This motivates the following
definition.

Definition 1 (ICI-Free Code). A q-ary code C ⊆ Σn is ICI-
free2 if it avoids I(q).

An ICI channel is a channel whose input codewords are
ICI-free. The (Shannon) capacity of a q-ary ICI channel is

CICI(q) = lim
n→∞

log2 |Cn|
n

,

where Cn is the set of all ICI-free words of length n over Σ.
As mentioned earlier, recent approaches combine con-

strained coding and dynamic threshold techniques, leading to
the consideration of codes that are both ICI-free and constant-
composition. The set of all q-ary ICI-free words of length n
and constant composition w is denoted S(n,w). Note that q,
the size of the alphabet, is determined by the composition
w. In the case q = 2, we further abbreviate S(n, [w0, w1]) to
S(n,w1). The size of S(n,w) is denoted by AICI(n,w).

Let w(n) = [w0, w1, . . . , wq−1]. Define ωi =
limn→∞ wi/n. Note that we necessarily have

∑q−1
i=0 ωi = 1.

2Qin et al. [13] used “ICI-free” to mean codes that only avoid {(q −
1, 0, q−1)}, but Taranalli et al. [8] have shown that avoiding {(q−1, 0, q−
1)} is not enough to mitigate ICI effects, and that the entire set I(q) should
be avoided.

The asymptotic information rate of ICI-free codes of constant
composition w(n) is defined as

R(ω0, ω1, . . . , ωq−1) = lim sup
n→∞

log2AICI(n,w(n))

n
.

The interest is to seek such codes of large size, or of
high rate, with the ultimate goal of constructing constant-
composition ICI-free codes whose rate meets the ICI channel
capacity, and whose encoding and decoding can be performed
with low complexity.

B. Previous Work

The capacity of binary ICI channels has been determined
by Kayser and Siegel [14].

Proposition 1 (Kayser and Siegel [14]). CICI(2) = log2(z) ≈
0.81137, where z is the unique real root of z3− 2z2 + z− 1.

Binary ICI-free constant-weight codes were considered by
Qin et al. [13], with the focus on balanced binary ICI-free
codes of even length (making them also constant-weight). The
intuition behind the criterion of balance is that

(i) these codes have the largest size among all constant-
weight codes; and

(ii) these codes have simple encoders and decoders.
In particular, they showed:

Proposition 2 (Qin et al. [13]). R(1/2, 1/2) = (log2 3)/2 ≈
0.79248.

These balanced ICI-free codes of Qin et al. [13] have rates
that fall short of over 2% of the ICI channel capacity.

Let 0 < p < 1. Kayser and Siegel [14] constructed a
family {Cn}n≥1 of binary constant-weight ICI-free codes,
parametrized by a positive integer m, such that each Cn is
an ICI-free code of constant composition [(1− p)n, pn], and
showed that there exists a p such that

lim
m→∞

lim sup
n→∞

log2 |Cn|
n

= CICI(2).

Unfortunately, for the encoder/decoder pair to work, an auxil-
iary codebook Ca of length na < n is required. Here, |Ca| is
exponential in na. In order to approach capacity, both m and
na are required to be sufficiently large. Since the encoding and
decoding complexity grows in terms of m and |Ca|, we have
that the encoding and decoding complexity is exponential in
term of na (see [14, Remark 1] for more details).

For q > 2, no such concrete results are even known.
Indeed, the problem of constructing efficiently encod-

able and decodable constant-composition ICI-free codes that
achieves the ICI channel capacity is wide open. Even the
question of whether there exist constant-composition ICI-free
codes achieving ICI channel capacity is not answered till
recently by Chee et al. [15].

Theorem 1 (Chee et al. [15]).

AICI(n, [w0, w1, . . . , wq−1]) =
wq−1−1∑
i=0

(
wq−1 − 1

i

)(
n− wq−1 − i+ 1

n− wq−1 − 2i

)
(n− wq−1)!∏q−2

i=0 wi!
.

Using Theorem 1, Chee et al. [15] proved that for every q,

lim
n→∞

max
w(n)a q-part composition of n

log2AICI(n,w(n))

n
= CICI(q).

C. Our Contribution

The main contributions of this paper are efficient encoding
and decoding algorithms for binary constant-weight ICI-free
codes and a special class of q-ary constant-composition ICI-
free codes. Paired with the results of Chee et al. [15], this
gives the first efficient encoding and decoding of constant-
composition ICI-free codes achieving ICI channel capacity.

II. A RECURSIVE CONSTRUCTION FOR (BINARY) S(n,w)

Let n ≥ w ≥ 2 and define the map

φ :
⋃

k∈Jn−w+1K\{2}

S(n− k,w − 1)→ S(n,w),

such that

φ : (u1, u2, . . . , un−k) 7→
(u1, u2, . . . , ur(u), 0, 0, . . . , 0︸ ︷︷ ︸

k − 1 0’s

, 1, ur(u)+1, ur(u)+2, . . . , un−k),

where r(u) is the position of the rightmost “1” in u =
(u1, u2, . . . , un−k), that is, r(u) = max{i ∈ Jn − kK :
ui = 1 and uj = 0 for all j ≥ i}.

Theorem 2. The map φ is a bijection.

Proof. We first show injectivity of φ. If u and v are distinct
elements of S(n− k,w− 1) for some k ∈ Jn−w+ 1K \ {2},
then
• when r(u) = r(v), φ(u) and φ(v) must differ in some

of their first r(u) positions;
• when r(u) 6= r(v), φ(u) and φ(v) must differ in some

of their last n− k − r(u) positions.
If u ∈ S(n − k1, w − 1) and v ∈ S(n − k2, w − 1) for some
k1, k2 ∈ Jn−w+1K\{2}, where k1 6= k2, then the rightmost
occurrence of a substring of the form (1, 0, 0, . . . , 0, 1) in φ(u)
and φ(v) has lengths k1 + 1 and k2 + 2, respectively.

To prove surjectivity of φ, consider u ∈ S(n,w). Let s(u)
be the starting position of the rightmost substring in u of the
form (1, 0, 0, . . . , 0︸ ︷︷ ︸

k − 1 0’s

, 1), where k ≥ 1. Deleting the substring

(us(u)+1, us(u)+2, . . . , us(u)+k) from u gives an element v ∈
S(n− k,w − 1) such that φ(v) = u. �

Corollary 1.

AICI(n,w) =
∑

k∈Jn−w+1K\{2}

AICI(n− k,w − 1).

Theorem 2 and Corollary 1, together with Proposition 3
below, give recurrence for the construction of S(n,w) and
the determination of AICI(n,w).

Proposition 3. For n ≥ 1,
(i) S(n, 1) is the set of all words of weight one in Σn, and

hence AICI(n, 1) = n;
(ii) S(n, n) = {(1, 1, . . . , 1)}, and hence AICI(n, n) = 1.

Example 2. We can construct S(5, 3) from S(4, 2) and
S(2, 2). S(4, 2) can in turn be constructed from S(3, 1)

and S(1, 1). Hence, with the trivial codes S(3, 1) =
{100, 010, 001}, S(1, 1) = {1}, and S(2, 2) = {11}, we
obtain

S(4, 2) = φ(S(3, 1)) ∪ φ(S(1, 1))

= {1100, 0110, 0011} ∪ {1001},

which in turn gives

S(5, 3) = φ(S(4, 2)) ∪ φ(S(2, 2))

= {11100, 01110, 00111, 10011} ∪ {11001}.

Similarly,

AICI(5, 3) = AICI(4, 2) +AICI(2, 2)

= AICI(3, 1) +AICI(1, 1) +AICI(2, 2)

= 5.

In fact, Corollary 1 gives rise to a polynomial time algo-
rithm, via dynamic programming, for computing the value
of AICI(n,w), for any given n and w. Let A be the n × w
matrix whose (i, j)-th entry, A(i, j) = AICI(i, j). Prefill the
first column so that A(i, 1) = i for all i ∈ JnK, and the
“diagonal” entries so that A(i, i) = 1 for all i ∈ JwK. Now
fill the remaining entries A(i, j), where i > j, column wise
from left to right (that is, by increasing value of j), and within
each column j from top to bottom (that is, by increasing value
of i), until we fill in the entry A(n,w), which gives the value
of AICI(n,w).

The building up of codewords in S(n,w) from shorter
codewords in S(n− k,w− 1) via φ leads also to an efficient
ranking/unranking algorithm for codewords in S(n,w). We
describe this next.

III. RANKING AND UNRANKING S(n,w)

A ranking function for a finite set S of cardinality N is a
bijection

rank : S → JNK.

There is a unique unranking function associated with the
function rank:

unrank : JNK→ S,

so that rank(s) = i if and only if unrank(i) = s for all
s ∈ S and i ∈ JNK. In this section, we present an algorithm
for ranking and unranking S(n,w).

The basis of our ranking and unranking algorithms is the
unfolding of the recurrence

S(n,w) =
⋃

k∈Jn−w+1K\{2}

φ(S(n− k,w − 1)) (1)

implied by Theorem 2, which yields a natural total ordering
of codewords in S(n,w), given a total ordering of codewords
in S(n, 1) and S(n, n). Throughout this paper, the reverse
lexicographic order is used as a total ordering on S(n, 1), so
that the rank of u ∈ S(n, 1) is the position of the symbol “1”
in u. Note that the total ordering on S(n, n) is trivial since
it contains only one element. Let us first illustrate the idea
behind the unranking algorithm through an example.

Example 3. Consider S(7, 3). This code has size 18. Suppose
we want to compute unrank(13). First, (1) gives

S(7, 3) = φ(S(6, 2)) ∪ φ(S(4, 2)) ∪ φ(S(3, 2)) ∪ φ(S(2, 2)),

where the codes in the union on the right hand side are ordered
in decreasing length. Now, |S(6, 2)| = 11, |S(4, 2)| = 4,
|S(3, 2)| = 2, and |S(2, 2)| = 1. We are interested in the 13th
element of S(7, 3). Since |S(6, 2)| < 13 ≤ |S(6, 2)|+|S(4, 2)|,
the 13th element of S(7, 3) is the 13−|S(6, 2)| = 2-nd element
of φ(S(4, 2)), which can be obtained from the 2nd element
of S(4, 2). Recursing gives

S(4, 2) = φ(S(3, 1)) ∪ φ(S(1, 1)),

where |S(3, 1)| = 3 and |S(1, 1)| = 1.

Hence the 2nd element of S(4, 2) is the 2nd element of
φ(S(3, 1)), which can be obtained from the 2nd element of
S(3, 1), namely 010. This gives

unrank(13) = φ2(010)

= φ(0110)

= 0110010.

The formal unranking algorithm is described in Algorithm
1 below.

Algorithm 1 unrank(n,w,m)

Input: Integers n ≥ w ≥ 1 and 1 ≤ m ≤ AICI(n,w).
Output: (u, r), where u is the codeword of rank m in S(n,w), and r is the position

of the rightmost “1” in u.

if w = n then
return (j, n);

if w = 1 then
return (em,m);

let k ≥ 1 be such that

L =
∑

i∈Jk−1K\{2}

AICI(n− i, w−1) < m ≤
∑

i∈JkK\{2}

AICI(n− i, w−1);

(u, r) = unrank(n− k, w − 1,m− L);
return ((u1, u2, . . . , ur, 0, 0, . . . , 0︸ ︷︷ ︸

k − 1 0’s

, 1, ur+1, ur+2, . . . , un−k), r + k);

The values of AICI(n,w) required in Algorithm 1 can be pre-
computed using the dynamic programming method described
at the end of the previous section.

The corresponding ranking algorithm for S(n,w) has a
similar recursive structure and is described in Algorithm 2.

Algorithm 2 rank(n,w, u)

Input: Integers n ≥ w ≥ 1 and u ∈ S(n,w).
Output: m, where m = rank(u).

if w = n then
return 1;

if w = 1 then
return m, where m is the position of the rightmost “1” in u;

let r be the starting position of the rightmost substring in u of the form
(1, 0, 0, . . . , 0︸ ︷︷ ︸

k − 1 0’s

, 1), where k ≥ 1;

v← (u1, u2, . . . , ur, ur+k+1, ur+k+2, . . . , un);
return rank(n− k, w − 1, v) +

∑
i∈Jk−1K\{2} AICI(n− i, w − 1);

Example 4. Consider S(7, 3) again. Suppose we want to
compute rank(7, 3, 0110010). First, we look for the rightmost
“1” in 0110010 and set k − 1 to be the number of zeroes
preceding it. In other words, k = 3 and so,

rank(7, 3, 0110010) = rank(4, 2, 0110) +AICI(6, 2)

= rank(4, 2, 0110) + 11.

To compute rank(4, 2, 0110), we observe that k = 1 and we
have

rank(4, 2, 0110) = rank(3, 1, 010).

Finally, since the weight of 010 is one, we have that
rank(3, 1, 010) = 2. Therefore, rank(7, 3, 0110010) = 2 +
11 = 13, and we recover the rank of 0110010 given in
Example 3.

Algorithms 1 and 2 run in polynomial time. We focus
on explaining the ideas behind the design of our rank-
ing/unranking algorithms and defer the optimization and
detailed running time analysis of these algorithms to the full
paper. We may treat this pair of unranking/ranking algorithms
as an encoder/decoder pair for constant-weight ICI-free codes.
Combined with results of Chee et al. [15], this gives the first
known efficient encoder/decoder for constant-weight ICI-free
codes achieving ICI channel capacity.

IV. EXTENSION TO q > 2

Let C ⊆ Σn and Ω ⊆ Σ. Let f : Σ → Ω. By canonical
extension, we have f : Σn → Ωn, so that

Σn 3 (u1, u2, . . . , un)
f7−→ (f(u1), f(u2), . . . , f(un)) ∈ Ωn.

The restriction of C by f is the code f(C) ⊆ Ωn.
The idea behind the extension of our results in the previous

section for binary codes to q-ary codes is based on the simple
observation that if a q-ary code is ICI-free, then its restriction
by f : Σ→ {0, 1}, where

f(σ) =

{
1, if σ = q − 1

0, otherwise,

is a binary ICI-free code. Hence, a binary ICI-free code C ⊆
{0, 1}n can be used as a template to construct a q-ary ICI-
free code C′ ⊆ Σn: for each codeword u ∈ C, replace a
coordinate with symbol “1” by q−1 and replace a coordinate
with symbol “0” by all possible symbols from Σ \ {q − 1}.
Therefore, a binary codeword of weight w in C generates
(q − 1)n−w codewords in C′.

We are concerned here with q-ary ICI-free codes of con-
stant composition [w0, w1, . . . , wq−1], where w0 = w1 =
· · · = wq−2. We call codes of such composition almost
balanced. The intuition behind this condition is that an ICI-
free code avoids substrings of the form q− 1, σ, q− 1, for all
σ ∈ Σ\{q−1}, and so the symbol q−1 has a special status.
Therefore, if we were to look for a constant-composition ICI-
free code of maximum size, it would be a good strategy to
look within almost balanced codes. Indeed, Chee et al. [15]
has found ICI channel capacity-achieving ICI-free codes that
are almost balanced.

To construct an almost balanced ICI-free code C ⊆ Σn of
constant composition [w0, w1, . . . , wq−1], we can start with
S(n,wq−1) as a template and replace every occurrence of
symbol “1” in each codeword u ∈ S(n,wq−1) by q − 1.
However, instead of replacing the remaining n−wq−1 “0”s in
u with all possible words in (Σ\{q−1})n−wq−1 , we replace
them with codewords from a balanced (q − 1)-ary code of
length n− wq−1 over Σ \ {q − 1}.

Efficient encoder/decoder pairs for capacity-achieving bal-
anced q-ary codes are known [16], [17]. We can combine the

encoder/decoder for S(n,w) and that for a capacity-achieving
balanced (q−1)-ary code B of length n−w to give an efficient
encoder/decoder for an almost balanced q-ary ICI-free code
C. The encoding algorithm is described in Algorithm 3.

Algorithm 3 encode(m)

Input: 0 ≤ m < |S(n,w)| · |B|.
Output: u, where u is an encoding of m as a codeword in C.

let m = s · |B|+ t, where 0 ≤ t < |B|;
u← encoding of s as a codeword in S(n,w);
v← encoding of t as a codeword in B;
w = word obtained by replacing each occurrence of symbol “1” in u by q − 1 and
all the other n− w “0”s in u by the word v;
return w;

The corresponding decoding algorithm is given in Algo-
rithm 4.

Algorithm 4 decode(u)

Input: u ∈ C.
Output: m, where u = encode(m).

v← word obtained from u by deleting occurrences of symbol q − 1;
t← decoding of v ∈ B;
w← word obtained from u by replacing each occurrence of symbol q − 1 in u by
“1” and all the other symbols by “0”;
s← decoding of w ∈ S(n,w);
return s · |B|+ t;

A. Application to the Case q = 4

Using Perron-Frobenius theory, the capacity of q-ary ICI
channels can be determined to be log2 λ, where λ is the largest
root of x3 − qx2 + (q − 1)x − (q − 1)2 (see, for example,
[18], [19]). This gives CICI(4) ≈ 1.9374. Taranalli et al. [8]
gave an encoding/decoding algorithm for quaternary ICI-free
codes that has rate 1.6942.

Chee et al. [15] constructed almost balanced quaternary
ICI-free codes of composition [αn, αn, αn, βn], where α ≈
0.268582 and β ≈ 0.194254, and showed them to be capacity-
achieving (having rate 1.9374). These codes can be encoded
and decoded with the algorithms described earlier in this
section. Hence, we now have efficient encoding/decoding al-
gorithms for quaternary constant-composition ICI-free codes
that are capacity-achieving.

V. CONCLUSION

We have proposed efficient encoder/decoder for q-
ary constant-composition ICI-free codes that are capacity-
achieving. The structure of the encoders and decoders are
simple and yields to easy implementation.

ACKNOWLEDGEMENT

The authors thank the anonymous reviewers and the TPC
member for their constructive comments.

REFERENCES

[1] J.-D. Lee, S.-H. Hur, and J.-D. Choi, “Effects of floating-gate interfer-
ence on NAND flash memory cell operation,” IEEE Electron. Device
Lett., vol. 23, no. 5, pp. 264–266, 2002.

[2] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Error patterns in MLC
NAND flash memory: measurement, characterization, and analysis,” in
DATE 2012 – Proceedings of the Conference on Design, Automation
and Test in Europe, 2012, pp. 521–526.

[3] D. Kang, H. Shin, S. Chang, and J. An, “The air spacer technology for
improving the cell distribution in 1 giga bit NAND flash memory,” in
NVSMW 2006 – Proceedings of the 21st IEEE Non-Volatile Semicon-
ductor Memory Workshop, 2006, pp. 36–37.

[4] R. Fastow and S. Park, “Minimization of FG-FG coupling in flash
memory,” US Patent 6996004 B1, February 2006.

[5] A. Berman and Y. Birk, “Mitigating inter-cell coupling effects in MLC
NAND flash via constrained coding,” in Proceedings of the 2010 Flash
Memory Summit, 2010.

[6] ——, “Error correction scheme for constrained inter-cell interference
in flash memory,” in NVMW 2011 – 2nd Annual Non-Volatile Memories
Workshop, 2011.

[7] ——, “Constrained flash memory programming,” in ISIT 2011 –
Proceedings of the 2011 IEEE International Symposium on Information
Theory, 2011, pp. 2128–2132.

[8] V. Taranalli, H. Uchikawa, and P. H. Siegel, “Error analysis and
inter-cell interference mitigation in multi-level cell flash memories,”
in ICC 2015 – Proceedings of the IEEE International Conference on
Communications, 2015, pp. 271–276.

[9] Y. Cassuto, M. Schwartz, V. Bohossian, and J. Bruck, “Codes for
asymmetric limited-magnitude errors with application to multi-level
flash memories,” IEEE Trans. Inform. Theory, vol. 56, no. 4, pp. 1582–
1596, 2010.

[10] E. Yaakobi, P. H. Siegel, A. Vardy, and J. K. Wolf, “On codes that
correct asymmetric errors with graded magnitude distribution,” in ISIT
2011 – Proceedings of the 2011 IEEE International Symposium on
Information Theory, 2011, pp. 1056–1060.

[11] H. Zhou, A. Jiang, and J. Bruck, “Error-correcting schemes with dy-
namic thresholds in nonvolatile memories,” in ISIT 2011 – Proceedings
of the 2011 IEEE International Symposium on Information Theory,
2011, pp. 2109–2113.

[12] F. Sala, R. Gabrys, and L. Dolecek, “Dynamic threshold schemes for
multi-level non-volatile memories,” IEEE Trans. Commun., vol. 61,
no. 7, pp. 2624–2634, 2013.

[13] M. Qin, E. Yaakobi, and P. H. Siegel, “Constrained codes that mitigate
inter-cell interference in read/write cycles for flash memories,” IEEE J.
Select. Areas Commun., vol. 32, no. 5, pp. 836–846, 2014.

[14] S. Kayser and P. H. Siegel, “Constructions for constant-weight ICI-free
codes,” in ISIT 2014 – Proceedings of the 2014 IEEE International
Symposium on Information Theory, 2014, pp. 1431–1435.

[15] Y. M. Chee, C. Johan, H. M. Kiah, S. Ling, T. T. Nguyen, and
V. K. Vu, “Rates of Constant-Composition Codes that Mitigate Intercell
Interference,” 2016, preprint.

[16] T. G. Swart and J. H. Weber, “Efficient balancing of q-ary sequences
with parallel decoding,” in ISIT 2009 – Proceedings of the 2009 IEEE
International Symposium on Information Theory, 2009, pp. 1564–1568.

[17] K. A. S. Immink, “Prefixless q-ary balanced codes,” in AEW8 –
Proceedings of the Eighth Asian-European Workshop on Information
Theory, 2013.

[18] ——, Codes for Mass Data Storage Systems, 2nd ed. Eindhoven, The
Netherlands: Shannon Foundation Publishers, 1999.

[19] B. Marcus, R. M. Roth, and P. H. Siegel, An Introduction to Coding
for Constrained Systems, 5th ed., 2001.

